Accepted Manuscript

Iron(III) nitrate-induced aerobic and catalytic oxidative cleavage of olefins

Toru Amaya, Hayato Fujimoto

 PII:
 S0040-4039(18)30695-6

 DOI:
 https://doi.org/10.1016/j.tetlet.2018.05.070

 Reference:
 TETL 50017

To appear in: Tetrahedron Letters

Received Date:24 April 2018Revised Date:18 May 2018Accepted Date:24 May 2018

Please cite this article as: Amaya, T., Fujimoto, H., Iron(III) nitrate-induced aerobic and catalytic oxidative cleavage of olefins, *Tetrahedron Letters* (2018), doi: https://doi.org/10.1016/j.tetlet.2018.05.070

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron Letters

journal homepage: www.elsevier.com

Iron(III) nitrate-induced aerobic and catalytic oxidative cleavage of olefins

Toru Amaya^{a,*}, Hayato Fujimoto^a

^aGraduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online Microwave-assisted catalytic oxidative cleavage of olefins using $Fe(NO_3)_3$ ·9H₂O under O₂ is reported. This reaction system is particularly effective when 9-benzylidene-9*H*-fluorene derivatives are used as substrates even though they are tri- and tetra-substituted olefins.

2009 Elsevier Ltd. All rights reserved.

Keywords: Oxidative cleavage of olefin Nitrogen dioxide Fe(NO₃)₃ Microwave

The oxidative cleavage of olefins to produce carbonylcontaining compounds is a fundamental and important reaction in organic synthesis (Scheme 1a). Harries ozonolysis² represents one of the most common methods¹ for this conversion although it also includes issues regarding explosive properties, toxicity, and the fact that it must be carried out the reaction at low temperatures using special equipment. Therefore, more convenient methods using easily available reagents are needed for this conversion. Catalytic oxidative cleavage using O₂ as a terminal oxidant has attracted interest from the environmental point of view and the fact that the reaction is more benign.³ Catalysts or activators that have been explored for this purpose include NHPI,⁴ TEMPO,⁵ AIBN,⁶ *t*-BuONO,⁷ metal catalysts such as Co,⁸ Mn,^{8c,9} Pd,¹⁰ Cu,¹¹ Ni¹² complexes, polyoxometallates (POM)-M-NO₂,¹³ Fe(III) bearing a pyridine bisimidazoline ligand,¹⁴ Au nanoparticles,¹⁵ and CAN,¹⁶ and photoredox catalysts or activators such as CBr₄,¹⁷ I₂,¹⁸ porphyrin derivatives,¹⁹ AcrH⁺,²⁰ eosin Y,²¹ and aromatic disulfides.²² It has also been reported that biocatalyst²³ undergoes oxidative cleavage using O₂ as a terminal oxidant. In most of these reports, terminal or less-substituted olefins have been used as typical substrates, but there are only limited examples of the aerobic and catalytic oxidative cleavage of tri- and tetra-substituted olefins. Among them, a catalytic system using POM-M-NO2 is of interest.¹² ¹³ since the more substituents the starting material contains, the more reactive it is. In this system, NO₂ is thought to play a key role. In this context, we hypothesized that metal nitrates could be used in this reaction, because NO₂ can be generated from them by heating. Here, we report on the catalytic oxidative cleavage of alkenes using Fe(NO₃)₃·9H₂O under an atmosphere of O_2 at a temperature of 150 °C (Scheme 1b).²⁴

An initial investigation was carried out using 9,9'bifluorenylidene (1) as a tetra-substituted olefin. Table 1 provides information on the screening of metal nitrates. In the presence of

