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Abstract: A ligand-free, palladium-catalyzed amidocarbonylation reaction of
aromatic aldehyde, acetamide, and CO in ionic liquids [C4mim]PF6, [C6mim]PF6,
[C8mim]PF6, and [C6mim]BF4 as solvents is developed. The yields decreased in
the order [C6mim]PF6> [C8mim]PF6> [C4mim]PF6> [C6mim]BF4, and substrate
concentration affected the catalytic activity of amidocarbonylation. The excellent
yield with up to 98% in amidocarbonylation of benzaldehyde was obtained using
15 mol% LiBr �H2O and 6 mol% H2SO4 at 80 �C. This reaction could proceed
smoothly, resulting in several functionalized ortho-, meta-, and para-substituted
N-acyl-a-phenylglycines in moderate to good yields, and o-tolualdehyde and m-
tolualdehyde as substrates were amidocarbonylated for the first time in
[C6mim]PF6. A significant dependence of product yield on both substituent posi-
tion and electronic effect of aromatic aldehyde was observed. The ligand-free syn-
thetic method and convenient separation of the products highlighted the
versatility of this newly developed methodology.
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INTRODUCTION

Transition-metal-catalyzed amidocarbonylation of aldehyde, amide, and
carbon monoxide is an efficient multicomponent reaction for the synth-
esis of N-acyl-a-amino acids (Scheme 1),[1–7] which are versatile pharma-
ceuticals, herbicides, anionic sarcosinate tensides, simple dipeptides such
as the sweetener aspartame, important starting materials in peptide
synthesis, and intermediates for the production of biologically active
agents.[8] Traditionally, cobalt,[1] palladium,[2–5] rhodium, iridium, ruthe-
nium,[6] and platinum[7] catalysts have been applied in this amidocarbo-
nyltion reaction. Recently, palladium has emerged as a preferable
catalyst for this reaction because of its higher catalytic activity under rela-
tively mild conditions. Ligand triphenylphosphine and high-boiling-point
organic solvent N-methylpyrrolidone (NMP, bp 202 �C) are generally
used in this homogeneous palladium-catalyzed amidocarbonylation reac-
tion, which complicate the separation of the products.[2–4] In addition,
some aldehydes such as indole aldehydes, carbohydratealdehydes, iodo-
and bromo-substituted aldehydes, and a few arylacetaldehydes as sub-
strates are not amenable to this amidocarbonylation reaction, and up
to 35 mol% of bromide salts as cocatalyst are generally used.[2]

Ionic liquids (ILs), potential green solvents, have successfully
replaced the conventional organic solvents in numerous organic and cat-
alytic reactions, such as Friedel–Crafts reaction,[9] Heck reaction,[10]

Diels–Alder reaction,[11] allylation,[12] olefin dimerization and oligomeri-
zation,[13] hydrogenation,[14] Mannich reaction,[15] and hydroformyla-
tion.[16] Moreover, they could simplify product separation and enhance
reaction efficiency. Jiang et al. described the amidocarbonylation reac-
tion catalyzed by palladium–phosphine complex in halide anion ILs.
However, merely moderate yield (up to 53%) was obtained when aro-
matic aldehydes were employed as reaction substrates, and hydrophilic
halide anion ILs as solvents complicate the manipulation of reaction.[5b]

Our aim was to develop environmentally friendly catalytic systems for
amidocarbonylation, and the use of ILs [C4mim]PF6, [C6mim]PF6,
[C8mim]PF6, and [C6mim]BF4 as solvents for related endeavors remains

Scheme 1. Amidocarbonylation of aldehydes, amides, and CO.
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unexplored. Herein, we report our initial studies on phosphine-free,
palladium-catalyzed amidocarbonylation of aromatic aldehydes in ionic
liquids [C4mim]PF6, [C6mim]PF6, [C8mim]PF6, and [C6mim]BF4 as sol-
vents, leading to various N-acyl-a-arylglycines in moderate to excellent
yields with a decreased amount of co-catalyst LiBr �H2O (15 mol%).

