

Tetrahedron: Asymmetry 9 (1998) 3615-3618

TETRAHEDRON: ASYMMETRY

Tin- or magnesium-mediated diastereoselective aldol-type reactions for the asymmetric synthesis of α -substituted serines

Shigeki Sano,^a Toshio Miwa,^a Xiao-Kai Liu,^a Takahiro Ishii,^a Tomoka Takehisa,^a Motoo Shiro^b and Yoshimitsu Nagao^{a,*}

^a Faculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan ^bRigaku Corporation, 3-9-12, Matsubara-cho, Akishima, Tokyo 196-8666, Japan

Received 13 August 1998; accepted 8 September 1998

Abstract

Diastereoselective aldol-type reactions of ethyl (5*S*)-3,6-diethoxy-2,5-dihydro-5-isopropyl-2-pyrazinecarboxylate (5*S*)-3 with achiral aldehydes **8a**–**d** was investigated by using $Sn(OSO_2CF_3)_2$ –*N*-ethylpiperizine and MgBr₂–triethylamine. The reaction with Sn(II) between (5*S*)-3 and aliphatic aldehydes **8a**,**b** proved to be quite different from that with Mg(II). On the other hand, Sn(II)- or Mg(II)-mediated aldol-type reactions of (5*S*)-3 with benzaldehyde **8c** and 3-methyl-2-butenal **8d** each afforded the same diastereomer as the major product. These aldol products were each converted to the corresponding α -substituted serines **6** and **7** as enantiomerically pure compounds. © 1998 Elsevier Science Ltd. All rights reserved.

Recently, we have carried out extensive development of new methods for the synthesis of α -substituted serines, which should be remarkably interesting from the standpoint of pharmaceutical and bioorganic chemistry.^{1,2} In earlier papers, we reported the diastereoselective aldol-type reaction and alkylation of the newly designed bislactim ether, ethyl (5*R*)- or (5*S*)-3,6-diethoxy-2,5-dihydro-5-isopropyl-2-pyrazinecarboxylate **3**, as a chiral α -substituted serine precursor.³ Chiral α -alkylated serines can be also synthesized by utilizing a chemoenzymatic procedure.⁴

Herein we describe the diastereoselective aldol-type reaction of the bislactim ether (5*S*)-**3**, readily prepared from σ -symmetric diethyl aminomalonate **1** and L-valine (*S*)-**2**,^{3b} with achiral aldehydes **8a**–**d** in conjunction with the synthesis of α -substituted serines as shown in Scheme 1. All results are shown in Table 1. The aldol-type reaction of aliphatic aldehydes **8a**,**b** with bislactim ether (5*S*)-**3** in the presence of Sn(OSO₂CF₃)₂ and *N*-ethylpiperidine in THF at -78° C afforded (2*R*,5*S*,1'*S*)-**4a**,**b** as their major product, respectively (entries 1 and 3). Interestingly, the similar aldol-type reaction employing MgBr₂ and triethylamine gave the different diastereomer (2*R*,5*S*,1'*R*)-**4a**,**b** as each major product (entries 2 and 4). In earlier papers, we also reported that the diastereoselective mode of the Sn(II)-mediated reaction differed from the Mg(II)-mediated one in the aldol-type reaction of (5*S*)-**3** with chiral aliphatic

^{*} Corresponding author. E-mail: ynagao@ph2.tokushima-u.ac.jp

Scheme 1. (a) Sn(II) or Mg(II): see footnote for Table 1, (b) RCHO (**8a–d**), (c) $Me_2(t-Bu)SiOSO_2CF_3/2,6$ -lutidine/ $CH_2Cl_2/-45^{\circ}C$, (d) DIBAL/toluene/0°C, (e) 12 N HCl:CF_3CO_2H:*i*-PrOH (2:1:1)/170°C, (f) 0.2 N HCl:THF (1:1)/rt

aldehydes.^{3a,b} However, each major product proved to be the same diastereomer (2R,5S,1'R)-**4c,d** in the aldol-type reaction of (5S)-**3** with benzaldehyde **8c** and 3-methyl-2-butenal **8d** whether Sn(II) or Mg(II) was employed (entries 5–8). The diastereomer ratios of **4a–d** were determined by exploiting ¹H NMR analysis (400 MHz, CDCl₃). The absolute configuration of the newly formed C2 stereogenic center in the separable diastereomers **4a–d** was determined by the ¹H–¹H NOE (400 MHz, CDCl₃) experiments of **4a–d** and/or of the corresponding derivatives **10a,b,d** (Scheme 2). ¹H NMR analysis (400 MHz, CDCl₃) of the Mosher ester [(*R*)- and (*S*)-methoxy(trifluoromethyl)phenylacetate (MTPA)] derivatives **11a,b,d** and X-ray crystallographic analysis of diol **12c** (Fig. 1) and (*S*)-MTPA-**11d** were utilized in order to determine the absolute configuration of the chiral C1' atom in the 10 kinds of aldol products **4a–d** (Scheme 2).⁵

