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ABSTRACT: The diverse applications of acrylate me-
tathesis range from synthesis of high-value α,β-
unsaturated esters to depolymerization of unsaturated 
polymers. Examined here are unexpected side-reactions 
promoted by the important Grubbs catalyst GII. Evi-
dence is presented for attack of PCy3 on the acrylate 
olefin to generate a reactive carbanion, which partici-
pates in multiple pathways, including further Michael 
addition, proton abstraction, and catalyst deactivation. 
Related chemistry may be anticipated whenever labile 
metal-phosphine complexes are used to catalyze reac-
tions of substrates bearing an electron-deficient olefin. 

Olefin metathesis offers powerful methodologies for the 
synthesis of α,β-unsaturated carbonyl compounds.1-4 
High-profile targets accessed via acrylate metathesis 
range from the high-value antioxidant 1a to natural 
products of medicinal relevance (Scheme 1).5,6 Cross-
metathesis (CM) of acrylates with plant-oil triglycerides 
or fatty acid esters is likewise key to the transformation 
of unsaturated fats and oils into renewable platform 
chemicals, including novel building blocks for high-
performance surfactants.2-4,7 In materials applications, 
related strategies have recently been deployed for depol-
ymerization of polybutadiene,8 or, alternatively, assem-
bly of bio-based polyesters9 and polyamides.10-12 

Scheme 1. Acrylate metathesis and selected products.  

 

An influential report by Meier and co-workers described 
50-fold higher productivity for the Hoveyda catalyst HII 
in oleate–acrylate CM, relative to the second-generation 
Grubbs catalyst GII (Chart 1).9,13  Related catalysts 
(Zhan1B, M51) likewise show improved performance.14 
Phosphine-free catalysts are now the standard for acry-
late metathesis applied to renewable feedstocks, alt-
hough GII remains commonly used in target-directed 
synthesis of αβ-unsaturated carbonyl derivatives.15 

Chart 1. Key catalysts used in acrylate metathesis, and 
the resting-state species GIIm for the Grubbs catalyst. 

 
While several explanations for the superiority of phos-
phine-free catalysts have been advanced,16,17 the mecha-
nistic basis remains speculative. Given the large number 
of metathesis catalysts now based on the archetypal 
structures GII and HII,18 and the limited understanding 
of the factors governing relative performance, this sys-
tem affords an important target for study. Here we 
demonstrate that the performance of GII in acrylate me-
tathesis is undermined by Michael addition pathways 
enabled by free PCy3, which limit yields, promote side-
reactions, and cause catalyst decomposition. These find-
ings offer informed insight into catalyst choice for acry-
late metathesis. In the broader context, they highlight 
hazards in the use of metal-phosphine complexes to 
promote reactions of electron-deficient olefins. 

We recently noted that the excellent performance of HII 
in acrylate-anethole metathesis is completely suppressed 
by added PCy3 (Figure 1a).19 Here we use the combina-
tion of fast-initiating HII and mid-metathesis addition of 
PCy3 to simulate highly-initiated GII. By amplifying the 
concentration of the metallacyclobutane (MCB) inter-
mediate relative to the off-cycle species GII and GIIm 
which otherwise dominate, this experimental approach 
permits us to dissect out the impact of PCy3 on the MCB 
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intermediate: that is, on the active species central to the 
olefin metathesis reaction. 

To confirm that the rapid knockdown seen in Figure 1a 
is due to the electron-withdrawing ester moiety, we re-
peated the reaction with styrene in the absence of acry-
late (Figure 1b). Styrene was chosen in place of anethole 
to ensure formation of the key methylidene species 
GIIm (the dominant species observed on treating GII 
with methyl acrylate), while subtracting ester-
functionalized intermediates. In sharp contrast with the 
acrylate experiment, the ultimate yield of stilbene 2 was 
unaffected. That is, addition of PCy3 merely slowed the 
reaction, by trapping the catalyst as the off-cycle species 
GIIm and GII (ratio 2:3 at 0.5 h). This experiment pin-
points the acrylate ester functionality as key to the deac-
tivating effect of PCy3, and we therefore examined the 
companion reaction, in which acrylate is retained but its 
coupling partner is omitted. 

 
Figure 1. (a) Termination of CM by added PCy3 in ane-
thole–acrylate CM. (b) Rate retardation by added PCy3 
for CM in the absence of acrylate (0.5 mol% Ru, 70 °C, 
C7H8). 