1.5 equivalents of a metal nitrate, 1 was reacted in CH₂Cl₂ at 150 °C (microwave irradiation) under air for 30 min. When $Zn(NO_3)_2 \cdot 6H_2O$ and $Cu(NO_3)_2 \cdot 3H_2O$ were used, the corresponding oxidatively cleaved ketone 2 was obtained in 7 and 46%, respectively (entries 3 and 5) although the use of NaNO₃, AgNO₃, and Co(NO₃)₂·6H₂O did not afford 2 (entries 1, 2 and 4). In this screening, Fe(NO₃)₃·9H₂O was clearly the best metal nitrate, with the product 2 being obtained in quantitative yield (entry 6). Instead of microwave heating, a conventional heating condition (oil bath) was performed using toluene as a solvent in a sealed tube. Consequently, the reaction proceeded without any problems to give 2 in 98% yield (entry 7). To check the effect of water contained in Fe(NO₃)₃·9H₂O, the reaction was carried out in the presence of MS4A. The yield decreased to 77% (entry 8), where the nitrated products of 2 were observed in GC-MS. Product 2 was not produced when other Fe salts such as $FeCl_3$ and $Fe(OAc)_2$ were used (entries 12 and 13). These results suggest that NO₂ is involved in the reaction, because $Fe(NO_3)_3$, when heated, is known to generate three molecules of NO₂.²⁵ In fact, reducing the amount of Fe(NO₃)₃ to 0.5 equivalents did not lower the yield (entry 9). On

ACCEPTED MANUSCRIPT

Tetrahedron

Scheme 1. (a) Oxidative cleavage of olefins and (b) This work.

the other hand, decreasing the temperature to 100 °C gave rise to decreasing the yields (entries 10 and 11). These results suggest the involvement of thermally generated NO₂.

 Table 1. Investigation of metal salts for the oxidative cleavage of

 1.

	-	
2	AgNO ₃	0
3	$Zn(NO_3)_2 \cdot 6H_2O$	7
4	Co(NO ₃) ₂ ·6H ₂ O	0
5	$Cu(NO_3)_2 \cdot 3H_2O$	46
6	Fe(NO ₃) ₃ ·9H ₂ O	>99
7	$Fe(NO_3)_3$ ·9H ₂ O (conventional heating) ^b	98
8	Fe(NO ₃) ₃ ·9H ₂ O with MS4A	77
9	$Fe(NO_3)_3 \cdot 9H_2O$ (0.5 equiv)	>99
10	Fe(NO ₃) ₃ ·9H ₂ O (0.5 equiv), 120 °C	39
11	Fe(NO ₃) ₃ ·9H ₂ O (0.5 equiv), 100 °C	7
12	FeCl ₃	0
13	Fe(OAc) ₂	0

^a Yield was determined by ¹H NMR analysis of the reaction mixture based on 1,3,5-tribromobenzene as an internal standard. ^b Toluene was used as a solvent. The reaction was performed in a sealed tube at 150 °C.

The generation of NO₂ was qualitatively confirmed by examining the reaction in the presence of 1,3,5trimethoxybenzene, which is known to react with even a trace amounts of NO₂ to produce a deep blue solution.^{13,26} In order to confirm the involvement of NO₂ in the oxidative cleavage, the substrate **1** was treated with an excess of NO₂ at room temperature (Scheme 2). The product **2** was obtained in quantitative yield, suggesting that NO₂ is active species in this reaction. The dependence of yield on the amount of Fe(NO₃)₃ used were investigated by running the reaction under an atmosphere of N₂ (Fig. 1). The relationship was linear, and the use of 80 mol% Fe(NO₃)₃ was found to cause a complete reaction. This amount of Fe(NO₃)₃ generates 2.4 equivalents of NO₂ to the substrate.

$$1 \xrightarrow{\text{NO}_2 \text{ (excess)}} 2 2$$

CH₂Cl₂, air, rt quant

Scheme 2. Oxidative cleavage of 1 by NO₂.

