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Abstract

Atherosclerosis is widely accepted to be a chronic inflammatory disease, and the immuno-

logical response to the accumulation of LDL is believed to play a critical role in the develop-

ment of this disease. 1,4-Dihydropyridine-type MAA-adducted LDL has been implicated in

atherosclerosis. Here, we have demonstrated that pure MAA-modified residues can be

chemically conjugated to large proteins without by-product contamination. Using this pure

antigen, we established a purified MAA-ELISA, with which a marked increase in anti-MAA

antibody titer was determined at a very early stage of atherosclerosis in 3-month ApoE-/-

mice fed with a normal diet. Our methods of Nε-MAA-L-lysine purification and purified anti-

gen-based ELISA will be easily applicable for biomarker-based detection of early stage

atherosclerosis in patients, as well as for the development of an adduct-specific Liquid Chro-

matography/Mass Spectrometry-based quantification of physiological and pathological lev-

els of MAA.

Introduction

Lipid peroxidation produces a wide variety of reactive aldehydes, which can form covalent

adducts with proteins [1]. These protein adducts can initiate pro-inflammatory responses, and

the resulting inflammation caused by these aldehyde-derived protein adducts has been impli-

cated in chronic inflammatory diseases, such as atherosclerosis [2]. During the development of

atherosclerosis, protein adducts can be generated by MDA and its degradation product acetal-

dehyde, which are lipid peroxidation products reactive towards lysine residues on proteins
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(Fig 1A) [3]. Specifically, 1,4-dihydropyridine-type MAA-modified LDL, which is a form of

oxidized LDL (oxLDL), has been implicated in atherogenesis [3–5]. MAA-lysine adducts have

been reported to be highly stable [6, 7], toxic [8], pro-inflammatory [9], and profibrogenic [10,

11]. Repeated immunization with MAA-modified protein induces robust antibody production

even in the absence of adjuvant [12]. Thus, MAA-lysine adducts have been proposed to be one

of the most potent atherogenic protein adducts caused by lipid peroxidation [3, 4]. As such,

MAA adducts appear to play a critical role in atherogenesis [3].

Studies have found that serum antibodies against MAA-modified proteins are associated

with active and chronic stages of atherosclerosis in humans [13] and that there are detectable

levels of anti-MAA antibody even during the development and progression of atherosclerosis

[13–15]. These studies have detected the anti-MAA antibody using ELISA plates coated with

antigens that are reported to be predominantly a 4-methyl-1,4-dihydropyridine-3,5-dicarbal-

dehyde derivative of an amino group of protein carriers [16]. However, given the number of

lysines found throughout the carriers used in the studies, this cyclic fluorescent adduct was

likely not the only product present. For example, a 1:1:1 adduct without fluorescent properties

has been reported to be present within the antigen mixture [17]. The heterogeneity of the

MAA epitopes, in addition to the other adducts generated by the reaction of MDA and acetal-

dehyde, likely affect the specificity and sensitivity of these anti-MAA assays. Therefore a

method of generating homogeneous MAA-adducted proteins to assay for MAA adducts is

important for early diagnosis of atherosclerosis.

Published MAA adduct preparations involve reaction of acetaldehyde and two equivalents

of MDA with a primary amine, usually the ε-amino group of a lysine residue on the target pro-

tein [18]. During this reaction, many stable (e.g. 2:1:1 product) and unstable adducts (e.g.

MDA-lysine) are generated (Fig 1B) [7, 18, 19]. However for early and accurate detection and

diagnosis of atherosclerosis, improved sensitivity and specificity of diagnostic biomarker

assays is imperative. Thus, in the present study, we synthesized pMAA-lysine and pMAA-

6ACA, an MAA-lysine analog. The purified MAA adducts were conjugated through the car-

boxylic acid moiety to the amino groups of BSA or KLH by the EDC crosslinking reaction (Fig

1B and S1A Fig). Using the purified antigens, we tested the immunogenicity of pMAA mole-

cules and analyzed the serum titer of the anti-MAA-lysine antibody in the atherosclerotic

ApoE-/- mice, for the first time in the absence of confounding factors such as contaminating

epitope by-products of the reaction with MDA and acetaldehyde. The pMAA antigen-based

ELISA, using BSA chemically conjugated to purified MAA adducts, has not only proven to be

Fig 1. Structure of the MAA-lysine adduct and pMAA and crMAA epitopes. (A) 1,4-dihydropyridine-type

MAA-lysine adducts are formed by a reaction between acetaldehyde and two equivalents of MDA with a

primary amine, usually at the ε-position amino moiety of a lysine residue on the target protein. (B) BSA

chemically conjugated to purified MAA-6ACA (MAA-lysine analog) was used in the present study and

compared to BSA attached to crMAA epitopes, which were utilized in many previous reports.

doi:10.1371/journal.pone.0172172.g001
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more sensitive and specific than the crude MAA antigen-based ELISA that is currently in use

but has also been able to detect markedly increased anti-MAA antibody titers in the serum of

ApoE-/- mice at a very early stage of atherosclerosis.

