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Abstract 
C–H activation reaction is one of the most challenging reactions in the present scenario. The green synthesis of benzalde-
hyde from toluene using TBHP in a sustainable amount as an oxidant over indium-incorporated TUD-1 is performed in 
the present study. In(1)-TUD-1 (In/Si = 1/100 mol ratio) shows 48% toluene conversion and 83% benzaldehyde selectivity 
using acetic acid as solvent. The catalyst was recyclable up to five times. A plausible reaction mechanism is also proposed 
based on the characterization results.
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Introduction

The selective liquid phase oxidation of hydrocarbons to the 
analogous oxygen-carrying compounds has the potential to 
simplify the synthesis of complex molecules greatly and 
has remained a most promising and challenging reaction in 
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both academic and industry circles (Luo et al. 2013). Selec-
tive oxidation of C–H bond is still an unsolved problem as 
the intermediates such as alcohol and aldehydes are more 
responsive to secondary oxidation to form carboxylic acid 
which lowers the selectivity (Kantam et al. 2002). Oxygen-
ated products are the indispensable intermediates for agro-
chemicals, pharmaceuticals, fine chemicals, fragrances, 
polymers and many chemical feedstocks (Saravanamurugan 
et al. 2004; Rao et al. 2009). Many researchers have been 
devoted to the design and synthesis of new reagents and 
catalysts which can convert these unreactive C–H bonds 
into C=O. Toluene has a great significance among various 
hydrocarbons and which on oxidation produces benzyl alco-
hol, benzaldehyde and benzoic acid. Amidst the oxidized 
products, benzaldehyde is the most prudent product but it is 
very prone to oxidation to form benzoic acid. In most of the 
oxidation reactions, higher oxidation state of metal reagents 
like manganese, osmium and chromium are used as oxidants 
in stoichiometric amounts (Visuvamithiran et  al. 2013; 
Brutchey et al. 2005). The above reagents produce huge vol-
umes of organic wastes which are environment unfriendly. 
Transition metal catalysis has emerged as a powerful tool 
for C–H activation, but the techniques are accompanied by 
drawbacks such as low selectivity and use of large amount 
of solvents and bromides (Zhao et al. 2004; Qian et al. 2005; 
Maksimchuk et al. 2012). Supported Au–Pd nanoparticles 
show quite a better result in this aspect (Saiman et al. 2012). 
Many metals-incorporated metal oxides and zeolites have 
also been used (Saravanamurugan et al. 2004). Despite nota-
ble recent efforts, the development of general and mild strat-
egies is very indispensable in the field of C–H activation.

Silica materials have received enormous attention for 
their distinctive physico-chemical properties like high ther-
mal stability, high specific surface area, ready surface modi-
fication, corrosion resistance and environment friendly (Lai 
2013). It also enhances the stability of metal oxide nano-
particles. Mesoporous silica-supported metal catalysts like 
Metal-TUD-1 (Co, Ti, Cr, Fe, Mn) (Anand et al. 2009; Wang 
et al. 2018) catalyzed aerobic oxidation of cyclohexane using 
radical initiators like TBHP and CHHP. Vanadium phos-
phate containing KIT-6 using  H2O2 did not perform so well 
(Rezaei et al. 2017). NDHPI on SBA-15 carrier was used as 
a catalyst for toluene to benzaldehyde oxidation (Zhou et al. 
2016). Indium-incorporated silica for C–H activation has not 
been explored well till now.

Our primary clear need is the development of an environ-
mentally benign catalyst which can produce benzaldehyde 
selectively from toluene under very mild reaction conditions. 
Instead of choosing any transition metal, we have chosen 
post-transition metal like indium. Indium salts are very sta-
ble to water and air, less toxic, more abundant and cheaper 
compared to transition metals, easy to handle and also very 
well known for its Lewis acidity in its +3 oxidation state. 

We here for the first time report the utilization of indium-
incorporated TUD-1 with two different indium loadings for 
toluene to benzaldehyde using TBHP as single oxygen donor 
under very mild reaction conditions. We have also studied 
the effect of aging time and temperature on the catalytic 
activity. The catalysts were characterized by  N2 physisorp-
tion, HRTEM, UV–Vis, pyridine IR and  O2 pulse chem-
isorption, EDX and elemental mapping techniques. Among 
the indium-loaded catalysts In-TUD-1 (In = 1 and 4 mol%), 
In(1)-TUD-1 shows higher catalytic activity, i.e., 48% tolu-
ene conversion and 83% benzaldehyde selectivity using ace-
tic acid as solvent.

