Brief Communications

Reactions of β -aroylacrylic acids with N-nucleophiles

R. Dj. Khachikyan,^a N. V. Karamyan,^a* H. A. Panosyan,^b and M. H. Injikyan^a

^aInstitute of Organic Chemistry, National Academy of Sciences, 167-A ul. Z. Sarkavag, 375091 Yerevan, Republic of Armenia. Fax: (374 1) 28 3511. E-mail: Nara7777@mail.ru ^bMolecular Structure Research Center, Yerevan, Republic of Armenia

Reactions of NH₂OH • HCl with β -aroylacrylic acids proceed ambiguously: a nucleophile attacks either the carbonyl group or the C=C bond. In the latter case, the resulting α -hydroxyl-amino derivative converts into enamine, probably *via* dehydration followed by isomerization. Addition of 1,2,4-triazole to the C=C bond of β -(*p*-toluyl)acrylic acid followed by refluxing of their adduct with 60% NH₂NH₂ • H₂O gave a dihydropyridazinone derivative.

Key words: β -aroylacrylic acids, hydroxylamine hydrochloride, carbonyl group, double bond, enamine, oxime, triazole.

A large number of studies devoted to reactions of β -aroylacrylic acids with nucleophiles have been published to date. It is known¹⁻⁸ that in reactions with water and NH, SH, CH, and PH acids, a nucleophile attacks the C_{α} atom to form α -substituted β -aroylpropionic acids. Quantum-chemical⁹ and experimental data are in agreement. It should be noted that β -aroylacrylic acids form salts with heterocyclic amines, thiourea, and thiosemicarbazide.^{10,11}

We studied reactions of β -aroylacrylic acids 1 with hydroxylamine; the expected products were either oximes 2, which undergo subsequent cyclization into isoxazole or oxazinone derivatives, or β -aroyl- α -hydroxylaminopropionic acids 3 (Scheme 1).

However, the reaction of β -(*p*-toluyl)acrylic acid (1a) with NH₂OH · HCl in aqueous methanol gave no oxime 2a or products of its subsequent transformations; instead, a 1 : 3 mixture of α -amino- β -(*p*-toluyl)acrylic acid (4)

and its methyl ester 5a was unexpectedly obtained in 70% yield (Scheme 2).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1923-1927, August, 2005.

1066-5285/05/5408-1982 © 2005 Springer Science+Business Media, Inc.

Scheme 2

Apparently, the reaction involves addition of NH_2OH to the double bond to form compound **3a**, its dehydration, and isomerization of the resulting imine into enamine **4** (Scheme 3).

Scheme 3

The reaction of methyl β -(*p*-toluyl)acrylate with hydroxylamine in the presence and in the absence of Et₃N afforded ester **5a** in 58 and 61% yields, respectively.

The structures of compounds **4** and **5a** were determined by ¹H NMR spectroscopy and confirmed by 2D NOESY NMR spectroscopy: the presence of a cross peak between the *ortho*-protons of the aromatic ring and the H atom at the C=C bond unambiguously indicates that the nucleophile attacks the α -position relative to the carboxyl group.

A different pattern was observed with β -benzoyl-, β -(*p*-chlorobenzoyl)-, and β -(*p*-bromobenzoyl)acrylic

Scheme 4

1b-d

2h-d

1, 2, 5: Ar = Ph (**b**), p-ClC₆H₄ (**c**), p-BrC₆H₄ (**d**)

NH₂OH · HCl

:C—(↓ NH₂

5b-d

acids **1b**–**d**. In all the cases, the corresponding oximes **2b**–**d** were obtained as the major reaction products in 71, 45, and 50% yields, respectively (Scheme 4). Minor methyl α -amino- β -aroylacrylates **5b**–**d** were obtained in 19, 21, and 15.5% yields, respectively.

With β -(*p*-toluyl)acrylic acid (**1a**) as an example, we found that the reaction pathway is decisively influenced by the solvent nature. For instance, the reaction in acetonitrile or benzene rather than methanol gave the corresponding oxime **2a** as the only product (Scheme 5).