Materials and methods

Materials

Boc-lysine, 6-ACA, acetaldehyde, BSA, KLH, TFA, TMB, and H2O2 were purchased from

Sigma-Aldrich (St. Louis, MO). Malondialdehyde bis(dimethyl acetal), the Imject EDC

mcKLH Spin Kit, goat anti-rabbit IgG (H+L) antibody with HRP, and goat anti-mouse IgM

secondary antibody were obtained from Thermo Scientific (Rockford, IL). EnVision+Single

Reagents anti-mouse-HRP and rabbit anti-human IgG F(ab’)2 fragment antibody with HRP

were purchased from Dako North America, Inc. (Carpentaria, CA) and Jackson Immuno

Research Laboratories (West Grove, PA), respectively.

Synthesis of Nε-(MAA)-L-lysine (MAA-lysine) adducts. MDA was generated as previ-

ously reported [20]. Briefly, 704 μL of malondialdehyde bis(dimethyl acetal) was hydrolyzed

with 96 μL of 4M HCl in the presence of 3.2 mL of water at 37˚C for 10 min. The reaction was

stopped by adjusting the pH to 7.4 with NaOH. The total volume was brought to 8 mL with

water to prepare 500 mM MDA. MAA-lysine was synthesized as previously described for the

MAA-BSA preparation [21] with some modifications (S1B Fig). 4 mM of Boc-lysine, 4 mM of

acetaldehyde, and 8 mM of MDA were dissolved in water or PBS. The reaction mixture was

incubated at 37˚C for 3 days. During this time, a yellowish color developed. MAA-Boc-lysine

was purified by HPLC using an Agilent 1200 HPLC system (Agilent, Santa Clara, CA) with a

Poroshell 120 EC-C18 column (Agilent, 4.6 x 50 mm, 2.7 um) and isocratic elution by 0.1%

formic acid and 25% acetonitrile in water at a flow rate of 1 mL/min and UV detection at 264

nm. Fractions (3 mL) were collected by an autosampler, with both the tray and fraction collec-

tor chambers maintained at 4˚C. The retention time of the fraction containing MAA-Boc-

lysine was determined, and a 3.8 to 4.2 min fraction of the mobile phase eluate containing

MAA-Boc-lysine was collected automatically. The collected fractions were evaporated and fur-

ther incubated with 150 μL of 100% TFA overnight to remove the Boc protecting group. Fol-

lowing evaporation, the fractions were dissolved in HPLC-grade water for subsequent HPLC

purification. MAA-lysine was purified by the HPLC system described above using a gradient

elution program as follows: eluant A, 0.1% formic acid in water; eluant B, acetonitrile, starting

at 2% B increasing linearly to 30% B over 2 min and held at 30% B for an additional 3 min

before re-equilibration at 2% B for 4 min. The retention time of MAA-lysine was determined,

and a 3.8 to 4 min fraction containing MAA-lysine was collected by autosampler. The fractions

were evaporated and used for LC-MS and NMR characterization, and BSA/KLH-conjugation.

Synthesis of MAA-6ACA adducts

MAA-6ACA was synthesized as described for the MAA-lysine preparation with some modifi-

cations (S1C Fig). 4 mmoles of 6-ACA, 4 mmoles of acetaldehyde, and 8 mmoles of MDA

were dissolved in water or PBS. The reaction mixture was incubated at 37˚C for 3 days. MAA-

6ACA was purified by HPLC as described above using a gradient elution program as follows:

0.1% formic acid in water (A) and acetonitrile (B) at 2% B linearly increasing to 5% B over 2

min, then increased linearly to 25% B over 0.5 min, held at 25% for an additional 3.5 min, line-

arly decreased to 2% B over 0.5 min and maintained at 2% B for 3.5 min. The retention time of

MAA-6ACA was determined, and a 6.4 to 7.1 min fraction of the eluate containing MAA-

6ACA was collected by autosampler. The fractions were evaporated and used for LC-MS,

NMR characterization, and BSA/KLH-conjugation.

Pure MAA antigen-based ELISA
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LC-MS analysis

MAA-Boc-lysine, MAA-lysine, and MAA-6ACA were characterized with an Agilent Technol-

ogies liquid chromatograph-mass spectrometer system consisting of a series 1200 HPLC and

6520 Accurate Mass Q-TOF mass spectrometer (Santa Clara, CA). Products were injected on a

Waters Acquity UPLC CSH Fluoro-phenyl column, 2.1 mm x 100 mm, 1.7 μm particle size.

Mobile phase was delivered isocratically at 0.2 mL/min using 70% water containing 0.1% for-

mic acid and 30% acetonitrile. Solvent flow was diverted to waste for the first 1.2 min of the

analysis. Mass spectrometer parameters were set to the following values: positive ionization

mode, capillary voltage of 3500 V, nebulizing gas pressure of 40 psi, drying gas temperature of

300˚C, drying gas flow of 12 L/min, and fragmentor voltage of 150 V. Scans from m/z 100 to

m/z 1700 were acquired at a rate of 1 scan/s in the high-resolution, low-mass instrument

mode. Reference masses used for real-time mass axis adjustment were purine, m/z 121.050873

and HP-0921, m/z 922.009798.

NMR spectrometry
1H NMR spectra were recorded on a Varian INOVA 400 spectrometer at 400 MHz in ACN-d3

or DMSO-d6, as specified. Chemical shifts are reported in ppm relative to TMS.