A plausible reaction pathway is shown in the bottom half of Scheme 3a. Two molecules of NO_2 add to the olefin to give the dinitrite compound **3**. The elimination of NO together with carbon-carbon bond cleavage then takes place to result in the production of carbonyl compounds. Transformations of such dinitrite compound to carbonyl compounds at high temperature (260-280 °C) are reported in previous studies.²⁷ In this scheme, the involvement of an iron species cannot be excluded because other metal nitrates in Table 1 also generate NO_2 at the conditions used. It appears that the reduced NO is re-oxidized with a co-oxidant such as O_2 to regenerate NO_2 to complete the catalytic cycle, as shown in Scheme 3. Actually, this mechanism was confirmed by running the reaction in the presence of 10 mol% Fe(NO₃)₃ under O_2 , in which the product **3** was obtained in 97% yield (Scheme 3b).

Fig. 1. Dependence of the yield of 2 on the amount of $Fe(NO_3)_3$ under a N_2 atmosphere for oxidative cleavage.

Scheme 3. (a) Plausible catalytic cycle. (b) Oxidative cleavage of **1** with a catalytic amount of $Fe(NO_3)_3 \cdot 9H_2O$ under O_2 at 150 °C. * Yield was determined by ¹H NMR analysis of the reaction mixture based on 1,3,5-tribromobenzene as an internal standard.

Table 2 provides information regarding the scope of this catalytic system. Some 9-benzylidene-9*H*-fluorene derivatives

2

CCEPTED MANUSCRIPT

4a-g were initially investigated. The oxidative cleavage of the employed 7 derivatives 4a-g proceeded to give fluorenone (2) in high yields (89-99%, entries 1-7). However, the yield of the simultaneously produced corresponding aldehyde 5 was moderate (5a: 50%, 5b: 63%, 5c: 78%, 5d: 79%, 5e: 78%, and 5f: 86%, entries 1-6) due to overoxidation.²⁸ The yield of 1naphthaldehyde 5g was particularly low (entry 7). Only a trace amount of the oxidatively cleaved products was obtained from the reaction of diphenyl substituted derivative 4a' (entry 8). Interestingly, our recently reported macrocycle $4h^{29}$ bearing four olefin moieties also reacted completely to give the corresponding ketoaldehyde 5h in 75% yield (Scheme 4).

 Table 2.
 Substrate
 scope
 for
 9-benzylidene-9H-fluorene
 derivatives 4

Entry	Ar, R 4	Yield	Yields/ %	
		2	5a-g	
1	Ph, H 4a	89 ^a	50 ^a	
2	4-MePh, H 4b	96 ^b	63 ^b	
3	4-ClPh, H 4c	95 ^b	78 ^b	
4	4-BrPh, H 4d	99 ^b	79 ^b	
5	4-MeOPh, H 4e	97 ^b	78 ^b	
6	4-CF ₃ Ph, H 4f	97 ^b	86 ^b	
7	1-naphthyl, H 4g	98 ^a	19 ^a	
8	Ph, Ph 4a'	trace	trace	

Yields were determined by GC-MS analysis of the reaction mixture based on 1,3,5-tribromobenzene as an internal standard.^b Yields were determined by ¹H NMR analysis of the reaction mixture based on 1,3,5-tribromobenzene as an internal standard.

Scheme 4. Oxidative cleavage of macrocycle 4h.

Phenyl-substituted ethylene compounds were next investigated (Table 3). Because these derivatives showed a lower reactivity compared to 9-benzylidene-9H-fluorene derivatives, 30 mol% of Fe(NO₃)₃·9H₂O was used in these reactions. The use of tetraphenylethene (4i) as a tetra-substituted substrate gave only trace amounts of the benzophenone (5i) (entry 1). On the other hand, the tri-substituted triphenylethene (4j) reacted to give the corresponding product 5i and benzaldehyde (5a) in 68% and 10% yields, respectively (entry 2). In the case of trans- and cis-