The separable diastereoisomers 4a-d were isolated by column chromatography on silica gel. Reduction of the major diastereoisomers of 4a-d with DIBAL in toluene at 0°C [(2R,5S,1'S)-5a: 93%, (2R,5S,1'R)-5b: 61%, (2R,5S,1'R)-5c: 80%, and (2R,5S,1'R)-5d: 83% yields] followed by hydrolysis

_	_				_						
	Entry	Aldehyde	Conditions ^{a)}	Time	Diastereomer Ratio ^{b)} (2 <i>R</i> ,1' <i>S</i>) : (2 <i>R</i> ,1' <i>R</i>) : (2 <i>S</i> ,1' <i>S</i>)						Yield (%) of 4
	1	8a	Α	2 h	66	:	8	:	25 :	1	84
	2	8a	В	2.5 h	7	:	83	:	1 :	9	86
	3	8b	Α	2 h	55	:	25	:	17 ^{c)} :	3 ^{c)}	84
	4	8b	в	30 min	7	:	75	:	2 ^{c)} :	16 ^{c)}	75
	5	8c	Α	30 min	10	:	88	:	0 ^{c)} :	2 ^{c)}	86
	6	8c	В	10 min	18	:	72	:	0 ^{c)} :	10 ^{c)}	70
	7	8d	Α	30 min	34	:	52	:	8 ^{c)} :	6 ^{c)}	80
	8	8d	В	10 min	16	:	64	:	з ^{с)} :	17 ^{c)}	74

 Table 1

 Diastereoselective aldol-type reaction of bislactim ether (55)-3 with aldehydes 8a–d

a) **A**: THF, -78 °C, (5S)-**3** / Sn(OSO₂CF₃)₂ / *N*-ethylpiperidine / **8** (1 : 1.5 : 1.6 : 2); **B**: MeCN, -20 °C, (5S)-**3** / MgBr₂ / triethylamine / **8** (1 : 2 : 4 : 2). b) ¹H NMR analysis (400 MHz NMR, CDCl₃). c) Configuration of C1' was assigned arbitrarily

Scheme 2. (a) MOMCl/*i*-Pr₂NEt/CH₂Cl₂/rt, (b) TBAF/THF/rt, (c) (*S*)-MTPACl/DMAP/Et₃N/CH₂Cl₂/rt, (d) (*R*)-MTPACl/DMAP/Et₃N/CH₂Cl₂/rt

Fig. 1. Computer-generated drawing of (2R,5S,1'R)-12c derived from the X-ray coordinates

with 12 N HCl:CF₃CO₂H:*i*-PrOH (2:1:1) or 0.2 N HCl:THF (1:1) afforded the corresponding α -substituted serines **6a,b** and **7c,d** [(2*R*,3*S*)-**6a**: 26%, (2*R*,3*R*)-**6b**: 37%, (2*R*,3*R*)-**7c**: 35%, and (2*R*,3*R*)-**7d**: 28% yields], respectively.⁶

The different stereochemical outcome in the Sn(II)- or Mg(II)-mediated aldol-type reaction of (5*S*)-**3** with aliphatic aldehydes **8a**,**b** can be rationalized in terms of the corresponding six-membered transition states as we previously proposed.^{3a,b} In contrast, unsaturated aldehydes such as benzaldehyde **8c** and 3-methyl-2-butenal **8d** may change the common transition state in the Sn(II)-mediated aldol-type reaction owing to plausible π - π stacking between the bislactim ring of (5*S*)-**3** and the unsaturated (or aromatic) moiety of aldehydes **8c**,**d**. Interestingly, the crystal structure of (2*R*,5*S*,1'*R*)-**12c** was shown to be a folded conformation with two stacked rings, the bislactim ring and the benzene ring (Fig. 1).^{3c}

In conclusion, α -substituted serines were synthesized as each enantiomerically pure form by using the aldol-type reactions of (5*S*)-**3** with achiral aldehydes. Thus, we demonstrated that σ -symmetric diethyl aminomalonate **1** could be utilized as the chiral serine carbanion synthon.

$$\sigma \xrightarrow{H_2N} \xrightarrow{CO_2Et} \longrightarrow \xrightarrow{H_2N} \xrightarrow{CO_2Et (H)} \text{ or } \xrightarrow{H_2N} \xrightarrow{CH_2OH} \text{ or } \xrightarrow{CO_2Et (H)}$$

$$\eta \xrightarrow{T} \xrightarrow{CO_2Et} \bigoplus \xrightarrow{H_2N} \xrightarrow{CO_2Et (H)} \xrightarrow{CO_2Et (H)} \xrightarrow{T} \xrightarrow{CO_2Et (H)}$$