Scheme 5

$$p - \text{MeC}_{6}\text{H}_{4}\text{C} - \text{CH} = \text{CH} - \text{COOH} \qquad \xrightarrow{\text{NH}_{2}\text{OH} \cdot \text{HCI}}_{\text{MeCN or } C_{6}\text{H}_{6}}$$

$$1a$$

$$p - \text{MeC}_{6}\text{H}_{4}\text{C} - \text{CH} = \text{CH} - \text{COOH}$$

$$N - \text{OH}$$

$$2a$$

Thus, the reactions of NH₂OH·HCl with β -aroylacrylic acids can follow alternative pathways, with an attack of the nucleophile on either the carbonyl group or the C=C bond.

It is known^{12–14} that reactions of β -aroylacrylic acids with hydrazines yield pyrazolinecarboxylic acids; dihydropyridazinone derivatives cannot be obtained with the use of NH₂NH₂•H₂O. Recently,¹⁵ we found that the imidazolyl protection of the C=C bond in β -aroylacrylic acids allows the synthesis of 2,3-dihydropyridazin-3-one derivatives.

To verify the possibility of employing imidazole for the synthesis of oxazinone derivatives from β -aroylacrylic acids, we studied the reaction of adduct **6** (synthesized from imidazole and β -(*p*-toluyl)acrylic acid) with NH₂OH. However, the only product was α -amino- β -(*p*-toluyl)acrylic acid (**4**); *i.e.*, in contrast to the reactions with hydrazine, the attack by the nucleophile is preceded by elimination of imidazole (Scheme 6).

In continuation of the previous investigations, here we studied reactions of hydrazine hydrate with adducts of β -aroylacrylic acids with some other amines. It was demonstrated that 1,2,4-triazole behaves like imidazole; its adduct with β -(*p*-toluyl)acrylic acid **7** in the presence of hydrazine hydrate undergoes cyclization followed by elimination of the triazole to give the corresponding dihydropyridazinone **8**¹⁵ (Scheme 7).

Scheme 7

We found that the reactions of hydrazine hydrate with pyrrolidine and piperidine adducts of β -(*p*-toluyl)acrylic

Scheme 8

acid $(9, 10)^{16}$ occurs in a different way: elimination of the amine precedes cyclization to give 3-(*p*-tolyl)pyrazoline-5-carboxylic acid $(11)^{15}$ (Scheme 8).

Experimental

¹H NMR spectra were recorded on a Mercury-300 Varian instrument. A mass spectrum was recorded on an MX-1321 instrument (direct inlet probe, ionizing voltage 70 eV).

Reaction of β -(*p*-toluyl)acrylic acid (1a) with NH₂OH · HCl. Aqueous NH₂OH · HCl (8.34 g, 0.12 mol) was added to a saturated solution of acid 1a (1.9 g, 0.01 mol) in MeOH. The reaction mixture was refluxed in a water bath for 30 h and then treated with water. The precipitate was filtered off, washed with water, and treated with 1 M KOH. The alkaline solution was acidified with dilute HCl. The precipitate that formed was filtered off, washed with water, dried in vacuo, and refluxed in CHCl₃ for purification. The yield of α -amino- β -(*p*-toluyl)acrylic acid (4) was 0.43 g (23%), m.p. 189–190 °C. Found (%): C, 64.91; H, 5.43; N, 6.92. C₁₁H₁₁NO₃. Calculated (%): C, 64.39; H, 5.37; N, 6.83. ¹H NMR (DMSO-d₆-CCl₄ (1 : 3)), two isomers 4 and 4' (60 : 40), δ : 4, 2.41 (s, 3 H, Me); 4.15 (br.s, 3 H, COOH + NH₂); 7.26 (d, 2 H, p-C₆H₄, J = 8.1 Hz); 7.39 (s, 1 H, =CH); 7.75 (d, 2 H, p-C₆H₄, J = 8.1 Hz); **4**^{\prime}, 2.42 (s, 3 H, Me); 4.15 (br.s, 3 H, COOH + NH₂); 7.01 (s, 1 H, =CH); 7.29, 7.73 (both d, 2 H each, p-C₆H₄, J = 8.1 Hz).

