Tetrahedron Letters 55 (2014) 2545-2547

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

An unexpected Lewis acids-catalyzed tandem ring-opening rearrangement of vinylcyclopropane ketone with aryl aldehyde

Jun Ren, Yu Bai, Weijie Tao, Zhongwen Wang*

State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 94# Weijin Road, Tianjin 300071, PR China

ARTICLE INFO

Article history: Received 13 January 2014 Revised 27 February 2014 Accepted 6 March 2014 Available online 14 March 2014

Keywords: Cyclopropane Tandem reactions Rearrangement Ring opening

ABSTRACT

A novel tandem reaction of vinylcyclopropane ketone with benzaldehyde has been successfully developed. This provides a new method for the preparation of γ -oxo-hexenone derivatives from easily accessible starting materials.

© 2014 Elsevier Ltd. All rights reserved.

Vinyl cyclopropanes (VCPs) are useful C₅ synthons in organic synthesis. Typical reactions of VCPs being applied in organic synthesis include rearrangements to cyclopentenes and transition metal-catalyzed cycloadditions.^{1,2} During our exploration for development of novel acid-catalyzed polar formal cycloadditions of activated cyclopropanes for the construction of cyclic skeletons, we observed an unexpected tandem process of VCP ketone **1a** with benzaldehyde, which led to γ -oxo-hexenone **4a** (Table 1). Because γ -oxo-hexenones are useful intermediates in organic synthesis,^{3,4} we started to explore this novel reaction.

Under catalysis of Sc(OTf)₃, reaction of **1a** with benzaldehyde **2a** was carried out from -70 °C to room temperature. The reaction was sluggish but finally gave **4a** after 5 days (Table 1, entry 1). The structure of **4a** was confirmed by X-ray crystallographic analysis (Fig. 1).^{5,6} Various Lewis acids were screened and the results are listed in Table 1. In some cases, a Mukaiyama–Aldol product **3a** was obtained. We found that when it was first carried out at -70 °C for 2 h under catalysis of Sc(OTf)₃ and was then carried out at rt for additional 54 h under catalysis of TMSOTf, the reaction was accelerated with a better yield (entry 11). This reaction condition was selected for further investigation.

The scope of substrates **2** was then explored (Table 2). We found that both electron-rich and electron-deficient benzaldehydes worked well with moderate to excellent yields (entries 2–9).

Table 1

Screening of Lewis acids for optimal condition^a

Entry	Cat. ^a	Time	Yield
1	Sc(OTf) ₃	5 d	3a 66%
2	Yb(OTf) ₃	9 d	3a 17%, 4a 26%
3	BF3Et2O	2 d	3a 31%
4	SnCl ₄	10 d	3a 34%
5	TiCl ₄	15 d	4a 59%
6	ZnCl ₂	13 d	3a 5%, 4a 33%
7	$Sn(OTf)_2$	3 d	3a 16%
8	$Zn(OTf)_2$	13 d	4a 26%
9	$Cu(OTf)_2$	2 d	3a 7%
10	TMSOTf	15 h	-
11	Sc(OTf) ₃ + TMSOTf ^b	56 h	3a 75%
	. ,,,		

 a General condition: **1a** (0.66 mmol), **2a** (0.55 mmol), Lewis acids (0.2 equiv), and CH₂Cl₂ (10 mL) were mixed and stirred from $-70~^\circ\text{C}$ to rt.

 $^{\rm b}$ The reaction was first carried out at -70 °C for 2 h under catalysis of Sc(OTf)_3 (0.2 equiv), and then at rt for 54 h under catalysis of TMSOTf (0.2 equiv).

Benzaldehyde substituted with NO₂, 2-furaldehyde and aliphatic butyraldehyde did not give the corresponding products.

CrossMark

^{*} Corresponding author. Tel.: +86 010 022 23498191. E-mail address: wzwrj@nankai.edu.cn (Z. Wang).

Figure 1. X-ray crystal structure of 3a.