References

- 1. Wirth, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 225-227 and references cited therein.
- For recent references, see: (a) Kobayashi, S.; Furuta, T.; Hayashi, T.; Nishijima, M.; Hanada, K. J. Am. Chem. Soc. 1998, 120, 908–919. (b) Grandel, R.; Kazmaier, U. Eur. J. Org. Chem. 1998, 409–417.
- (a) Sano, S.; Kobayashi, Y.; Kondo, T.; Takebayashi, M.; Maruyama, S.; Fujita, T.; Nagao, Y. *Tetrahedron Lett.* 1995, 36, 2097–2100. (b) Sano, S.; Liu, X.-K.; Takebayashi, M.; Kobayashi, Y.; Tabata, K.; Shiro, M.; Nagao, Y. *Tetrahedron Lett.* 1995, 36, 4101–4104. (c) Sano, S.; Takebayashi, M.; Miwa, T.; Ishii, T.; Nagao, Y. *Tetrahedron: Asymmetry* 1998, 9, 3611–3614 (preceding paper).
- 4. Sano, S.; Hayashi, K.; Miwa, T.; Ishii, T.; Fujii, M.; Mima, H.; Nagao, Y. Tetrahedron Lett. 1998, 39, 5571–5574.
- 5. The crystallographic data are as follows. (2R,5S,1'R)-**12c**: $C_{19}H_{28}N_2O_4$, M=348.44, orthorhombic, $P2_12_12$, a=15.198(2)Å, b=24.749(3) Å, c=10.635(2) Å, V=3996.5(9) Å³, Z=8, $D_{cal}=1.158$ g/cm³. (S)-MTPA-(2R,5S,1'R)-**11d**: $C_{29}H_{41}F_3N_2O_7$, M=586.65, triclinic, P1, a=9.730(3) Å, b=9.916(3) Å, c=9.642(2) Å, $\alpha=108.29(2)^{\circ}$, $\beta=119.45(2)^{\circ}$, $\gamma=82.76(3)^{\circ}$, V=768.7(5) Å³, Z=1, $D_{cal}=1.267$ g/cm³.
- 6. (2R,3S)-6a: colorless powder (MeOH), mp 226–227°C (dec.), $[\alpha]_D^{27}$ –26.1 (c 0.12, MeOH), ¹H NMR (400 MHz, D₂O) δ 0.90 (3H, d, J=6.8 Hz), 1.00 (3H, d, J=6.8 Hz), 1.89 (1H, dsept, J=2.9, 6.8 Hz), 3.85 (1H, d, J=2.9 Hz), 3.86 (1H, A) of AB, J=12.2 Hz), 4.05 (1H, B of AB, J=12.2 Hz); IR (KBr) 2964, 2358, 1641, 1541, 1467, 1404, 1355, 1247 cm⁻¹; HRFAB-MS calcd for $C_7H_{16}NO_4$ M⁺+H 178.1079, found *m/e* 178.1087 (M⁺+H). (2*R*,3*R*)-**6b**: colorless powder (MeOH), mp 231–232°C (dec.), $[\alpha]_D^{26}$ +36.1 (c 0.06, MeOH), ¹H NMR (400 MHz, D₂O) δ 0.88 (3H, t, J=6.8 Hz), 1.27–1.50 (6H, m), 3.85–3.90 (1H), 3.87 (1H, A of AB, J=11.7 Hz), 4.03 (1H, B of AB, J=11.7 Hz); IR (KBr) 2959, 1615, 1344 cm⁻¹; HRFAB-MS calcd for C₈H₁₈NO₄ M⁺+H 192.1236, found *m/e* 192.1217 (M⁺+H). Anal. calcd for C₈H₁₇NO₄: C, 50.25; H, 8.96; N, 7.32. Found: C, 50.19; H, 8.80; N, 7.23. (2*R*,3*R*)-7c: colorless oil, [α]_D²⁶ -44.9 (*c* 1.00, CHCl₃), ¹H NMR (400 MHz, CDCl₃) δ -0.25 (3H, s), 0.06 (3H, s), 0.89 (9H, s), 1.12 (3H, t, J=7.2 Hz), 2.04–2.18 (3H, Br), 3.66 (1H, A of AB, J=10.4 Hz), 3.89 (1H, B of AB, J=10.4 Hz), 3.92-4.06 (2H, m), 4.89 (1H, s), 7.22-7.31 (5H, m); IR (NaCl) 3382, 2931, 2888, 2858, 1740, 1585, 1472, 1363, 1255, 1217 cm⁻¹; HRCI-MS calcd for C₁₈H₃₂NO₄Si M⁺+H 354.2101, found m/e 354.2130 (M⁺+H). (2*R*,3*R*)-7d: colorless oil, $[\alpha]_{D}^{25}$ -36.9 (c 1.01, CHCl₃), ¹H NMR (400 MHz, CDCl₃) δ -0.02 (3H, s), 0.04 (3H, s), 0.86 (9H, s), 1.25 (3H, t, J=7.2 Hz), 1.65 (3H, s), 1.69 (3H, s), 2.00–2.09 (3H, Br), 3.55 (1H, A of AB, J=10.4 Hz), 3.77 (1H, B of AB, J=10.4 Hz), 4.01-4.10 (2H, m), 4.15-4.23 (2H, m), 4.50 (1H, d, J=9.6 Hz), 5.16 (1H, d, J=10.0 Hz); IR (NaCl) 2930, 2858, 1738, 1473, 1377, 1251, 1217 cm⁻¹; HRCI-MS calcd for C₁₆H₃₄NO₄Si M⁺+H 332.2257, found *m/e* 332.2247 (M⁺+H).