The precipitate that did not dissolve in KOH was filtered off, washed with water, dried *in vacuo*, and refluxed in CHCl₃ for purification to give **methyl** α -**amino-** β -(*p*-toluyl)acrylate (5a) (0.89 g, 47%), m.p. 111–112 °C. Found (%): C, 64.43; H, 5.90; N, 6.32. C₁₂H₁₃NO₃. Calculated (%): C, 64.39; H, 5.93; N, 6.39. ¹H NMR (DMSO-d₆-CCl₄ (1 : 3)), two isomers 5a and 5a' (40 : 60), δ : 5a, 2.40 (s, 3 H, Me); 3.10 (br.s, 2 H, NH₂); 3.96 (s, 3 H, OMe); 7.09 (s, 1 H, =CH); 7.29, 7.74 (both d, 2 H each, *p*-C₆H₄, *J* = 8.2 Hz); 5a', 2.40 (s, 3 H, Me); 3.10 (br.s, 2 H, NH₂); 3.97 (s, 3 H, OMe); 7.27 (d, 2 H, *p*-C₆H₄, *J* = 8.2 Hz); 7.53 (s, 1 H, =CH); 7.76 (d, 2 H, *p*-C₆H₄, *J* = 8.2 Hz). MS (EI, 70 eV), *m/z* (*I*_{rel} (%)): 219 [M]⁺ (132).

Reaction of methyl β -(*p*-toluyl)acrylate with NH₂OH · HCl. Aqueous NH₂OH · HCl (8.34 g, 0.12 mol) was added to a saturated solution of methyl β -(*p*-toluyl)acrylate (2.04 g, 0.01 mol) in MeOH. The reaction mixture was refluxed in a water bath for 30 h and then treated with water. The precipitate was filtered off, washed with water, dried *in vacuo*, and recrystallized from MeOH to give ester 5a (1.34 g, 61%), m.p. 111–112 °C. Its ¹H NMR spectrum agrees with the data given above.

Under analogous conditions but in the presence of an equimolar (with respect to NH₂OH \cdot HCl) amount of Et₃N, the yield of ester **5a** was 1.27 g (58%), m.p. 112–113 °C. Its ¹H NMR spectrum agrees with the data given above.

Reactions of β -aroylacrylic acids 1b-d (Ar = Ph, *p*-ClC₆H₄, and *p*-BrC₆H₄) with NH₂OH · HCl were carried out as described for acid 1a. The water-insoluble precipitate was filtered off to give methyl α -amino- β -aroylacrylates 5b-d (Ar = Ph, *p*-ClC₆H₄, and *p*-BrC₆H₄). Acidification of the alkaline solution gave β -aroylacrylic acid oximes 2b-d (Ar = Ph, *p*-ClC₆H₄, and *p*-BrC₆H₄) (Tables 1, 2).

β-(p-Toluyl)acrylic acid oxime (2a). Aqueous NH₂OH·HCl (8.34 g, 0.12 mol) was added to a saturated solution of β-(*p*-toluyl)acrylic acid (1.9 g, 0.01 mol) in MeCN. The

Com- pound	Ar	Yield (%)	M.p. ∕°C	Found Calculated (%)					Molecular formula
				С	Н	Cl	Br	N	
2b	Ph	71	199—200	<u>62.64</u> 62.83	<u>4.89</u> 4.71	_	_	<u>7.45</u> 7.33	C ₁₀ H ₉ NO ₃
2c	p-ClC ₆ H ₄	45	196—197	<u>53.32</u> 53.22	<u>3.49</u> 3.55	<u>15.69</u> 15.74	_	<u>6.33</u> 6.21	C ₁₀ H ₈ ClNO ₃
2d	p-BrC ₆ H ₄	56	208-209	<u>44.51</u> 44.44	<u>2.88</u> 2.96	_	<u>29.62</u> 29.69	<u>5.27</u> 5.18	$C_{10}H_8BrNO_3$
5b	Ph	19	32-33	<u>64.48</u> 64.39	<u>5.41</u> 5.36	_	_	<u>6.76</u> 6.83	$C_{11}H_{11}NO_3$
5c	p-ClC ₆ H ₄	21	169—170	<u>55.02</u> 55.11	<u>4.27</u> 4.18	<u>14.71</u> 14.82	_	<u>5.93</u> 5.85	$C_{11}H_{10}CINO_3$
5d	p-BrC ₆ H ₄	15.5	132-133	<u>46.31</u> 46.48	<u>3.64</u> 3.58	—	<u>28.16</u> 28.29	<u>4.92</u> 4.82	$C_{11}H_{10}BrNO_3$

Table 1. Physicochemical parameters and elemental analysis data for compounds 2b-d and 5b-d