Table 2 Reactions of vinylcyclopropane ketone 1a with benzaldehydes 2^a

Entry	R	Time (h)	Yield ^b
1	2a H	56	3a 75%
2	2b <i>p</i> -Cl	53	3b 84%
3	2c <i>p</i> -Br	56	3c 42%
4	2d <i>p</i> -F	62	3d 63%
5	2e <i>p</i> -Me	48	3e 93%
6	2f o-Cl	67	3f 38%
7	2g <i>p</i> -tBu	60	3g 61%
8	2h <i>p</i> -MeO	51	3h 61%
9	2i <i>m</i> -MeO	51	3i 47%

^a General addition: **1a** (0.66 mmol), **2a** (0.55 mmol), Lewis acids (0.2 equiv), and CH₂Cl₂ (10 mL). The reaction was first carried out at -70 °C for 2 h under catalysis of Sc(OTf)₃ (0.2 equiv), and then at rt for 54 h under catalysis of TMSOTf (0.2 equiv). ^b Isolated yields.

Scheme 1. Proposed mechanism.

Depending on the above results, a possible mechanism was proposed for the tandem reactions (Scheme 1). Under catalysis of Lewis acids, the tandem process was initiated by a Mukaiyama–Al-dol reaction which was followed by an elimination of TBSOH to give cyclopropane 1,1-diketone A.⁷ A ring-opening rearrangement

of A gave 2,3-dihydrofuran C.⁸ Probably due to the contaminating water in the reaction mixture, C was then transferred to **3a** through a hetero-Michael reaction and C–C bond cleavage process.

When substrate **1b** was employed in the reaction with **2a**, instead of the γ -oxo-hexenone product, tetrahydrofuran **5** was obtained (Scheme 2). This was probably due to the hydrolysis of enol silyl ether to cyclopropane 1,1-diketone, with the donor-activation of a phenyl group which underwent a subsequent [3+2] cycloaddition with **2a**.⁹

In summary, we have developed a novel tandem reaction of vinylcyclopropane ketone with benzaldehyde. This method provides a new strategy for the preparation of γ -oxo-hexenone derivatives from the easily accessible starting materials.

Acknowledgments

We thank NSFC (Nos 21172109, 21121002) and MOST (Nos 2010CB126106, 2011BAE06B05) for financial support.

Supplementary data

Supplementary data (experimental procedures and spectral data for all new products) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.03. 035.

References and notes

- Reviews on rearrangements of vinylcyclopropanes to cyclopentenes: (a) Hudlicky, T.; Reed, J. W. Angew. Chem., Int. Ed. 2010, 49, 4864; (b) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151; (c) Baldwin, J. E. Chem. Rev. 2003, 103, 1197; (d) Kuinkovich, O. G. Russ. Chem. Rev. 1993, 62, 839; (e) Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y. C. Chem. Rev. 1989, 89, 165; (f) Hudlicky, T.; Price, J. D. Chem. Rev. 1989, 89, 1467; (g) Goldschmidt, Z.; Crammer, B. Chem. Soc. Rev. 1988, 17, 229; (h) Trost, B. M. In Top. Curr. Chem.; Meijere, A., Ed.; Springer: Berlin, 1986; vol. 3, p 133; (i) Hudlicky, T.; Kutchan, T. M.; Naqvi, S. M. Org. React. 1985, 33, 247; (j) Ramaiah, M. Synthesis 1984, 529.
- Recent reviews on transition-metal catalyzed cycloadditions of vinylcyclopropane as C5 synthons: (a) Jiao, L; Yu, Z.-X. J. Org. Chem. 2013, 78, 6842; (b) Pellissier, H. Adv. Synth. Catal. 2011, 353, 189; (c) Butenschon, H. Angew. Chem., Int. Ed. 2008, 47, 5287; (d) Wender, P. A.; Croatt, M. P.; Deschamps, N. M. In Comprehensive Organometallic Chemistry III; Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: Oxford, 2007; vol. 10, p 603; (e) Wender, P. A.; Gamber, G. G.; Williams, T. J. In Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; p 263.
- As key intermediates in organic synthesis: (a) Wilson, Z. E.; Hubert, J. G.; Brimble, M. A. Eur. J. Org. Chem. 2011, 3938; (b) Osman, N. A.; Mahmoud, A. H.; Allara, M.; Niess, R.; Abouzid, K. A.; Marzo, V. D.; Abadi, A. H. Bioorg. Med. Chem. 2010, 18, 8463; (c) Ismail, N. S. M.; Dine, R. S. E.; Hattori, M.; Takahashi, K.; Ihara, M. Bioorg. Med. Chem. 2008, 16, 7877; (d) Abouzida, K.; Bekhit, S. A. Bioorg. Med. Chem. 2008, 16, 5547; (e) Abouzid, K. A. M.; Youssef, K. M.; Ahmed, A. A. E.; Al-Zuhair, H. H. Med. Chem. Res. 2005, 14, 26; (f) Sakai, A.; Aoyama, T.; Shioiri, T. Tetrahedron Lett. 2000, 41, 6859; (g) Limaye, P. A.; Nimse, M. S.; Ghate, S. M. Asian J. Chem. 1995, 7, 665; (h) Denyer, C. V.; Reddy, M. T.; Jenkins, D. C.; Rapson, E.; Watts, S. D. M. Arch. Pharm. (Weinheim) 1994, 327, 95; (i) Sircar, I.; Steffen, R. P.; Bobowski, G.; Burke, S. E.; Newton, R. S.; Weishaar, R. E.; Bristol, J. A.; Evans, D. B. J. Med. Chem. 1989, 32, 342; (j) Liepa, A. J.; Summons, R. E. Chem. Commun. 1977, 826.
- Preparation of gama-oxo enones: Wittig olefination: (a) Kamenecka, T. M.; Overman, L. E.; Sakata, S. K. L. Org. Lett. 2002, 4, 79; (b) Wan, P.; Yates, K. J. Org. Chem. 1983, 48, 138; Cross coupling: (c) Sangu, K.; Watanabe, T.; Takaya, J.; Iwasawa, N. Synlett 2007, 929; (d) Tamaru, Y.; Ochiai, H.; Nakamura, T.; Tsubaki, K.; Yoshida, Z. Tetrahedron Lett. 1985, 26, 5559; Reductive acylation: (e) Osborne, J. D.; Willis, M. C. Chem. Commun. 2008, 5025; (f) Perez, M.; Castano, A. M.; Echavarren, A. M. J. Org. Chem. 1992, 57, 5047; Ring-opening of donorcyclopropanes: (g) Parida, B. B.; Das, P. P.; Niocel, M.; Cha, J. K. Org. Lett. 2013,