Experimental

Materials and methods

Catalyst synthesis procedure

Different indium-loaded In-TUD-1 catalysts were synthe-
sized by sol–gel procedure as reported in literature. Tetra-
ethyl orthosilicate (TEOS, 98%, Acros Organics) was added 
to the aqueous solution of indium nitrate (99.9%, Sigma-
Aldrich) in deionized water with continuous stirring. Trieth-
anolamine (TEA, 99%, Acros Organics) was added dropwise 
to the mixture. The entire mixture was stirred for 10 min 
followed by the addition of tetraethylammonium hydrox-
ide (TEAOH, 20% aqueous solution), (Merck Germany). 
The resulting gel composition of the mixture is TEOS: 
In(NO3)3:TEA:  H2O: TEAOH = 1: x: 2: 11: 1 (x = 0.01, 
0.04). At room temperature, the complete mixture was 
stirred for 24 h and the synthesized gel was dried at 110 °C 
for 24 h in a static oven. In the end, the dried material was 
calcined in a muffle furnace at 700 °C for 10 h with a tem-
perature ramp of 1 °C/min.

To study the effect of aging time and temperature on the 
catalytic activity, we synthesized two other catalysts. The 
first one is by varying aging temperature, i.e., 80 °C for 24 h 
and the latter one is by varying time of 14 h at 110 °C. In 
both the cases, indium loading of 1 mol% was kept con-
stant and the catalysts are labeled as In(1)-TUD-1-80C and 
In(1)-TUD-1-14H, respectively. The details of the synthe-
sized procedures are depicted in supporting information as 
(catalyst preparation).

Catalyst characterizations

The nitrogen adsorption–desorption isotherms of the 
prepared catalysts were measured at liquid nitrogen tem-
perature at − 196 °C with a Quantachrome NOVA 3200, 
USA. Pretreatment of the samples was done at 200 °C for 
3 h under high vacuum. The surface area was calculated 
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by Brunauer–Emmett–Teller (BET) equation and pore size 
distribution was calculated by the BJH method. The HRTEM 
image of the prepared catalysts was obtained on JEOL JEM 
2100 microscope (USA) operated at 200 kV acceleration 
voltage using lacey carbon-coated Cu grid of 300 mesh size. 
The UV–Visible (UV–Vis) was performed in Varian Cary 
500 (Shimadzu) spectrophotometer in the wavelength range 
of 200–800 nm. The pulse chemisorption was performed 
using 5% oxygen in helium for 2 h during pretreatment fol-
lowed by flushing at 200 °C. During analysis, 5%  O2/He 
was dosed by 2750 loop of volume 0.5 cm3. The chemisorp-
tion was performed at room temperature. FTIR analysis of 
the samples was performed using Agilent Cary 600 series 
with praying mantis setup. Before pyridine treatment, the 
catalysts were dried at 100 °C in a hot air oven. The cata-
lysts (50 mg each) were taken in sample cups and pyridine 
(0.1 cc) was added to it. To remove the extra or physisorbed 
pyridine, the sample cups were kept in a hot air oven at 
100 °C. The samples were used at room temperature and IR 
spectra were taken in the spectral range of 1700–1400 cm−1 
with 64 scan and at a resolution of 8 cm−1 using KBr back-
ground. EDX and elemental mapping were carried out by 
S-3400N model Hitachi instrument.

Catalytic activity studies

In a two-necked round-bottom flask, toluene (8 mmol) and 
70% t-butyl hydroperoxide (20 mmol) and 10 ml of ace-
tic acid as solvent were added. The mixture was shaken in 
molecular level followed by stirring in a thermostated oil 
bath maintained at 80 °C and 100 mg of catalyst was added 
to it. Before performing the reaction, the catalyst was dried 
for 3 h at 100 °C in a hot air oven. The round-bottomed flask 
was fitted with a condenser. Aliquots were taken at regular 
intervals of time to check the progress of the reaction. After 
completion of the reaction, the catalyst was separated by fil-
tration and the reaction mixture was extracted with ethyl ace-
tate and dried with anhydrous  Na2SO4. The products were 
analyzed with a gas chromatograph (Agilent 7890B) fitted 
with a FFAP capillary column (30 m × 32 mm × 0.25 µm) 
and an FID detector. Temperature used was from 120 °C 
(2 min) to 230 °C at a heating rate of 20 °C/min.