NMR spectrometry for MAA-Boc-lysine. UV (ddH2O): λmax = 260 nm. ESI-MS: m/z
calc for C19H29N2O6: 381.2025, obs, 381.2019 MH+, m/z 325.1397 [MH—Boc] +. 1H NMR

(400 MHz, DMSO-d6): 9.23 (singlet, 2H, CHO), 7.33 (singlet, 2H, dihydropyridine-H2,H6),

6.82 (doublet, 1H, J = 7.5 Hz, amide), 3.84–3.76 (multiplet, 1H, Hα), 3.61 (quartet, 2H, J = 6.5

Hz, dihydropyridine-H4), 3.52 (triplet, 2H, J = 6.9 Hz, CεH2), 1.76–1.52 (multiplet, 4H, Cβ,

δH2), 1.35–1.26 (m, 2H, CγH2), 1.35 (singlet, 9H, Boc-CH3), 0.92 (doublet, 3H, J = 6.5 Hz,

CH3) ppm.

NMR spectrometry for MAA-lysine. C14H20N2O4:UV (ddH2O): λmax = 260 nm. ESI-MS:

m/z calc for C14H21N2O4: 281.1501, obs 281.1498 MH+. 1H NMR (400 MHz, DMSO-d6): 9.26

(singlet, 2H, CHO), 7.32 (singlet, 2H, dihydropyridine-H2,H6), 3.62 (quartet, 1H, dihydropyri-

dine-H4), 3.50 (triplet, J = 6.9 Hz, 2H, CεH2), 3.17–3.11 (m, 1H, Hα), 1.51–1.83 (m, 4H, Cβ,

δH2), 1.13–1.37 (m, 2H, CγH2), 0.92 (doublet, J = 6.5 Hz, 3H, CH3) ppm.

NMR spectrometry for MAA-6ACA. C14H19NO4:UV (ddH2O): λmax = 260 nm. ESI-MS:

m/z 266.1391 MH+. 1H NMR (400 MHz, DMSO-d6): δ 9.22 (singlet, 2H, CHO), 7.34 (singlet,

2H, dihydropyridine-H2,H6), 3.61 (quartet, J = 6.5 Hz, 1H, dihydropyridine-H4), 3.53 (triplet,

2H, J = 7.2 Hz, C6H2), 2.22 (triplet, 2H, J = 7.2 Hz, C2H2COOH),1.64 (quintet, 2H), J = 7.3 Hz,

1.54 (quintet, 2H J = 7.5 Hz,), 1.25–1.33 (m, 2H) (C3H2, C4H2, C5H2), 0.92 (doublet, 3H,

J = 6.5 Hz, CH3) ppm.

Fluorescence measurements

Fluorescent properties of MAA-6ACA were characterized using a CLARIOstar microplate

reader (BMG LABTECH) equipped with a scanning mode of continuous adjustable wave-

lengths (320–850 nm). Fluorescence measurements were also performed for MAA-lysine and

MAA-6ACA and their BSA/KLH conjugate complexes using a FLX800 microplate fluores-

cence reader (Bio-Tek) equipped with excitation (360/40, 400/10, and 485/20) and emission

filters (460/40, and 528/20).

Preparation of antigens (S1A Fig)

50 nmol of MAA-lysine or MAA-6ACA were coupled to either 2 mg of BSA or KLH using the

Imject EDC mcKLH Spin Kit, according to the manufacturer’s directions. EDC-mediated

Pure MAA antigen-based ELISA
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amide formation was used for conjugation between MAA epitopes containing a carboxyl moi-

ety and either BSA or KLH. The antigens were purified by spin column and sterile filtered

(0.2 μm, Fisher Scientific). Pure antigens were referred to as pMAA-lysine-BSA, pMAA-

6ACA-BSA, and pMAA-6ACA-KLH. In order to compare pMAA-lysine-proteins and the

crude antigens utilized previously, a reaction with BSA, MDA, and acetaldehyde was per-

formed. BSA (20 mg/7ml in PBS) was incubated with 4 mM acetaldehyde and 8 mM MDA at

37˚C for 24 hours. The reaction product was extensively dialyzed for 72 hours in PBS. This

crude immunogen was referred to as crMAA-BSA.

Animal treatment, blood collection, and serum preparation

All mouse experiments were performed using protocols approved by the Institutional Animal

Care and Use Committees of UNC and in accordance with federal guidelines. ApoE-/- mice on

a C57BL/6 background and their wild-type controls were obtained from The Jackson Labora-

tory. For addressing the immunogenicity of MAA-lysine, 8-month aged C57BL/6 female mice

(3 mice per group) were used. The mice were treated intraperitoneally with BSA or pMAA-

lysine-BSA (51 fluorescence units [measured by FLX800 with filter of Ex360/Em460] per

103 μg BSA in 200 μL PBS) once a week for 6 weeks without adjuvant. Seven days after the

final injection, mice were euthanized by CO2 euthanasia. Blood was collected from the abdom-

inal vein for serum sample collection. Serum samples were stored at -70˚C until use. A four-

fold serial dilution of each serum sample was prepared using a 5-fold diluted supernatant of

5% Casein PBS suspension. For studying the association between an increase in MAA anti-

body titer and atherosclerosis, 3-month old C57BL/6 and ApoE-/- male mice (4 mice per geno-

type) were utilized for quantitating levels of antibody against MAA. Blood samples were

collected from either the maxillary vein or abdominal vein, followed by serum separation.