2546

15, 1780; (h) Setzer, P.; Beauseigneur, A.; Pearson-Long, M. S. M.; Bertus, P. Angew. Chem. Int. Ed. **2010**, 49, 8691; (i) Xue, S.; Li, L-Z.; Liu, Y.-K.; Guo, Q.-X. J. Org. Chem. **2006**, 71, 215; (j) Xue, S.; Liu, Y.-K.; Li, L.-Z.; Guo, Q., X. J. Org. Chem. **2005**, 70, 8245; (k) Kang, S.-K.; Yamaguchi, T.; Ho, P.-S.; Kim, W.-Y.; Yoon, S.-K. Tetrahedron Lett. **1997**, 38, 1947; (l) Brogan, J. B.; Zercher, C. K. J. Org. Chem. **1997**, 62, 6444; (m) Fujimura, T.; Aoki, S.; Nakamura, E. J. Org. Chem. **1991**, 56, 2809; (n) Tsuge, O.; Kanemasa, S.; Otsuka, T.; Suzuki, T. Bull. Chem. Soc. Jpn. **1988**, 61, 2897; Rearrangement of propargyl alcohol: (o) Stefanoni, M.; Luparia, M.; Porta, A.; Zanoni, G.; Vidari, G. Chem. Eur. J. **2009**, 15, 3940; (p) Lu, X.; Ji, J.; Ma, D.; Shen, W. J. Org. Chem. **1991**, 56, 5774; Cycloaddition of Fischer carbene: (q) Barluenga, J.; Fanlo, H.; Lopez, S.; Florez, J. Angew. Chem. Int. Ed. **2007**, 46, 4136; Aldol condensation: (r) Picha, G. J. Am. Chem. Soc. **1953**, 75, 3155; (s) Fuji, K.; Usami, Y.; Kiryu, Y.; Node, M. Synthesis **1992**, 852; Nucleophilic addition: (t) Fuji, K.; Node, M.; Usami, Y. Chem. Lett. **1986**, 961.