RESULTS AND DISCUSSION

An initial investigation of amidocarbonylation was carried out using ben-
zaldehyde (1a) and acetamide (2) as probe substrates to optimize reaction
conditions, and the results are summarized in Table 1. By using PdBr2 as
catalytic precursor and LiBr �H2O and H2SO4 as cocatalysts, the reaction
could generate product N-acetyl-a-phenylglycine (3a) with yield of 71%

Table 1. Palladium-catalyzed amidocarbonylation of benzaldehyde and aceta-
mide in ionic liquidsa

Entry Catalyst
LiBr

(mol%)
H2SO4

(mol%) Solventb

Substrate
concentration

(mol �L�1)
Temperature

(�C)
Yield
(%)c

1 PdBr2 15 6 [C4mim]PF6 3.1 80 71
2 Pd(OAc)2 15 6 [C4mim]PF6 3.1 80 58
3 PdCl2 15 6 [C4mim]PF6 3.1 80 67
4d PdBr2=PPh3 15 6 [C6mim]PF6 3.1 80 11
5 PdBr2 15 6 [C6mim]PF6 3.1 80 93
6 PdBr2 15 6 [C8mim]PF6 3.1 80 76
7 PdBr2 15 6 [C6mim]BF4 3.1 80 49
8 PdBr2 15 6 [C6mim]PF6 2.3 80 98
9 PdBr2 15 6 [C6mim]PF6 1.8 80 61
10 PdBr2 10 6 [C6mim]PF6 2.3 80 48
11 PdBr2 15 3 [C6mim]PF6 2.3 80 64
12 PdBr2 15 6 [C6mim]PF6 2.3 60 23
13 PdBr2 15 6 [C6mim]PF6 2.3 100 57

aReaction conditions: 1a (30 mmol), 2 (25 mmol), Pd catalytic precursor
(0.5 mol%), CO (5 MPa of initial pressure), 12 h.

bAbbreviations: [C4mim] denotes 1-n-butyl-3-methylimidazolium, [C6mim] denotes
1-n-hexyl-3-methylimidazolium, and [C8mim] denotes 1-n-octyl-3-methyl imidazolium.

cYield of isolated product.
d0.5 mol% PdBr2 and 1 mol% PPh3 were used.
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in [C4mim]PF6 medium (Table 1, entry 1). The result indicated that ami-
docarbonyltion could be readily carried out in [C4mim]PF6. It has been
known that the amidocarbonylation of benzaldehyde and acetamide
under ligand-free condition in ILs [C4mim]PF6 were not presented by
Jiang et al.[5b] Encouraged by our result, we then tested effect of other
reaction parameters on reactivity under IL media. Evaluation of palla-
dium salts, such as PdBr2, Pd(OAc)2, and PdCl2, showed that PdBr2

was the most efficient catalyst precursor (Table 1, entries 1–3).
It should be noted that the reaction efficiency was affected by

both cationic scaffold and anionic counterpart of ILs. With application
of [C6mim]PF6, [C8mim]PF6, and [C6mim]BF4 as media, the yields
decreased in the order [C6mim]PF6> [C8mim]PF6> [C6mim]BF4 (Table 1,
entries 5–7). Thus, for the imidazolium-based ILs, hydrophobic
[C4mim]PF6, [C6mim]PF6, and [C8mim]PF6 were more suitable for this
reaction than hydrophilic [C6mim]BF4. Similar anion effect of ILs med-
iun on reaction efficiency has also been known for the carbonylation of
aryl halides[17] and copolymerization of styrene and carbon monoxide.[18]

The optimum concentration of substrate was 2.3 mol L�1 (Table 1, entries
5, 8, and 9). The experimental results showed that substrate concentra-
tion had an impact on the catalytic performance of amidocarbonylation.
Similar results were observed for Beckmann rearrangement of ketoximes
in ionic liquids.[19]

LiBr �H2O and H2SO4 as cocatalysts have an enhancing effect on this
reaction. A variation in the amounts of both cocatalysts resulted in sub-
stantial change of the yield. The best result was obtained with 15 mol%
LiBr �H2O and 6 mol% H2SO4 (Table 1, entries 8, 10, and 11). Finally,
it was important to note that ideal reaction temperature appeared to be
at 80 �C (Table 1, entries 8, 12, and 13). Considering the almost stoichio-
metric yield of up to 98%, the effect of other reaction conditions on the
reactivity was not further investigated. So far, to our knowledge, it was
the highest yield achieved in amidocarbonylation of benzaldehyde
(Table 1, entry 8).