Serum samples were stored at -70˚C until use. Each sample was then diluted 320 fold with 1%

BSA in PBS for analysis with ELISA.

ELISA

ELISA-based analysis characterizing pMAA-6ACA-BSA using previously-reported

anti-MAA antibodies. An indirect ELISA was performed to compare the reactivity of four

different previously-reported anti-MAA antibodies [15, 22, 23] against pMAA-6ACA-BSA.

96-well plates (Corning Incorporated, Kennebunk, ME) were coated with pMAA-6ACA-BSA

(50 μL/well) at 4˚C overnight. After washing, followed by blocking with 3% BSA in PBS, 50 μL

of the anti-MAA antibodies were incubated at different concentrations at 4˚C overnight. A

two-fold serial dilution of each anti-MAA antibody was prepared using 1% BSA in PBS. 1%

BSA in PBS was used as a negative control. After washing each well, quantitation of primary

antibody binding was performed through the reaction with peroxidase-labeled secondary anti-

bodies. The TMB/H2O2 substrate was added to all the wells and kept at room temperature for

30 min. The plates were then read with a plate reader (Vmax Kinetic Microplate Reader,

Molecular Devices, Sunnyvale, CA) at a wavelength of 650 nm. Each antibody value was cor-

rected by subtracting the OD of the negative control from the value of each sample. The pri-

mary and secondary antibodies used for the ELISA were as follows: 1] moMoAb-1F83 [23]

and EnVision+Single Reagents anti-mouse-HRP (Code K4001, Dako North America, Inc.,

Carpentaria, CA); 2] rabPoAb [22] and goat anti-rabbit IgG (H+L) antibody with HRP

(Thermo Fisher Scientific); 3] huFull-MoAb (IFUf-08_108) [15] and rabbit anti-human IgG F

(ab’)2 fragment antibody with HRP (Jackson Immuno Research Laboratories); and 4] huPre-

MoAb (IFUp-08_107) [15] and rabbit anti-human IgG F(ab’)2 fragment antibody with HRP

as described above.

Pure MAA antigen-based ELISA
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ELISA for determining anti-MAA antibody titers of serum samples obtained from mice

immunized with pMAA-lysine-BSA or BSA. The serum samples of mice immunized with

pMAA-lysine-BSA or BSA were separated from the blood to determine the IgG and IgM anti-

body values against pMAA-6ACA-KLH. Blood samples were collected into 2 mL tubes and

centrifuged at 2,000 g for 10 min at 4˚C. After separation, aliquots of serum were frozen at

-80˚C until analysis. The samples were diluted and used for ELISA-based analysis. pMAA-

6ACA-KLH (50 μL/well with equivalent fluorescence to pMAA-6ACA-BSA) was coated in

each well of the 96-well plates at 4˚C overnight. After washing, followed by blocking with the

supernatant of 5% Casein PBS suspension (hereafter referred to as supernatant A), 50 μL of the

serum samples were incubated at different concentrations at 4˚C overnight. A four-fold serial

dilution of each serum sample was prepared using 5-fold diluted supernatant A. The 5-fold

diluted supernatant A was used as a negative control. After washing each well, quantitation of

the antibody binding was performed through a reaction with peroxidase-labeled secondary

antibodies (IgG: EnVision+Single Reagents anti-mouse-HRP; IgM: Goat anti-Mouse IgM sec-

ondary antibody with HRP). The TMB reaction and plate reading were performed as described

above.

ELISA for quantitating anti-MAA antibody titers of serum samples obtained from

wild-type and ApoE-/- mice. The serum anti-MAA IgG and IgM titers in wild-type and

ApoE-/- mice were determined using 96-well plates coated with pMAA-6ACA-BSA or

crMAA-BSA. The plates were coated with equivalent amount of fluorescence between two

types of antigens. After blocking with 3% BSA in PBS, 50 μL of the 320-fold diluted serum sam-

ples in 1% BSA PBS solution were incubated at 4˚C overnight. 1% BSA PBS solution was used

as a negative control. After washing each well, the quantitation of primary antibody binding

was performed as described above.

Statistical analysis

The antibody values were indicated as mean ± SD of the mean, and the statistical differences

between the two groups (ApoE-/- vs wild-type mice; pMAA-6ACA-BSA plate vs crMAA-BSA

plate) were evaluated by unpaired Student t-tests after log transformation. A p-value < 0.05

was considered significant.

Results

Synthesis and purification of Nε-MAA-lysine

The ε amine of lysine is usually the target site for modification by MAA [24]; therefore, Nε-

(3,5-diformyl-4-methylpyridin-1(4H)-yl)lysine was the synthetic target. The Boc-protected

lysine adduct was synthesized by incubating Boc-lysine with MDA and acetaldehyde in a 1:2:1

ratio. The procedure for purifying the MAA-lysine is described in detail in S1B Fig. The reac-

tion mixture was analyzed by LC-MS and fractions containing the target product (S2A Fig)

were collected with confirmation of the structure by 1H NMR (S2B Fig). As anticipated, based

on previous reports, multiple contaminating adducts were present. The reaction of the Boc-

protected lysine with MDA and acetaldehyde produced unstable adducts (e.g., acetaldehyde-

Boc-lysine, MDA-Boc-lysine, and MDA-acetaldehyde (1:1)-Boc-lysine) as well as the stable

target. Previous studies on MAA have performed dialysis with the assumption that contami-

nating protein adducts are unstable and eliminated; however, we confirmed that even exten-

sive dialysis of the mixtures from the direct reaction of BSA, acetaldehyde, and MDA at

various concentrations does not remove contaminating protein adducts, as determined by

their fluorescence characteristics. Following deprotection of the Boc group, MAA-lysine was

purified by HPLC and the peak for pMAA-lysine was identified. The purity and identity of the

Pure MAA antigen-based ELISA
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MAA-lysine adduct was confirmed by 1H NMR (S2C Fig) and the molecular composition was

determined by exact mass measurement of the molecular ion (Fig 2A).