Table	2.	^{1}H	NMR	spectra	(DMSO-d ₆ -CCl) of	compounds
2b-d	and	l 5b	—d				

Com- pound	δ (<i>J</i> /Hz)
2b	5.96 (d, 1 H, =C <u>H</u> COOH, <i>J</i> = 16.4); 7.38–7.55
	(m, 5 H, Ph); 7.84 (d, 1 H, $=CHC(NOH)$, $J = 16.4$);
	12.0 (br.s, 2 H, COOH + NOH)
2c	5.90 (d, 1 H, =C <u>H</u> COOH, <i>J</i> = 16.4); 7.83 (d, 1 H,
	$=C\underline{H}C(NOH), J = 16.4); 7.30-7.60 (m, 4 H,$
	p-C ₆ H ₄); 11.95 (br.s, 2 H, COOH + NOH)
2d	5.96 (d, 1 H, =C <u>H</u> COOH, <i>J</i> = 16.4); 7.84 (d,
	$1 \text{ H}, =C\underline{H}C(\text{NOH}), J = 16.4); 7.38 \text{ (d}, 2 \text{ H},$
	$p-C_6H_4$, $J = 16.4$); 7.55 (d, 2 H, $p-C_6H_4$,
	J = 8.5); 12.0 (br.s, 2 H, COOH + NOH)
5b	3.00 (br.s, 2 H, NH ₂); 3.97 (s, 3 H, OMe);
	7.31 (s, 1 H, =CH); 7.66–7.84 (m, 5 H, Ph)
5b´	3.00 (br.s, 2 H, NH ₂); 3.98 (s, 3 H, OMe);
	7.62 (s, 1 H, =CH); 7.69–7.86 (m, 5 H, Ph)
5c	3.00 (br.s, 2 H, NH ₂); 3.97 (s, 3 H, OMe);
	7.31 (s, 1 H, =CH); 7.66, 7.84 (both d, 2 H each,
	$p - C_6 H_4, J = 8.6)$
5c´	3.00 (br.s, 2 H, NH ₂); 3.98 (s, 3 H, OMe);
	7.62 (s, 1 H, =CH); 7.69 , 7.86 (both d, 2 H each,
	$p - C_6 H_4, J = 8.6)$
5d	3.00 (br.s, 2 H, NH ₂); 3.97 (s, 3 H, OMe);
	7.31 (s, 1 H, =CH); 7.66, 7.84 (both d, 2 H each,
	$p - C_6 H_4, J = 8.6)$
5d ´	3.00 (br.s, 2 H, NH ₂); 3.98 (s, 3 H, OMe);

7.62 (s, 1 H, =CH); 7.69, 7.86 (both d, 2 H each, p-C₆H₄, J = 8.6)

alkaline solution was acidified and treated as described above. The yield of oxime **2a** was 1.4 g (68%), m.p. 204 °C. Found (%): C, 64.47; H, 5.26; N, 6.95. $C_{11}H_{11}NO_3$. Calculated (%): C, 64.39; H, 5.37; N, 6.83. ¹H NMR (DMSO-d₆-CCl₄ (1 : 3)), δ : 2.35 (s, 1 H, Me); 5.98 (d, 1 H, =C<u>H</u>COOH, J = 16.4 Hz); 7.11, 7.47 (both d, 2 H each, p-C₆H₄, J = 8.1 Hz); 7.90 (d, 1 H, =C<u>H</u>C(NOH), J = 16.4 Hz); 12.0 (br.s, 2 H, COOH + NOH).

Reaction of α -(imidazol-1-yl)- β -(*p*-toluyl)propionic acid (6) with NH₂OH·HCl. Aqueous NH₂OH·HCl (2.65 g, 0.038 mol) was added to a saturated solution of acid 6 (0.82 g, 0.0032 mol) in MeOH. The reaction mixture was refluxed in a water bath for 30 h and then treated with water. The precipitate was filtered off, washed with water, and dried *in vacuo*. To remove impurities, the precipitate was recrystallized from EtOH. The yield of acid 4 was 0.45 g (68.6%).

