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Abstract: The easily available adducts of sodium p-toluenesul-
finate to both acrylonitrile or acrylic acid were efficiently trans-
formed through a two-step, high-yielding sequence into ethyl 5-[(4-
methylphenyl)sulfonyl]-3-oxopentanoate, a convenient source for
the popular Nazarov’s reagent, ethyl 3-oxopent-4-enoate, which
could be generated in situ by base-induced b-elimination and used
for annulation reactions.
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Ethyl 3-oxopent-4-enoate (1, Nazarov’s reagent,
Figure 1)1 is a well-known annulating agent extensively
used for several transformations, including Robinson an-
nulation of cyclic b-diketones,2 cycloalkanones3 or the
corresponding enamines,4 and cyclic imidates.5 More-
over, its versatility has been further extended to the syn-
thesis of 4-piperidones6 and carbocyclic b-keto esters.7

Figure 1

A number of preparations of 1 and its analogues has been
developed since the original work of Nazarov and
Zav’yalov in 1953,1a including b-elimination from latent
enone precursors,2b,4b,5a,8 pyrolysis,9a and rhodium(II)ace-
tate-catalyzed transformations of suitable a-diazo-b-hy-
droxy esters,9b,c as well as retro Diels–Alder reaction of
formal cyclopentadiene adducts.2c,10 The applicability of
most of these protocols has been hampered either by poor
yields, difficulty accessible starting materials, and/or re-
quirement of special apparatus.

The most reliable procedure for the synthesis of 1 and its
analogues11 entailed on the oxidation of the b-hydroxy es-
ters derived by 1,2-addition of a lithioalkyl acetate to ac-
rolein and the red-written warning ‘the product is volatile
and will be lost by evaporation if care is not taken’ high-
lighted the main drawback of the checked protocol.11b

Consequently, the development of suitable precursors al-
lowing the in situ generation of Nazarov’s reagents, there-
by eliminating the need for their isolation, may be
particularly useful.

In connection with our continuous interest in the synthesis
of new reagents acting as latent enone precursors,12 we en-
visaged the hitherto unknown ethyl 5-[(4-methylphe-
nyl)sulfonyl]-3-oxopentanoate (2) as a new synthon for 1,
a base-induced elimination of the g-keto sulfone moiety
being required for the introduction of the unsaturation
conjugated to the carbonyl group.

The preparation of 2 has been efficiently achieved by two
different synthetic routes13 starting from easily available
adducts 314 and 515 of sodium p-toluenesulfinate to acrylo-
nitrile or acrylic acid, respectively (Scheme 1).

The required two-carbon elongation has been accom-
plished through Blaise reaction of 3 with ethyl bromoace-
tate and in situ activated zinc by action of a catalytic
amount of methanesulfonic acid.16 The intermediate
b-aminoacrylate 4 was then hydrolyzed by aqueous HCl
solution to afford b-ketoester 2 in 75% overall yield.

Scheme 1 Reagents and conditions: (a) Zn, BrCH2CO2Et, MsOH,
THF, reflux, 3 h; (b) HCl, THF, r.t., 2 h, 75% from 3; (c) 1,1¢-carbon-
yldiimidazole, THF, r.t., 4 h; (d) HO2C(CH2)CO2Et, Mg(OEt)2, THF,
r.t., 12 h, 80% from 5.

Alternatively, the b-ketoester 2 was obtained in 80% yield
through chain elongation of the acid derivative 5 via acti-
vation of the carboxyl group as imidazolide followed by
reaction with the neutral magnesium salt of monoethyl
malonate according to the procedure developed by
Masamune et al.17

The new reagent 2 is a white powder, bench-stable, that
can be stored indefinitely at room temperature without
special precautions.18
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A preliminary investigation of its chemical behavior in the
presence of different bases led us to discover that a
smooth transformation took place by treatment with po-
tassium fluoride in MeOH at room temperature,19 leading
to the formation of the cyclic b-ketoester 6, other basic re-
agents being ineffective or causing polymerization
(Scheme 2).

Scheme 2

Interestingly, the highly functionalized cyclohexane de-
rivative 6 was also formed submitting freshly prepared 1
to identical reaction conditions.

A plausible mechanism to explain the formation of 6 is
likely to involve elimination of p-toluenesulfinic acid as

the first event leading to the formation of 1, which under-
went an intermolecular base-induced Michael reaction
producing the nonisolated intermediate 7 (Scheme 3).
This was eventually converted into 6 through an intramo-
lecular Morita–Baylis–Hillman reaction20 promoted by
fluoride-ion activation of the double bond.21

In order to test the utility of 2 as source of 1, we next ex-
amined its behavior in several model reactions described
in the literature in which 1 has been directly applied.2

Thus, the annulated product 8 could be obtained when 2
was reacted with 2-methylcyclohexane-1,3-dione in
MeOH in the presence of potassium fluoride (Scheme 4),
the overall 50% yield of isolated product comparing well
with the existing data.2d–2f

Surprisingly, we were unable to obtain the bicyclic ester
92a–2c by the reaction of 2 with 2-methylcyclopentane-1,3-
dione under the same conditions. However, the expected
annulation leading to 9 was successfully accomplished in
40% yield performing the reaction in boiling aqueous 0.1
N NaHCO3 according to a known procedure.2c
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Moreover, we extended the use of the masked Nazarov’s
reagent 2 as counterpart of b-nitrostyrenes in a tandem
Michael reaction promoted by benzyl trimethylammoni-
um methoxide producing in unoptimized moderate yields
diastereomeric mixtures of the completely enolized cyclic
b-ketoesters 10, which could be partially separated by si-
lica gel column chromatography.22

Interestingly, Takemoto et al.23 investigating the bifunc-
tional thiourea-catalyzed enantioselective double Michael
addition of 1 to nitroalkenes could not obtain either
Michael adducts or the desired cyclized product, the reac-
tion giving rise to a complex mixture owing to the insta-
bility of 1.

In conclusion, solid crystalline and bench-stable 5-[(4-
methylphenyl)sulfonyl]-3-oxopentanoate (2) was shown
to serve as an excellent precursor for Nazarov’s reagent 1.
Its facile preparation from easily available chemicals and
the mild conditions required for the in situ demasking of
the enone moiety make the new reagent an attractive tool
for obtaining a wide variety of carbo- and heterocyclic
compounds.
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