Synthesis and purification of Nε-MAA-6ACA

As an alternative to the two-step HPLC purification procedure for pMAA-lysine synthesis,

MAA-6ACA, an analog of MAA-lysine that does not contain the α-amino group, was synthe-

sized by the reaction of 6-ACA with MDA and acetaldehyde (S1C Fig). pMAA-6ACA was

purified by HPLC and its identity and purity were confirmed by LC-MS and 1H NMR (Fig 2B

and S2D Fig).

Fluorescence properties of pMAA adducts

The purified adducts exhibited fluorescence, as expected for the 1,4-dihydropyridine chromo-

phore in MAA-lysine [6, 16, 23, 25]. pMAA-6ACA has an excitation/emission maximum of

399/462 nm. These values are in line with previously characterized MAA-lysine analog fluores-

cent properties [23].

Anti-MAA antibody reactivity to pMAA-6ACA-BSA

By ELISA-based analyses, the four previously-used anti-MAA antibodies we tested recognized

the pMAA-6ACA-BSA seeded on the bottom of a 96-well plate, all at different reactivities (Fig

3). The anti-MAA monoclonal mouse antibody (1F83) reacted with the MAA antigen at ~4

orders of magnitude lower concentration compared to the other anti-MAA antibodies.

Immunogenicity of pMAA-lysine-BSA

The immunogenicity of the MAA unit was previously characterized using a crude MAA-modi-

fied BSA mixture (henceforth referred to as crude MAA-BSA, “crMAA-BSA”) in the absence

of adjuvant. To evaluate whether pMAA-lysine-BSA also shows immunogenicity in mice,

C57BL/6 mice were treated intraperitoneally with pMAA-lysine-BSA or BSA in the absence of

Fig 2. The full scan mass spectrums of MAA-lysine and MAA-6ACA. (A) The full scan mass spectrum shows the

protonated molecular ion for MAA-lysine at m/z 281.1498. Other peaks are minor background ions and reference ions m/z

121.0509 and m/z 922.0098. (B) The full scan mass spectrum shows the protonated molecular ion of MAA-6ACA at m/z

266.1391. Other peaks are minor background ions and reference ions m/z 121.0509 and m/z 922.0098.

doi:10.1371/journal.pone.0172172.g002
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adjuvant. The antibody titers of IgG and IgM directed against pMAA-lysine, which were

detected using pMAA-6ACA-KLH-coated plates, showed trends in accordance with the dilu-

tion levels of the samples. The titers were clearly increased in pMAA-lysine-BSA-immunized

mice compared to controls (BSA-treated mice) (Fig 4A and 4B).

Anti-MAA antibody titer in the serum of atherosclerosis-prone ApoE-/-

mice

A previous study reported that oxLDL levels are comparable in the peripheral blood of wild-
type and ApoE-/- mice fed a normal diet at 10 weeks of age but increases and peaks at 20 weeks

of age in the ApoE-/- mice [26]. To determine whether a pMAA antigen-based ELISA can

detect early increases in anti-MAA antibody titers in atherosclerosis, we next addressed

Fig 3. An ELISA method for characterizing the activity of anti-MAA antibodies to pMAA epitopes.

Using the ELISA-based assay, we analyzed the four anti-MAA antibodies that were previously used

(moMoAb-1F83, huPre-MoAb, huFull-MoAb and rabPoAb). The ELISA plates were first coated with the

pMAA-6ACA-BSA antigens. The moMoAb-1F83 reacted with pMAA-6ACA-BSA at ~4 orders of magnitude

lower concentration compared to the other anti-MAA antibodies.

doi:10.1371/journal.pone.0172172.g003

Fig 4. The immunogenicity of pMAA-lysine-BSA in the absence of adjuvant. C57BL/6 mice were

injected i.p. with pMAA-lysine-BSA or BSA in the absence of adjuvant. The antibody titers of IgG (A) and IgM

(B) against pMAA-lysine were detected using pMAA-6ACA-KLH-coated plates. The anti-MAA antibody titers

were clearly increased in pMAA-lysine-BSA-immunized mice compared to the controls (BSA-treated mice).