Reaction of β-(*p***-toluyl)acrylic acid (1a) with 1,2,4-triazole.** A mixture of acid **1a** (1.9 g, 0.01 mol) and 1,2,4-triazole (0.69 g, 0.01 mol) in aqueous KOH (0.56 g, 0.01 mol) was allowed to stand at room temperature for 3 days. The reaction mixture was acidified with dilute HCl and the precipitate that formed was filtered off, washed with water, and dried *in vacuo*. To remove impurities, the precipitate was refluxed in ether and dried *in vacuo* to give **β-(***p***-toluyl)-α-(1,2,4-triazol-1-yl)propionic acid (7)** (1.9 g, 73%), m.p. 203 °C. Found (%): C, 60.39; H, 5.10; N, 16.13. C₁₃H₁₃N₃O₃. Calculated (%): C, 60.23; H, 5.02; N, 16.22. ¹H NMR (DMSO-d₆--CCl₄ (1 : 3)), δ: 2.43 (s, 3 H, Me); 3.88 (m, 2 H, CH₂); 5.73 (t, 1 H, N=CH, *J* = 6.5 Hz); 7.27 (d, 2 H, 3.5 *p*-C₆H₄, *J* = 8.0 Hz); 7.73 (s, 1 H, N=CH); 7.87 (d, 2 H, 2.6 *p*-C₆H₄, *J* = 8.0 Hz); 8.47 (s, 1 H, N=CH); 12.7 (br.s, 1 H, COOH).

6-Tolyl-2,3-dihydropyridazin-3-one (8). A mixture of acid 7 (0.6 g, 0.0023 mol) and 60% $NH_2NH_2 \cdot H_2O$ (4 mL) was refluxed for 4 h. The precipitate that formed was filtered off, washed with EtOH, and dried *in vacuo* to give compound **8** (0.24 g, 50.5%). Its physicochemical constants were identical with our previous data.¹⁵

Reactions of adducts 9 and 10 with NH_2NH_2 \cdot H_2O. A mixture of compound **9** or **10** (0.005 mol) in EtOH and 60% $NH_2NH_2 \cdot H_2O$ (4 mL) was refluxed for 2 h. The precipitate that formed was filtered off, washed with EtOH, and dried *in vacuo* to give pyrazolinecarboxylic acid **11** in 45 and 48% yields, respectively. Its physicochemical constants were identical with our previous data.¹⁵

References

- 1. R. A. Raphael, Nature, 1947, 160, 261.
- A. N. Nesmeyanov, M. I. Rybinskaya, and A. N. Rybin, Usp. Khim., 1967, 36, 1089 [Russ. Chem. Rev., 1967, 36 (Engl. Transl.)].
- 3. M. M. Frazer and R. A. Raphael, J. Chem. Soc., 1950, 2245.
- 4. R. C. Moreau and P. Loiseau, Compt. Rend. Acad. Sci., 1976, 283, 589.
- N. H. Cromwel, P. L. Greger, and K. E. Cook, J. Am. Chem. Soc., 1956, 78, 4412.
- 6. M. T. Bogert and J. J. Ritter, J. Am. Chem. Soc., 1925, 47, 526.
- 7. E. P. Kohler and H. Engelbrecht, J. Am. Chem. Soc., 1919, 41, 764.
- 8. J. Bougault, Ann. Chim. Phys., 1908, 15, 491.
- 9. G. V. Grigoryan and S. G. Agbalyan, *Khim. Geterotsikl.* Soedin., 1979, 348 [Chem. Heterocycl. Compd., 1979 (Engl. Transl.)].

- R. Dj. Khachikyan, S. Yu. Kotikyan, and S. G. Agbalyan, *Khim. Zh. Armen. [Armenian Chem. J.*], 1999, **52**, 90.
- N. P. Churkina, N. P. Gambaryan, D. A. Bochvar, and S. G. Agbalyan, *Khim. Zh. Armen.* [*Armenian Chem. J.*], 1977, 30, 370.
- R. Dj. Khachikyan, G. V. Grigoryan, and S. G. Agbalyan, *Khim. Zh. Armen.* [Armenian Chem. J.], 1986, 39, 452.
- R. Dj. Khachikyan, G. V. Grigoryan, and S. G. Agbalyan, *Khim. Zh. Armen. [Armenian Chem. J.*], 1986, **39**, 373.
- 14. E. A. Soliman, Rev. Roum. Chem., 1978, 23, 1597.
- R. A. Khachatryan, R. Dj. Khachikyan, N. V. Karamyan, H. A. Panosyan, and M. H. Injikyan, *Khim. Geterotsikl. Soedin.*, 2004, 541 [*Chem. Heterocycl. Compd.*, 2004 (Engl. Transl.)].
- 16. J. Lehmann and A. Gossen, Arch. Pharm., 1988, 321, 443.

Received March 12, 2004; in revised form June 15, 2005