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A general and diastereoselective synthesis of (2S, 4S)-4-mercapto-L-lysine derivative was described. The
key features of this synthesis include Zn-mediated diastereoselective Reformatsky reaction and selective
reduction of methyl ester with sodium borohydride. Introduction of thiol functional group on lysine side
chain proved to be appropriate for dual native chemical ligation. This methodology allows to develop var-
ious 4-substituted L-lysine derivatives.
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Figure 1. 4-Mercapto-L-lysine mediated sequential native chemical ligation that
provides branched peptides.
Cysteine-mediated native chemical ligation become the most
attractive methodology for the preparation of novel peptides and
protein domains.1 Since its development it has become a powerful
tool for the chemical synthesis of linear peptides.2 This technique
relies on the combination of a N-terminal cysteine residue with a
C-terminal thioester to form a peptide bond.3–5 Unfortunately, very
few natural thiol-containing amino acids are available for peptide
ligation to form new type peptides. For the past few years various
chemical ligation methodologies have been developed. Wong and
co-workers developed cysteine-free ligation by incorporating a
thiol-containing sugar auxiliary on N-terminal serine, which al-
lows direct access to glycopeptides.6 In this Letter, we described
the synthesis of 4-mercapto-L-lysine which serves as a pivotal
building block for the assembly of branched peptides by native
chemical ligation.

We chose 4-mercapto-L-lysine derivative as a mediator for dual
native chemical ligation for the following reasons. (1) thio group
lies between the a-amino group and the side chain amino group
of lysine, which allows double native chemical ligation and fur-
nishes branched peptides, as shown in Figure 1. Likely, this new
branched structure endows the peptides or proteins with new
property and capacity. (2) L-lysine is an essential amino acid and
a necessary building block of proteins in the body. The substituted
L-lysine derivatives, such as (2S,4R)-4-fluoro-L-lysine 2 is a bioac-
All rights reserved.
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to this paper.
tive molecule which enhances the biological activity relative to
the parent molecule.7 The hydroxyl analogue 3a and 3b are also
useful precursors in many biological active components (Fig. 2).8

Synthesis of these functionalized L-lysine derivatives is a challeng-
ing task due to the multiple functionality of L-lysine. In this work,
we developed a new methodology to introduce a thio group onto
the 4-position of L-lysine side chain by exploiting Reformatsky
reaction as a key step.

We envisioned that the chirally pure target molecule, (2S,4S)-4-
mercapto-L-lysine could be assembled from commercially avail-
able L-aspartic acid 4. The side chain homologation, stereoselective
introduction of thiol and amino groups are the key steps in our
strategy. As shown in Scheme 1, the conversion of L-aspartic acid
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Optimization of reaction conditions
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1 OTBDMS H LiAlH4 Et2O —
2 OTBDMS H DIBAL-H THF 23
3 OTBDMS H NaBH3CN EtOH 36
4 OTBDMS H NaBH4 MeOH 53
5 OTBDMS H NaBH4 EtOH 70
6 OTBDPS H NaBH4 EtOH 92
7 OTPS H NaBH4 EtOH 65
8 OH H NaBH4 EtOH 70
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Figure 2. Some of 4-substituted L-lysine derivatives.
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4 to a-tert-butyl-(S)-N-tert-butoxycarbonyl aspartate 5 in four
steps with good yields.9 Further, the protected aspartate 5 was
transformed in to the corresponding thioester through DCC cou-
pling at room temperature (yield 95%). The resulting thioester
was reduced with the aid of triethylsilane—10% Pd/C to provide
(S)-aspartate semi-aldehyde 6 in 85% yield.10

As shown in Scheme 2, the homologation of the side chain was
carried out via diastereoselective Reformatsky reaction between
(S)-aspartate semi-aldehyde 6 and methyl bromoacetate.11 The
resulting Reformatsky product has the same carbon skeleton as
in the target molecule, which allows easy access to a series of 4-
substituted lysine analogues by nucleophilic substitution of hydro-
xyl group. Optimization of reaction conditions identified, zinc and
trimethylsilylchloride in THF at 0 �C as the best condition to fur-
nish the desired product in quantitative yields.12 A reasonable dia-
stereoselectivity of erythro/threo (7a/7b, 3/7) was obtained and
the selectivity towards diastereomer 7b was quite favorable. It
was observed that these two diastereomers could be easily sepa-
rated by column chromatography.13

The enantiomerically pure Reformatsky products 7a and 7b
serve as useful precursors for native chemical ligation. The major
product (7b) of Reformatsky reaction was protected with various
protecting groups like, TBDMSCl (8a, 80%), TBDPSCl (8b, 89%),
and TPSCl (8c, 75%), as shown in Scheme 3. The selective reduction
of methyl ester to the corresponding terminal alcohol was initially
attempted by using different reducing agents like LiAlH4, DIBAL-H,
NaBH3CN, and NaBH4 (Table 1, entries 3–6). Among them, NaBH4

in ethanol at room temperature was found to be superior to other
reducing reagents in terms of yields (Table 1, entry 6). With the
optimized reaction conditions in hand, we decided to investigate
the influence of reducing reagent (NaBH4) on the different protect-
ing groups (entries 6–10). In all cases TBDPS-protected amino acid
treated with NaBH4 in ethanol gave the best result with 92% yield
(entry 6). The stereochemistry of this compound was assigned by
analogy to the similar substrate.14

Having the optimized reaction conditions, TBDPS-protected
substrate 9 was treated with methanesulfonyl chloride and DIPEA
HO
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using standard procedure to obtain mesylated product which was
converted into azide using NaN3 in DMF at 80 �C (Scheme 4). The
azide 10 was subjected to Pd/C catalyzed hydrogenation under
H2 atmosphere at room temperature to form amine, which was
easily protected with Cbz group using the standard procedure.
The last part of the synthesis of protected 4-mercapto-L-lysine con-
sists of introducing thiol unit into lysine chain. After deprotection
of the silyl ether 11 with tetra-butylammonium fluoride (TBAF),
the secondary alcohol of amino acid 12 was mesylated followed
by nucleophilic substitution of thioacetate to afford 13 in good
yield.15 Saponification and subsequent protection of 13 with S-
methyl methanethiosulfonate (MMTS) furnished 14, which was
then treated with TFA to get unprotected aminoacid (15) in good
yields. Further protection with Boc anhydride delivered the desired
amino acid 16.16 The unprotected amino acid 16 is useful interme-
diate for dual native chemical ligation.17

Accordingly, (2S,4S)-4-hydroxy-L-lysine 12 was useful precursor
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Scheme 4. Reagents and conditions: (i) methanesulfonyl chloride, diisopropyl ethylamine (DIPEA), 0 �C; (ii) NaN3, DMF, 80 �C, two steps 83% yield; (iii) Pd/C, ethyl acetate,
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TFA, H2O, rt; (xi) Boc2O/TEA, MeOH, rt, 78% over two steps.
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useful precursor for another potentially useful substrate for native
chemical ligation. Synthesis of these analogues is currently under
way in our laboratory.

In summary, a practical and concise synthesis of amino acid
(2S,4S)-4-mercapto-L-lysine has been developed starting from
commercially available L-aspartic acid. The synthesis involves dia-
stereoselective Reformatsky reaction as a key step to form func-
tionalized L-lysine derivatives. We believe that this approach
allows a direct access to 4-hydroxy-L-lysine derivatives that offer
some interesting biologically active molecules and useful building
blocks for native chemical ligation.
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