Error bars represent SD.

doi:10.1371/journal.pone.0172172.g004
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whether serum levels of IgG and IgM antibodies against pMAA are increased at a very early

stage of atherosclerosis in ApoE-/- mice fed with a normal diet. Blood serum was collected

from 3-month-old ApoE-/- mice and used in an ELISA to detect antibody titers. In addition,

the sensitivities of ELISAs were compared between the pMAA-6ACA-BSA- and the

crMAA-BSA-coated ELISAs (the plates were coated with antigens containing equivalent

amounts of fluorescence). The IgG and IgM antibody values using the pMAA-6ACA-BSA-

coated plates in ApoE-/- mice were significantly higher than those in wild-type mice, with

6.5-fold and 5.1-fold increases, respectively (Fig 5A and 5B). On the other hand, the IgG and

IgM antibody values using the crMAA-BSA-coated plates in ApoE-/- mice showed only

1.9-fold and 1.4-fold higher values, respectively, compared to the values in wild-type mice. ELI-

SAs using serially diluted serum samples (1:80 to 1:1280 dilutions) showed similar results to

Fig 5B at different dilutions (S1 Table). These results observed with the pMAA-6ACA-BSA

ELISAs indicate that the levels of antibodies against pMAA are markedly increased at very

early stages of atherosclerosis. Notably, wild-type mice showed 6.9- and 4.8-fold higher IgG

and IgM levels, respectively, using the crMAA-BSA-coated plates compared to pMAA-

6ACA-BSA-coated plates (Fig 5A). In contrast, the antibody titers in ApoE-/- mice using

crMAA-BSA-coated plates were only slightly increased compared to pMAA-6ACA-BSA-

coated plates.

Discussion

In this study, we developed a method to purify Nε-MAA-L-lysine molecules. Protein adducts

were then generated by conjugation with either pMAA-lysine or pMAA-6ACA, free of con-

tamination with modified protein impurities present in the reaction mixtures of MDA and

acetaldehyde. This method, for the first time, allows for the investigation of the biological

response specific to pMAA-lysine and the antibody response against MAA-lysine in athero-

sclerosis animal models. The ELISA plates coated with pMAA-6ACA-BSA detected a marked

increase in anti-MAA antibody titer in ApoE-/- mice with higher specificity and sensitivity than

the crMAA-BSA-coated ELISA. In contrast to pMAA-6ACA-BSA plates, the wild-type mice

showed high background IgG and IgM levels using the crMAA-BSA-coated plates. These

results suggest that the previous method of extensive dialysis of mixtures from the direct

Fig 5. Serum anti-MAA IgG and IgM antibody levels in wild-type and ApoE-/- mice. (A) Serum anti-MAA

IgG and IgM antibody levels in wild-type and ApoE-/- mice. The anti-MAA IgG and IgM antibody levels showed

significant differences between wild-type and ApoE-/- mice with the pMAA-6ACA-BSA and crMAA-BSA

ELISAs for all except the IgM levels with crMAA-BSA ELISA (*: p<0.05; **: p<0.01). In addition, the

differences between pMAA-6ACA-BSA and crMAA-BSA ELISAs in the wild type and ApoE-/- mice for anti-

MAA IgG and IgM antibody levels were significant for all except the IgM levels in ApoE-/- mice. (B) The anti-

MAA IgG and IgM antibody titers in ApoE-/- mice were normalized to those of wild-type mice. The individual

titer values of ApoE-/- animals were divided by the average titer value of the wild-type animals. Of note, the

differences between the antibody titers in the wild-type and ApoE-/- mice were much greater with the pMAA-

6ACA-BSA ELISA than with the crMAA-BSA ELISA. Error bars represent SD. Due to the redundancy of the

statistical analyses, we did not include any asterisks for statistical significance in Fig 5B.

doi:10.1371/journal.pone.0172172.g005
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reaction of BSA, acetaldehyde, and MDA was unlikely to remove contaminating protein

adducts, which left the confounding factor of antibody responses to antigens other than MAA.

Indeed, when we incubated MDA, acetaldehyde and 6-ACA at 37˚C followed by HPLC-UV

separation, we found that the yield of many major peaks (including MAA-6ACA) were

increased, indicating the production of many different, stable adducts. These results suggest

that the crMAA-BSA mixture contains many different stable epitopes including MAA. Com-

pared to the current ELISA methods using crMAA-BSA epitope, the pure-MAA ELISA shows

improvements in terms specificity and sensitivity and has the potential for detecting early

stage atherosclerosis.

Previous studies have demonstrated high titers of IgG antibodies directed against MDA-

LDL in 5–6 month old atherosclerosis-prone ApoE-/- mice fed a diet of regular mouse chow.

However, these results were based on a crude MDA-protein-coated radioimmunoassay [27].

Our ELISA technique, using pMAA-6ACA-BSA-coated plates, shows a substantial increase in

anti-MAA IgG and IgM antibody levels in ApoE-/- mice fed a normal diet, even as early as at

three months of age. Further, the differences between the antibody titers in the wild-type and

ApoE-/- mice were much greater with the pMAA-6ACA-BSA ELISA than with the crMAA-

BSA assay (Fig 5A and 5B). These results indicate that the high purity of the antigen improves

the sensitivity of the assay. These results strongly suggest that the pMAA-BSA ELISA method

may be a useful tool to detect early stages of atherosclerosis in patients. In future studies, we

hope to apply the pMAA-based ELISA using samples from patients at different stages of

atherosclerosis.