In these experiments, HII and PCy3 were added to ex-
cess acrylate in C6D6, and the reaction was heated open 
to N2 to permit ethylene loss.20  Periodic analysis re-
vealed formation of the phosphonium salts B+ and A+, in 
parallel with loss of HII and its PCy3 adduct HII’.21 The 
simplicity of the 31P{1H} NMR spectrum (Figure 2b) 
suggests that one decomposition process predominates.  

 

Figure 2. (a) Rate of loss of HII/HII’ (1H NMR analy-
sis) and formation of phosphonium salts (31P NMR anal-
ysis); curve for GIIm omitted for clarity (<5%). (b) 
31P{1H} NMR spectrum of the reaction mixture at 5 h.  

We propose that the phosphonium salts are generated by 

initial attack of PCy3 on the electron-deficient olefin, 
forming zwitterionic A, which can participate in multi-
ple subsequent pathways (Scheme 2). Ample precedent 
exists for this phosphonium enolate, both in phosphine-
catalyzed Michael reactions,22-25 and in the Morita-
Baylis-Hillman reaction, in which A participates in fur-
ther nucleophilic attack on aldehyde substrates.26,27  

Scheme 2. Proposed mechanism for acrylate-induced 

catalyst decomposition (E = CO2Me).  

 
In the present context, the dominant reaction involves 
attack of A on further acrylate, followed by proton ab-
straction to liberate [B]X. No reaction is seen in the ab-
sence of HII, indicating that the ruthenium species pre-
sent supplies the required proton and counter-anion.28 
Chloride abstraction may provide the anion, given the 
absence of additional signals in NMR spectra of isolated 
B
+. A metallacyclobutane (MCB) intermediate is sug-

gested as the likely target of attack. We recently reported 
that MCB intermediates formed during styrene metathe-
sis are rapidly deprotonated by base, including amines.29 
Competing attack on GIIm is not unequivocally exclud-
ed, but is sterically less favourable. 

Co-formation of A+ indicates competing reaction of the 
carbon nucleophile in A with a proton source. MCB spe-
cies are again candidates for attack. Adventitious water 
is another, and indeed the proportion of A+ was in-
creased on use of acrylate that was not dried over mo-
lecular sieves.30 Stronger acids promote this reaction: 
thus,  treating PCy3 with methyl acrylate in the presence 
of HCl (Scheme 3) resulted in quantitative formation of 
[A]Cl. This behaviour offers a new explanation for the 
long-established capacity of phenols to improve the 
productivity of the Grubbs catalysts in acrylate metathe-
sis:31-35 in short, the phenol functions as a proton source, 
protecting the catalyst. 

Scheme 3. Formation of [A]Cl in the presence of HCl, 
with no metal species present. 

 
The relevance of this chemistry to GII is supported by 
analysis of the anethole–acrylate CM reaction shown in 
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Scheme 4a. Four species account for ca. 90% of the total 
31P NMR integration at 1 h, and for the three major ESI-
MS signals. Of these species, B+ and A+ account for 
60%. The balance is due to the new diastereomers C+, 
generated by attack of A on the re and si faces of methyl 
fumarate (Scheme 4b). Fumarate formation is due in part 
to the higher temperatures employed: C+ is likewise ob-
served at 70 °C in acrylate metathesis using the HII / 
PCy3 system (16%, vs. <2% at 50 °C). Also notable is 
the higher proportion of A+, which may suggest that 
both the MCB and the resting-state species GIIm are 
deprotonated by A. Precedents for the accessibility of 
the methylidene ligand of GIIm were noted above.17 

Scheme 4. (a) Decomposition of GII during anethole–

acrylate CM. (b) Formation of C
+
. 

 

The foregoing demonstrates that the superiority of HII 
over GII in acrylate metathesis reactions is due to elimi-
nation of reaction pathways triggered by the ancillary 
PCy3 ligand. The potent nucleophilicity of the latter en-
ables efficient reaction with electron-deficient olefins, 
leading to unwanted byproducts and to catalyst deactiva-
tion. The well-established versatility of nucleophilic 
phosphines in organocatalysis points toward the broad 
scope of this pathway. Substrates at risk, where a phos-
phine ligand is liberated – whether in metathesis or other 
catalytic chemistry – include those bearing α,β-
unsaturated carbonyl and cyano functionalities, includ-
ing acrylates, acrylamides, acrylonitriles, and α,β-
unsaturated ketones. In all of these cases, a phosphine-
free catalyst is likely to offer the simplest means of 
achieving the desired selectivity and catalyst productivi-
ty.    
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