stilbene (4k and 4l), 5a was produced in 32% and 30%, respectively (entries 3 and 6). When 1,1-diphenylethene (4m) was used, the yield of 5i was 34% (entry 7). The use of 4methoxystyrene (4n) gave only trace amounts of the corresponding aldehyde 5e (entry 8). In the above series, rearranged carbonyl compounds 7 were observed (entries 1-8). A similar rearrangement was observed previously, as exemplified by the reaction of benzhydrylideneadamantane with NO₂ (Scheme S1). In this reaction, an epoxide is first formed, which then undergoes ring opening, followed by the migration of phenyl group to give the rearranged spiroketone (Scheme S1).³⁰ It is consistent with the results of entries 4 and 5, which are comparing the effect of epoxide. Therefore, such an epoxidation reaction would be expected to compete with the desired oxidative cleavage. In the case of less-hindered fluorenylidene derivatives due to their planar structures, the formation of the dinitrite compound 3 may be dominant rather than epoxidation. Other typical by-products were found to be non-rearranged oxidized products 8 and nitrated products 9 (entries 2-5). These side reactions all result in the yield of the main reaction being low.

Table 3. Substrate scope for phenyl-substituted ethylene compounds 4i-n

Fe(NO₃)₃·9H₂O (30 mol%)

.R²

Yields were determined by ¹H NMR analysis of the reaction mixture based on 1,3,5-tribromobenzene as an internal standard. These compounds were suggested in ¹H NMR and GC-MS analyses. ^c 10 mol% of Fe(NO₃)₃·9H₂O was used.

4

ACCEPTED MANUSCRIPT

Tetrahedron

In conclusion, the catalytic oxidative cleavage of alkenes using $Fe(NO_3)_3 \cdot 9H_2O$ under O_2 was developed. This reaction system is particularly effective when 9-benzylidene-9*H*-fluorene derivatives are used as substrates even though they are tri- and tetra-substituted olefins.

Acknowledgments

We wish to thank Prof. Toshiyuki Moriuchi for the useful discussions, and Ms. Miharu Kamitani for the support of the experiments.