Results and discussion

Characterization results

BET surface area and porosity measurement, XRD, 
HRTEM, EDX and STEM, FTIR,  NH3-TPD,  H2-TPR and 
 O2-TPO techniques have been depicted thoroughly in our 
previous paper (Rahman et al. 2015). The characterization 
techniques revealed that In(1)-TUD-1 (In = 1 mol%) shows 

higher surface area and larger pore diameter, better disper-
sion of metal nanoparticles over the surface of TUD-1, more 
reducible  In2O3, more oxygen uptake and lower surface acid-
ity compared to In(4)-TUD-1 (In = 4 mol%).

The UV–Vis spectra of the synthesized catalysts have 
been represented in Fig. 1. The absorption band at 250 nm 
instead of at 330 nm indicates the presence of  In2O3 nano-
particles which may be due to the weak quantum confine-
ment effect. With increasing indium loading, the peak is 
intensified and shifted to a higher wavelength (Kumar et al. 
2016).

Figure 2 depicts the pyridine-adsorbed FTIR spectra of 
the fresh samples at 298 K. The absorption peaks at 1640, 
1550 cm−1 correspond to the pyridine adsorbed in Bron-
sted acid sites and peaks at 1596, 1445 cm−1 correspond to 
pyridine adsorbed in Lewis acid sites. Peak at 1485 infers to 

Fig. 1  UV-Vis spectra of a In(1)-TUD-1 and b In(4)-TUD-1

Fig. 2  Infrared spectra of pyridine adsorbed at 298 K on fresh a In(1)-
TUD-1and, b In(4)-TUD-1. L Lewis acid site, B Bronsted acid site, 
L+B Lewis+Bronsted acid site
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pyridine adsorbed in both the Bronsted and Lewis acid sites. 
Bronsted acid sites are more populated for In(4)-TUD-1 
(Reddy et al. 2009). The percentage of acidic and basic sites 
is depicted in Table S1.

O2 pulse chemisorption study depicted in Table 1 dis-
closes the dispersion of indium oxide nanoparticles over 
TUD-1 matrix. The lower dispersion may be due to stronger 
metal and support interaction. Better dispersion was found 
for lower indium-loaded catalyst compared to higher indium-
loaded catalyst because in case of higher metal-loaded cata-
lyst, agglomeration of particles and larger crystallite size 
was also supported by XRD and HRTEM studies.

In(1)-TUD-1-80C and In(1)-TUD-1-14H were character-
ized by  N2 physisorption study, HRTEM, elemental mapping 
and EDX.  N2 physisorption results are depicted in Table S2 
and isotherms as Fig. S1, HRTEM, SAED and elemental 
mapping are depicted as Figs. S2, S3 and S4, respectively 
(Supporting Information). It was observed that In(1)-TUD-
1-14H shows better catalytic activity both in terms of tolu-
ene conversion and benzaldehyde selectivity compared to 
In(1)-TUD-1-80C and such enhanced catalytic behavior 
of In(1)-TUD-1-14H can be attributed to its larger surface 
area and pore diameter. HRTEM micrograph confirms the 
sponge-like morphology and SAED pattern confirms the 
amorphous nature of silica. Agglomeration of indium oxide 
nanoparticles and lower dispersion of indium on silica were 
observed from HRTEM and elemental mapping, respec-
tively, which might be the reason behind inferior catalytic 
activity of In(1)-TUD-1-80C compared to In(1)-TUD-1-14H. 

EDX result depicted in Table S3 reveals the presence of 
a little more amount of indium in In(1)-TUD-1-80C than 
In(1)-TUD-1-14H. Such a small increase in indium has been 
found to have no such profound effect on catalytic activity.