In humans, anti-MAA antibodies exist as natural IgM antibodies in the umbilical cord

blood of new born babies [15], and anti-MAA IgA, IgM, and IgG antibodies have been

detected in the peripheral blood of normal individuals [3, 15, 28]. Such results strongly suggest

that MAA epitopes are present under normal physiological conditions and that the total bur-

den of MAA-adducted proteins increase with the progression of atherosclerosis, leading to an

increase in anti-MAA antibody generation in atherosclerosis patients. To understand the path-

ogenesis of the disease, it is crucial to know the kinetics and regions of accumulation of MAA-

modified proteins during the development of atherosclerosis. Since it generally takes ~2 weeks

to observe a significant increase in antibody titer after a boost vaccination in mice [29, 30], the

marked increase in anti-MAA antibody titer in 3-month-old ApoE-/- mice in our study sug-

gests that ApoE deficiency may cause an increase in MAA epitopes at as early as 11 weeks of

age. Because ApoE-/- mice fed with a regular chow diet exhibit only very subtle phenotypes at

10 weeks, with small lesions on 0.5% of the surface of the aorta [26], the 6.5-fold and 5.1-fold

increases in IgG and IgM antibodies, respectively, against the pMAA group in ApoE-/- mice at

3 months indicates that antibodies against the pMAA group have potential as a very sensitive

biomarker for early atherosclerosis. Further studies are necessary to understand the mecha-

nism by which MAA epitopes are increased in ApoE-/- mice, as well as the time course of

MAA-lysine accumulation. Development of an ultra-sensitive LC-MS-based quantitative anal-

ysis using pMAA-lysine standards will be vital to answering these critical questions.

Our method also has substantial potential to increase the specificity of an ELISA-based

method for detecting anti-MAA antibody titers. It is noteworthy that there were significant

differences in anti-MAA antibody titers with the pMAA-6ACA-BSA and crMAA-BSA ELISAs,

particularly in wild-type mice (Fig 5A). The IgG and IgM antibody titers in wild-type mice

using crMAA-BSA-coated plates were significantly higher compared to pMAA-6ACA-BSA-

coated plates. These results strongly suggest that using 96-well plates coated with pMAA-

6ACA-BSA significantly decreases background resulting from immunoreactive contaminants,

such as other adducts present in the MDA–acetaldehyde reaction. These results also suggest

that there may be significant levels of MDA- and acetaldehyde-derived antibodies, in addition

Pure MAA antigen-based ELISA
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to anti-MAA antibodies, in mice under normal conditions. The antibodies detected in the

wild-type mice by the crMAA-BSA ELISA could be derived from both previously identified

and unidentified protein adducts, including MDA-acetaldehyde-lysine 1:1:1 adducts, MDA-

lysine adducts, and acetaldehyde-lysine adducts [31, 32]. HPLC analysis detected multiple

peaks after incubation of MDA, acetaldehyde, and Boc-lysine at physiological temperature and

pH. Some of these adducts may be abundant enough to persist even after the crMAA-BSA

antigen purification by extensive dialysis. Our results also suggest that, at early stages of athero-

sclerosis in this mouse model, atherosclerotic conditions may stimulate formation of antibod-

ies specific to MAA-lysine adducts.

In addition to improving ELISA-based analyses, our pMAA antigens may prove to be a

great tool to investigate the atheroprotective effects of the immunization of MAA-modified

proteins. In animal models, anti-oxLDL antibody (Fab or Fv fragment) infusion and immu-

nization of MDA- or MAA-modified LDL, which leads to high levels of serum antibodies

(IgM and possibly IgG1), have both been shown to confer protection against atherosclerosis

[4, 33, 34]. These increases in serum antibodies against MDA- and MAA-modified LDL

appear to interfere with the interaction between MDA- and MAA-lysine epitopes and mac-

rophages, resulting in inhibition of the inflammatory response. This inhibition is believed to

further inhibit both the engulfment of oxLDL by macrophages as well as MAA-mediated

inflammation. However, as mentioned previously, the MDA and MAA preparations used in

previous studies for immunization resulted in crude, heterogeneous mixtures of various

adducts. Since previous studies used impure immunogens for investigating their atheropro-

tective properties [4, 35], their results need to be interpreted with caution because of a

potential increase in non-targeted immune responses caused by the contaminating protein

adducts. Therefore, it is important to determine the exact protein adducts that confer ather-

oprotection by immunization. One of these reports attempted to identify the MDA-derived

protein adducts critical for rescue [4]. Interestingly, they found that the responsible adducts

could be, in fact, the 1,4-dihydropridine-type MAA-protein adducts based on their immu-

nogenicity potential. Although the authors of this study attempted a more rigorous purifica-

tion protocol, their efforts still yielded a heterogeneous pool of adducts. These studies

further highlight the need for investigations conducted with pMAA adducts as well as the

identification of the various contaminating protein adducts generated by reaction with

MAA. In our study, BSA was conjugated with pMAA free of contaminating epitopes and we

successfully increased anti-MAA antibodies in serum of mice immunized with pMAA-

lysine-BSA in the absence of adjuvant. Thus, it will be informative to utilize pMAA-lysine-

BSA and pMAA-6ACA-BSA immunogens for improved testing of atheroprotection by

MAA immunization.
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1. Domingues RM, Domingues P, Melo T, Pérez-Sala D, Reis A, Spickett CM. Lipoxidation adducts with

peptides and proteins: deleterious modifications or signaling mechanisms? J Proteomics. 2013;

92:110–31. doi: 10.1016/j.jprot.2013.06.004 PMID: 23770299

2. Holvoet P, Collen D. Oxidation of low density lipoproteins in the pathogenesis of atherosclerosis. Ath-

erosclerosis. 1998; 137 Suppl:S33–8.