References and notes

- For reviews: (a) Rajagopalan, A.; Lara, M.; Kroutil, W. Adv. Synth. Catal. 2013, 355, 3321-3335. (b) Wan, J.-P.; Gao, Y.; Wei, L. Chem. Asian J. 2016, 11, 2092-2102.
- (a) Harries, C. Ann. 1905, 343, 311-344. (b) For a review: Bailey, P. S. Chem. Rev. 1958, 58, 925-1010.
- 3. Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Domínguez, E. *ACS Catal.* **2017**, *7*, 3050-3060.
- 4. Lin, R.; Chen, F.; Jiao, N. Org. Lett. 2012, 14, 4158-4161.
- 5. Wang, T.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 11692-11695.
- 6. Wang, G.-Z.; Li, X.-L; Dai, J.-J.; Xu, H.-J. J. Org. Chem. 2014, 79, 7220-7225.
- Miao, C.-X.; Yu, B.; He, L.-N. *Green Chem.* 2011, *13*, 541-544.
 (a) Ganeshpure, P. A.; Satish, S. *Tetrahedron Lett.* 1988, *29*, 6629-6632. (b) Reetz, M. T.; Töllner, K. *Tetrahedron Lett.* 1995, *36*, 9461-9464. (c) Chen, H.; Ji, H.; Zhou, X.; Xu, J.; Wang, L.
- *Catal. Commun.* 2009, *10*, 828-832.
 Varkey, S. P.; Ratnasamy, C.; Ratnasamy, P. *J. Mol. Catal. A: Chem.* 1998, *135*, 295-306.
- (a) Wang, J.-Q.; Cai, F.; Wang, E.; He, L.-N. Green Chem. 2007, 9, 882-887. (b) Feng, B.; Hou, Z.; Wang, X.; Hu, Y.; Li, H.; Qiao, Y. Green Chem. 2009, 11, 1446-1452.
- (a) Hossain, M. M.; Shyu, S.-G. *Tetrahedron* **2014**, *70*, 251-255.
 (b) Liu, Y.; Xue, D.; Li, C.; Xiao, J.; Wang, C. *Catal. Sci. Tech.* **2017**, *7*, 5510-5514.
- 12. Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Domínguez, E. Adv. Synth. Catal. 2016, 358, 1150-1156.
- Rubinstein, A.; Jiménez-Lozanao, P.; Carbó, J. J.; Poblet, J. M.; Neumann, R. J. Am. Chem. Soc. 2014, 136, 10941-10948.
- 14. Gonzalez-de-Castro, A.; Xiao, J. J. Am. Chem. Soc. 2015, 137, 8206-8218.
- Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Nature 2008, 454, 981-984.
- 16. Dhakshinamoorthy, A.; Pitchumani, K. Catal. Commun. 2009, 10, 872-878.
- 17. Hirashima, S.-I.; Kudo, Y.; Nobuta, T.; Tada, N.; Itoh, A. *Tetrahedron Lett.* **2009**, *50*, 4328-4330.
- 18. Fujiya, A.; Kariya, A.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. *Synlett* **2014**, *25*, 884-888.
- 19. Murthy, R. S.; Bio, M.; You, Y. *Tetrahedron Lett.* **2009**, *50*, 1041-1044.
- Suga, K.; Ohkubo, K.; Fukuzumi, S. J. Phys. Chem. A 2003, 107, 4339-4346.
- 21. Singh, A. K.; Chawla, R.; Yadav, L. D. S. *Tetrahedron Lett.* **2015**, *56*, 653-656.
- (a) Baucherel, X.; Uziel, J.; Jugé, S. J. Org. Chem. 2001. 66, 4504-4510. (b) Deng, Y.; Wei, X.-J.; Wang, H.; Sun, Y.; Noël, T.; Wang, X. Angew. Chem. Int. Ed. 2017, 56, 832-836.
- Lara, M.; Mutti, F. G.; Glueck, S. M.; Kroutil, W. Eur. J. Org. Chem. 2008, 3668-3672.
- There is one report (see below) of the oxidative cleavage of olefins using a Fe(NO₃)₃·9H₂O/O₂ system at 80 °C. However, only one substrate was examined in this study. Furthermore, the proposed mechanism is different from ours. Presumably, this is because temperature was too low to permit the generation of NO₂. Pillai, U. R.; Sahle-Demessie, E.; Namboodiri, V. V.; Varma, R. S. *Green Chem.* 2002, *4*, 495-497.
- 25. Hill, W. D. Jr. Inorg. Chim. Acta 1986, 121, L33.

- 26. Gowenlock, B. G.; King, B.; Pfab, J. J. Chem. Res. Synop. 2000, 276-277.
- 27. Kuhn, L. P.; DeAngelis, L. J. Am. Chem. Soc. 1954, 76, 328-329.
- The corresponding overoxidized acid was isolated in entry 1. There is a report of the oxidation of aldehyde to the carboxylic acid in the presence of Fe(NO₃)₃·9H₂O under O₂, see Tanaka, S.; Kon, Y.; Uesaka, Y.; Morioka, R.; Tamura, M.; Sato, K. *Chem. Lett.* **2016**, *45*, 188-190.
- Amaya, T.; Fujimoto, H.; Tanaka, T.; Moriuchi, T. Org. Lett. 2018, 20, 2055-2058.
- 30. Bosch, E.; Kochi, J. K. J. Am. Chem. Soc. 1996, 118, 1319-1329.

Supplementary Material

Supplementary data (Scheme S1 and experimental details associated with this article can be found, in the online version, at https://doi.org/xxx.

ACCEPTED MANUSCRIPT

Iron(III) nitrate-induced aerobic and catalytic oxidative cleavage of olefins

Toru Amaya*1 and Hayato Fujimoto1 Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871

Highlight

- • Catalytic oxidative cleavage of olefins under O₂
- Use of inexpensive $Fe(NO_3)_3 \cdot 9H_2O$
- Environmental benign method
- Particularly effective when 9-benzylidene-9H-

fluorene derivatives are used as a substrate