Catalytic activity and discussion

Initially, oxidation of toluene was conducted using molecu-
lar oxygen, but no reaction occured. The reaction was also 
carried out using the silica support TUD-1 and 70% TBHP 
in water but a small amount of product was obtained. Again, 
the reaction was conducted using indium-incorporated 
TUD-1 silica using 70% TBHP in water as oxidant and it 
showed quite an appreciable result. The catalytic activity 
was optimized by varying oxidant, metal loading, tempera-
ture, time, toluene and TBHP ratio, solvent and represented 
in Tables 2, 3, 4, 5, 6 and 7, respectively.     

Table 2 delineates the effect of oxidants on toluene oxi-
dation. Oxidation of toluene was conducted using molecu-
lar oxygen, but no reaction was observed. We performed 
the reactions using both TBHP in decane (5.5 M) and 70% 
TBHP in water as oxidant and found that in case of both 
the oxidants, by increasing the metal loading, the catalytic 
activity increased a little in terms of conversion along with 
an appreciable decrease in benzaldehyde selectivity. So, we 
performed the other reactions using 70% TBHP in water as 
oxidant.

The catalytic activity studies varying the indium loading 
are described in Table 3. We have performed the reactions 
using both 70% TBHP in water as oxidant. By increasing 
the metal loading, the catalytic activity increased a little in 
terms of conversion along with an appreciable decrease in 
benzadehyde selectivity. In(4)-TUD-1 exhibits higher sur-
face acidity than In(1)-TUD-1 found from  NH3-TPD and 
more Bronsted acid sites were observed from pyridine IR. 
(Martin et al. 1999) also explained very precisely that both 
Bronsted and Lewis acid sites are responsible for toluene 
chemisorption and increase in basicity of the catalyst surface 
by blocking the Bronsted acid site enhances the desorption 
rate of aldehyde. Bronsted acid sites are very necessary for 

Table 1  O2 pulse chemisorption study of different indium-loaded 
TUD-1 catalysts

Indium amount was found from EDX described in our previous paper 
(Rahman et al. 2015)

Catalyst O2 uptake 
(μmol/g)

Dispersion 
(%)

Surface area 
of indium 
 (m2/g)

Average 
crystallite 
diameter (nm)

In(1)-TUD-1 1.02 1.99 7.94 103.3
In(4)-TUD-1 0.98 0.62 2.4 342

Table 2  Toluene oxidation activity using different oxidants

Reaction conditions: toluene: 8 mmol, TBHP: 20 mmol, time: 5 h, temperature: 80 °C
Reaction performance in optimum condition are shown in bold

Catalyst Oxidants Toluene conver-
sion (%)

Selectivity (%)

Benzyl alcohol Benzaldehyde Benzoic acid Others

In(1)-TUD-1 O2 – – – – –
In(1)-TUD-1 70% TBHP in water 42 20.6 78.2 < 2
In(1)-TUD-1 TBHP in decane (5.5 M) 45 89.07 3.5 7.4
In(4)-TUD-1 70% TBHP in water 47 31.3 64.5 < 1
In(4)-TUD-1 TBHP in decane (5.5 M) 51 93.6 2.8 3.2 < 1
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Table 3  Toluene oxidation 
activity using different indium-
loaded TUD-1

Reaction conditions: toluene: 8 mmol, TBHP: 20 mmol, catalyst: 100 mg, temperature: 80 °C
Results in optimum conditions are represented in bold
a Reaction in the absence of TBHP
b TOF, TOF = Moles of toluene converted/moles of indium present per hour. Indium amount was found 
from EDX described in our previous paper (Rahman et al. 2015)

Catalyst Indium load-
ing in (mol%)

Toluene 
conversion 
(%)

Selectivity (%)

Benzyl alcohol Benzaldehyde Benzoic acid Others

– – 7 92.8 7.1
TUD-1 – 8 92.2 7.7
In(1)-TUD-1 1 2a 98.5 < 1
In(1)-TUD-1 1 42 20.6 78.2/0.53b < 2
In(4)-TUD-1 4 47 31.3 64.5/0.22b < 1

Table 4  Effect of reaction 
temperature on selective 
oxidation of toluene

Reaction conditions: toluene: 8 mmol, TBHP: 20 mmol, catalyst: 100 mg, time: 5 h
Reaction performance in optimum condition are shown in bold

Catalyst Tempera-
ture (°C)

Toluene con-
version (%)

Selectivity (%)

Benzyl alcohol Benzaldehyde Benzoic acid Others

In(1) TUD-1 30 29 32.6 67.2 – –
In(1) TUD-1 80 42 20.6 78.2 < 2
In(1) TUD-1 100 45 17.1 62 20.7 –