3. Antoniak DT, Duryee MJ, Mikuls TR, Thiele GM, Anderson DR. Aldehyde-modified proteins as media-

tors of early inflammation in atherosclerotic disease. Free Radic Biol Med. 2015; 89:409–18. doi: 10.

1016/j.freeradbiomed.2015.09.003 PMID: 26432980

4. Gonen A, Hansen LF, Turner WW, Montano EN, Que X, Rafia A, et al. Atheroprotective immunization

with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts:

implications for development of an atheroprotective vaccine. J Lipid Res. 2014; 55(10):2137–55. doi:

10.1194/jlr.M053256 PMID: 25143462

5. Veneskoski M, Turunen SP, Kummu O, Nissinen A, Rannikko S, Levonen AL, et al. Specific recognition

of malondialdehyde and malondialdehyde acetaldehyde adducts on oxidized LDL and apoptotic cells by

complement anaphylatoxin C3a. Free Radic Biol Med. 2011; 51(4):834–43. doi: 10.1016/j.

freeradbiomed.2011.05.029 PMID: 21683785

6. Kikugawa K, Kosugi H, Asakura T. Effect of malondialdehyde, a product of lipid peroxidation, on the

function and stability of hemoglobin. Arch Biochem Biophys. 1984; 229(1):7–14. PMID: 6703702

7. Slatter DA, Murray M, Bailey AJ. Formation of a dihydropyridine derivative as a potential cross-link

derived from malondialdehyde in physiological systems. FEBS Lett. 1998; 421(3):180–4. PMID:

9468302

8. Willis MS, Klassen LW, Tuma DJ, Thiele GM. Malondialdehyde-acetaldehyde-haptenated protein

induces cell death by induction of necrosis and apoptosis in immune cells. Int Immunopharmacol. 2002;

2(4):519–35. PMID: 11962731

9. Duryee MJ, Klassen LW, Freeman TL, Willis MS, Tuma DJ, Thiele GM. Lipopolysaccharide is a cofactor

for malondialdehyde-acetaldehyde adduct-mediated cytokine/chemokine release by rat sinusoidal liver

endothelial and Kupffer cells. Alcohol Clin Exp Res. 2004; 28(12):1931–8. PMID: 15608611

Pure MAA antigen-based ELISA

PLOS ONE | DOI:10.1371/journal.pone.0172172 February 21, 2017 12 / 14

http://dx.doi.org/10.1016/j.jprot.2013.06.004
http://www.ncbi.nlm.nih.gov/pubmed/23770299
http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.003
http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.003
http://www.ncbi.nlm.nih.gov/pubmed/26432980
http://dx.doi.org/10.1194/jlr.M053256
http://www.ncbi.nlm.nih.gov/pubmed/25143462
http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.029
http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.029
http://www.ncbi.nlm.nih.gov/pubmed/21683785
http://www.ncbi.nlm.nih.gov/pubmed/6703702
http://www.ncbi.nlm.nih.gov/pubmed/9468302
http://www.ncbi.nlm.nih.gov/pubmed/11962731
http://www.ncbi.nlm.nih.gov/pubmed/15608611


10. Kharbanda KK, Shubert KA, Wyatt TA, Sorrell MF, Tuma DJ. Effect of malondialdehyde-acetaldehyde-

protein adducts on the protein kinase C-dependent secretion of urokinase-type plasminogen activator

in hepatic stellate cells. Biochem Pharmacol. 2002; 63(3):553–62. PMID: 11853706

11. Thiele GM, Duryee MJ, Freeman TL, Sorrell MF, Willis MS, Tuma DJ, et al. Rat sinusoidal liver endothe-

lial cells (SECs) produce pro-fibrotic factors in response to adducts formed from the metabolites of etha-

nol. Biochem Pharmacol. 2005; 70(11):1593–600. doi: 10.1016/j.bcp.2005.08.014 PMID: 16202982

12. Thiele GM, Tuma DJ, Willis MS, Miller JA, McDonald TL, Sorrell MF, et al. Soluble proteins modified

with acetaldehyde and malondialdehyde are immunogenic in the absence of adjuvant. Alcohol Clin Exp

Res. 1998; 22(8):1731–9. PMID: 9835288

13. Anderson DR, Duryee MJ, Shurmur SW, Um JY, Bussey WD, Hunter CD, et al. Unique antibody

responses to malondialdehyde-acetaldehyde (MAA)-protein adducts predict coronary artery disease.

PLoS One. 2014; 9(9):e107440. doi: 10.1371/journal.pone.0107440 PMID: 25210746

14. Hill GE, Miller JA, Baxter BT, Klassen LW, Duryee MJ, Tuma DJ, et al. Association of malondialdehyde-

acetaldehyde (MAA) adducted proteins with atherosclerotic-induced vascular inflammatory injury. Ath-

erosclerosis. 1998; 141(1):107–16. PMID: 9863543

15. Wang C, Turunen SP, Kummu O, Veneskoski M, Lehtimäki J, Nissinen AE, et al. Natural antibodies of
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