- Structure of **3a** was confirmed by the single-crystal X-ray diffraction analysis. CCDC 800958 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic DataCentre via www.ccdc.cam.ac.uk/data_request/cif.
- 6. Physical data for compound **3a**: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.3 Hz, 2H), 7.62–7.35 (m, 10H), 6.76 (d, *J* = 16.2 Hz, 1H), 4.41 (t, *J* = 6.3 Hz, 2H), 2.86 (t, *J* = 7.2 Hz, 2H), 2.19 (p, *J* = 6.7 Hz, 2H). ¹³C NMR (101 MHz,) δ 199.06, 166.54, 142.73, 134.36, 132.94, 130.52, 129.55, 128.93, 128.35, 128.27, 125.98, 64.24, 37.19, 23.31.IR (neat): v = 2964, 2897, 1709, 1689, 1612, 1450, 1314, 1283, 1127, 1041, 977, 762, 713, 684 cm⁻¹; HRMS (ESI) Calcd For C₁₉H₁₈O₃Na (M+Na)^{*}: 317.1148; found: 317.1148.
- 7. Unfortunately, a try to isolate the intermediates A, C and D failed.
- 8. Ring-opening rearrangement of cyclopropane ketones to 2,3-dihydrofurans. Review: (a) De Simone, F.; Waser, J. Synthesis 2009, 3353; (b) Zhang, R.; Liang, Y.; Zhou, G.; Wang, K.; Dong, D. J. Org. Chem. 2008, 73, 8089; (c) Zhang, Z.; Zhang, Q.; Sun, S.; Xiong, T.; Liu, Q. Angew. Chem. Int. Ed. 2007, 46, 1726; (d) Bowman, R. K.; Johnson, J. S. Org. Lett. 2006, 8, 573; (e) Su, J. T.; Xiong, J.; Liang, S. C.; Qiu, G. F.; Feng, X. C.; Teng, H. B.; Wu, L. M.; Hu, X. M. Synth. Commun. 2006, 36, 693; (f) Bernard, A. M.; Frongia, A.; Piras, P. P.; Secci, F.; Spiga, M. Org. Lett. 2005, 7, 4565; (g) Honda, M.; Naitou, T.; Hoshino, H.; Takagi, S.; Segi, M.; Nakajima, T. Tetrahedron Lett. 2005, 46, 7345; (h) Muller, P.; Bernardinelli, G.; Allenbach, Y. F.; Ferri, M.; Grass, S. Synlett 2005, 1397; (i) Muller, P.; Allenbach, Y. F.; Ferri, M.; Bernardinelli, G. ARKIVOC 2003, 80; (j) Yadav, V. K.; Balamurugan, R. Org. Lett. 2001, 3, 2717; (k) Davies, H. M. L.; Ahmed, G.; Calvo, R. L.; Churchill, M. R.; Churchill, D. G. J. Org. Chem. 1998, 63, 2641; (1) Lund, E. A.; Kennedy, I. A.; Fallis, A. G. Can. J. Chem. 1996, 74, 2401; (m) Nakajima, T.; Segi, M.; Mituoka, T.; Fukute, Y.; Honda, M.; Naitou, K. Tetrahedron Lett. 1995, 36, 1667; (n) Lee, P. H.; Kim, J. S.; Kim, S. Tetrahedron Lett. 1993, 34, 7583; (o) Lund, E. A.; Kennedy, I. A.; Fallis, A. G. Tetrahedron Lett. 1993, 34, 6841; (p) Alonso, M. E.; Morales, A.; Chitty, A. W. J. Org. Chem. 1982, 47, 3747; (q) Alonso, M. E.; Morales, A. J. Org. Chem. 1980, 45, 4530; (r) Wenkert, E.; Alonso, M. E.; Buckwalter, B. L.; Chou, K. J. J. Am. Chem. Soc. 1977, 99, 4778; (s) Pittman, C. U., Jr.; McManus, S. P. J. Am. Chem. Soc. 1969, 91, 5915; (t) Boykin, D. W.; Lutz, R. E. J. Am. Chem. Soc. 1964, 86, 5046; (u) Cloke, J. B. J. Am. Chem. Soc. 1929, 51, 1174. An example of TfOH-promoted ring-opening of cyclopropane 1,1-diketone gave different result; (v) Chen, G. Q.; Tang, X. Y.; Shi, M. Chem. Commun. 2012, 2340.
- 9. Pohlhaus, P. D.; Johnson, J. S. J. Org. Chem. 2005, 70, 1057.