Table 5  Effect of reaction time 
on selective oxidation of toluene

Reaction conditions: toluene: 8 mmol, TBHP: 20 mmol, catalyst: 100 mg, solvent: 10 ml, time: 5 h, tem-
perature: 80 °C
Reaction performance in optimum condition are shown in bold

Catalyst Time (hours) Toluene con-
version (%)

Selectivity (%)

Benzyl alcohol Benzaldehyde Benzoic acid Others

In(1) TUD-1 2 21 21 79 – –
In(1) TUD-1 5 42 20.6 78.2 < 2
In(1) TUD-1 6 51 17.2 76.5 6.1 < 1
In(1) TUD-1 12 58 9.1 73 17.6
In(1) TUD-1 26 59 4.5 63.1 31.9

Table 6  Effect of toluene: 
TBHP molar ration on toluene 
oxidation

Reaction conditions: time: 5 h, temperature: 80 °C, catalyst: 100 mg
Reaction performance in optimum condition are shown in bold

Catalyst Toluene: 
TBHP molar 
ratio

Toluene 
conversion 
(%)

Selectivity (%)

Benzyl alcohol Benzaldehyde Benzoic acid Others

In(1)-TUD-1 1:1 36 25.3 73 1.2
In(1)-TUD-1 1:1.25 38 22.6 75.3 2 < 1
In(1)-TUD-1 1:2.5 42 20.6 78.2 < 2
In(1)-TUD-1 1:4 45 12.1 65.8 21 <1
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toluene conversion but more Bronsted acid sites are associ-
ated with more coke deposition and catalyst deactivation 
(Mendez-Roman and Cardona-Martinez 1998; Bulushev 
et al. 2004). At higher metal loading of 4 mol%, toluene 
conversion should be profoundly high because of its higher 
acidity. As the catalyst in lower indium loading exhibits less 
surface acidity, so, it should show lower toluene conversion 
(Mal et al. 2018). Although the acidity of In(4)-TUD-1 is 
high, no appreciable change in toluene conversion may be 
due to poor metal dispersion compared to In(1)-TUD-1 was 
observed from XRD, HRTEM,  H2-TPR and  O2 pulse chem-
isorption study as well as lower surface area observed from 
 N2 physisorption. The decrease in benzaldehyde selectivity 
can be explained by the more populated Bronsted acid site 
which leads to deactivation of the catalyst.

Table 4 describes the effect of temperature on toluene 
oxidation. We started the reaction at 80 °C following the lit-
erature. By increasing the temperature from room tempera-
ture (30 °C) up to 80 °C, both the conversion and selectivity 
increased, but above 80 °C, toluene conversion increased 
but benzaldehyde selectivity decreased. Higher temperature 
favors total oxidation instead of partial oxidation.

To check the progress of the reaction, aliquots were taken 
at some regular intervals of time and the catalytic activities 
are depicted in Table 5. With the increase of time from 2 to 
12 h, gradual increase in toluene conversion and variation 
in product selectivity were observed. For prolonged reac-
tion time of 26 h, benzoic acid formation increased sub-
stantially meanwhile benzyl alcohol selectivity decreased. 
This implies that with time, benzyl alcohol is getting further 
oxidized to benzoic acid which is a very stable product. Fig-
ure 3 depicts the effect of time on toluene conversion.

Table 6 delineates the impact of toluene:TBHP ratio on 
toluene oxidation. The molar ratio of toluene: TBHP var-
ied as (1:1, 1:1.25, 1:2.5 and 1:4) and we observed a better 
result in 1:2.5 molar ratio which is 48% toluene conversion 
and 83% benzaldehyde selectivity. No benzoic acid was 
found, but a small amount of o-cresol was observed. A small 
increase in toluene conversion and appreciable decline in 
benzaldehyde selectivity were observed with toluene:TBHP 

(1:4) ratio. In case of toluene:TBHP ratio of 1:1 and 1:2.5, 
the amount of TBHP may not be sufficient for converting 
benzyl alcohol to benzaldehyde for which a higher amount 
of benzyl alcohol was found compared to benzaldehyde and 
no acetic acid was found. The higher amount of TBHP in 
the ratio of toluene: TBHP 1:4 may result in total oxidation 
which produced benzoic acid by total oxidation instead of 
partial oxidation as a result of which decrease in benzalde-
hyde selectivity was observed.

Again, the target of achieving optimum catalytic activ-
ity led to the use of solvents like acetic acid, acetonitrile, 
ethyl acetate and ethanol. We found the optimum catalytic 
activity, i.e., 48% toluene conversion and 83% benzaldehyde 
in the case of acetic acid. Acidity of the solvents is in the 
order acetic acid > ethanol > acetonitrile > ethyl acetate. The 
solvent acidity has great significance in oxyfunctionaliza-
tion and with increasing solvent acidity, both the toluene 
conversion and benzaldehyde selectivity increased in our 

Table 7  Effect of different 
solvents on toluene oxidation

Reaction conditions: toluene: 8 mmol, TBHP: 20 mmol, catalyst: 100 mg, solvent: 10 ml, time: 5 h, tem-
perature: 80 °C
Reaction performance in optimum condition are shown in bold

Catalyst Solvent Toluene con-
version (%)

Selectivity (%)

Benzyl alcohol Benzaldehyde Benzoic acid Others

In(1)TUD-1 – 42 20.6 78.2 < 2
In(1)TUD-1 Ethyl acetate 43 16.5 74.5 8.2
In(1)TUD-1 Acetonitrile 45 13.2 79.8 6.5
In(1)TUD-1 Acetic acid 48 14.5 83.2 < 2
In(1)TUD-1 Ethanol 47 18.2 81.5

Fig. 3  Effect of reaction time on toluene conversion using In(1)-
TUD-1
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study. The effect of the solvent acidity on catalytic reac-
tion is not clear (Bauer 2017; Velu et al. 1999; Zhang et al. 
2005). Effect of solvent on toluene oxidation is represented 
in Table 7.

Catalyst regeneration and substrate variation

To commercialize the catalyst, catalyst recyclability is one 
of the essential parameters. Catalytic activities of the cata-
lysts did not vary to a greater extent up to five cycles as 
represented in Table 8. The gradual decrease in conversion 
up to fifth cycle can be due to the leaching of metal and 
loss of catalyst during filtration and drying. After the fifth 
cycle, a sudden decline in catalytic activity was observed. 
To investigate the reason behind the deactivation of cata-
lyst, the sixth cycle used catalyst was characterized by  N2 
physisorption and EDX and represented as shown in Fig. 4, 
Tables 9 and 10, respectively.  N2 physisorption result reveals 
that the mesopore structure is still retained and decrease in 
surface area, pore volume and pore diameter may be due to 
the blocking of surface sites or pores of the catalyst by the 
reactant molecules. Again, to clear the presence of indium, 
EDX was performed. From the EDX results of fifth (indium 
0.4 at %) and sixth cycle catalyst (indium 0.00 at 4%), we 
observed than an acute change in indium amount. So, we 
may conclude that the catalyst is stable and leaching of 

indium which is the active component loss may be the rea-
son behind deactivation of the catalyst. The catalyst also 
induced oxyfunctionalization of ethylbenzene and cyclohex-
ane. Acetophenone and cyclohexanone were observed to be 
the major products of ethylbenzene and cyclohexane oxida-
tion, respectively.

Proposed reaction mechanism

Metal nanoparticles can decompose oxidants like TBHP to 
form .OH and .OOH radicals (Anand et al. 2006). Early tran-
sition metals can accelerate liquid phase oxidations in their 
highest oxidation state, like  Ti4+ or  V5+, activate peroxides 
for their Lewis acidity (Corma et al. 1995; Shylesh and Singh 
2006). Indium in its (III) oxidation state is also well known 

Table 8  Catalyst regeneration and substrate variation

Reaction conditions: reactant = toluene 8  mmol; TBHP = 20  mmol; 
catalyst = 0.1 g; acetic acid: 10 ml, temperature = 80 °C; time = 5 h
Reaction performance in optimum condition are shown in bold
a First recycle
b Second recycle
c Third recycle
d Fourth cycle
e Fifth cycle
f Sixth cycle
g Benzaldehyde
h Acetophenone
i Cyclohexanone

Catalyst Substrate Conversion 
(%)

Major product 
selectivity (%)

In(1)-TUD-1 Toluene 48 83.2g

In(1)-TUD-1 Toluenea 47 84.2g

In(1)-TUD-1 Tolueneb 44 83.3g

In(1)-TUD-1 Toluenec 40 80.9g

In(1)-TUD-1 Toluened 36 80.5g

In(1)-TUD-1 Toluenee 28 78.6g

In(1)-TUD-1 Toluenef 8 63.5g

In(1)-TUD-1 Ethylbenzene 54 88h

In(1)-TUD-1 Cyclohexane 21 67i

Fig. 4  N2 physisorption isotherm and pore size distribution curve of 
In(1)-TUD-1 catalyst after fifth regeneration

Table 9  N2 physisorption results of fresh and sixth cycle catalyst

a BET results reported by Rahman et al. 2015

Catalyst Surface area 
 (m2/g)

Pore volume 
(cc/g)

Pore 
diameter 
(nm)

In(1)-TUD-1 688.7a 1.094a 8.30a

In(1)-TUD-1 500 0.048 6.36

Table 10  EDX results of fifth and sixth cycle In(1)-TUD-1 catalyst

Sample O (at %) Si (at %) In (at %) Total (at %)

In(1)-TUD-1 (fifth 
cycle)

83 16.53 0.04 100

In(1)-TUD-1 (sixth 
cycle)

85.73 14.23 0.004 100
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for its Lewis acidity (Gandara et al. 2008). Herein, TBHP 
successfully performed as an oxidant in our reaction, but 
in the absence of metal, no appreciable amount of products 
formed. TBHP undergoes radical chemistry mostly. In fact, 
when we added a radical scavenger like quinhydrone, the 
reaction stopped immediately. This suggests that In-TUD-1 
catalyzed reaction not surprisingly proceeds through radi-
cal intermediates or via radical chain mechanism. It is also 
worth mentioning that the reaction also produces t-BuOH 
as byproduct.

Toluene reacting with TBHP over In-TUD-1 proceeds 
with the generation of tertiary butyl peroxy (t-BuOO.) and 
tertiary butoxy (t-BuO.) radicals. In the first step, coordina-
tion of TBHP with In (III) occured. The tert-butyloxy radical 
reacts with toluene to form the benzyl radical. The formation 
of benzyl alcohol (I) proceeds via the formation of benzyl 
cation by the transfer of electron from benzyl radical to the 
catalyst. The benzyl cation reacts with hydroxyl anion to 
produce benzyl alcohol. The reduced catalyst is oxidized by 
TBHP. The benzyl radical combines with tert-butyl peroxy 
radical to produce benzaldehyde. It may proceed through 
two steps. As benzyl alcohol is hydrophilic, the presence 
of water near the active site allows subsequent oxidation to 
benzaldehyde. Benzyl alcohol rearranged to form benzalde-
hyde, whether by dehydration or by abstraction of hydrogen 
followed by rearrangement to benzyldehyde (Scheme 1).

Selective oxidation of toluene to benzaldehyde over a 
variety of heterogeneous catalysts has been well studied. 

Table 11 provides a comparison of the results achieved 
from our present catalyst with the other reported catalysts 
(Guo et al. 2005; Wang et al. 2005; Li et al. 2006). Our 
present catalyst exhibits a very comparable conversion and 
selectivity at moderate temperature with a shorter reaction 
time.

Conclusion

In-TUD-1 catalysts of different loading (1 and 4 mol%) 
were prepared by sol–gel method. In(1)-TUD-1 shows bet-
ter selective oxidation of toluene to benzaldehyde using 
acetic acid as solvent. Elevated surface acidity of the cata-
lyst, solvent acidity and better distribution of indium oxide 
nanoparticles over silica are the key enablers for better 
catalytic activity. Bronsted acid site is a must for toluene 
conversion, but an optimum Bronsted/Lewis acid site is 
required for selective benzaldehyde production. Interest-
ingly, 48% toluene conversion was found in case of In(1)-
TUD-1 with 83% selectivity for benzaldehyde. The present 
catalyst has several advantages like environment friendly, 
mild reaction condition, economic, simple work-up and 
recyclability of the catalyst up to fifth cycle.
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Scheme 1  A plausible mecha-
nism for selective oxidation 
of toluene over indium-loaded 
TUD-1 silica (Rao et al. 2009)
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