Under the optimal reaction conditions, amidocarbonylation of
some aromatic aldehydes (1b–i) were carried out. As shown in Table 2,
several functionalized ortho-, meta-, and para-substituted N-acetyl-a-
tolylglycines and N-acetyl-a-methoxyphenylglycines (3b–g) were pre-
pared with moderate to good yields in [C6mim]PF6 medium. A significant
dependence of product yield on both substituent position and electronic
effect of aromatic systems was observed, in which m-substituted benzal-
dehydes gave higher yield than o- or p-substituted ones (Table 2,
entries 1–6). However, by employing o-chlorobenzaldehyde (1h) and
p-chlorobenzaldehyde (1i) as reaction substrate, much lower yields
were afforded (Table 2, entries 7 and 8). These results clearly indicate that

Amidocarbonylation Reaction in Ionic Liquids 4463
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Table 2. Palladium-catalyzed amidocarbonylation of aromatic aldehydes and
acetamide in [C6mim]PF6

a

Entry Aldehyde Product
Yield
(%)b

1 60

2 83

3 80

4c 50

5c 60

6c 52

(Continued )
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benzaldehydes bearing electon-donating substituents react more readily
than those with electron-withdrawing groups. This possibly indicates that
a better stabilization of an intermediate benzylic cation (III, scheme 2)
bearing an electron-donating substituent was very important when func-
tionalized aromatic aldehydes (1b–i) were used as substrates. It was
shown that o-tolualdehyde (1b) and m-tolualdehyde (1c) as reaction
substrates were first amidocarbonylated by this method. To the best of
our knowledge, the amidocarbonylation reaction of 1b or 1c in organic
solvents has not been reported.

The mechanism for palladium-catalyzed amidocarbonylation of aro-
matic aldehyde in NMP as solvent had been proposed.[2,3] Reaction of
aldehyde with amide generated N-(a-hydroxyalkyl)amide (I), then
nucleophilic substitution of lithium bromide to I gave intermediate
N-(a-bromoalkyl)amide (II) in the presence of cocatalysts H2SO4. Oxida-
tive addition of II to palladium is followed by CO insertion and hydro-
lysis to yield the product N-acyl-a-arylglycine (Scheme 2). Interestingly,
several results with LiBr �H2O and H2SO4 as cocatalysts have promoting
effects on the reaction; PdBr2 performs the best catalysis among the used
catalytic precursors, and benzaldehydes with electron-donating substitu-
ents react more efficiently than those bearing electron-withdrawing groups.
These are consistent with those in which NMP is solvent. However, it could
not be understood why triphenylphosphine as additional ligand had so

Table 2. Continued

Entry Aldehyde Product
Yield
(%)b

7 14

8 26

aUnless otherwise noted, the reactions were performed with 1 (30 mmol), 2

(25 mmol), PdBr2 (0.5 mol%), H2SO4 (6 mol%), and LiBr �H2O (15 mol%) in
11 mL [C6mim]PF6 under CO (5 MPa of initial pressure) at 80 �C for 12 h.

bYield of isolated product.
cThe reaction required 12 mol% H2SO4.
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much detrimental effect on this reaction in ILs. Further investigation on the
question and the reuse of ILs is currently under way in our group.

It is worth pointing out that the separation process of these products
turned out to be more convenient using [C6mim]PF6 than NMP and
Jiang’s procedure.[2,5] [C6mim]PF6 is insoluble in water[20]; thus, to treat
the produced liquid mixture with aqueous NaOH could produce two
phases of liquids. The aqueous phase containing sodium N-acyl-
a-arylglycinate was adjusted to pH¼ 2 with 85% phosphoric acid, and
the product N-acyl-a-arylglycine could be easily precipitated.

In conclusion, we have developed a palladium-catalyzed amidocar-
bonylation reaction of aromatic aldehyde, acetamide, and CO under
ligand-free and IL media. In the absence of any phosphine ligand, the
reaction could proceed smoothly with only 15 mol% of LiBr �H2O as
co catalyst. Several functionalized N-acyl-a-arylglycines were synthe-
sized by this preparative route to extend the scope of reaction
substrates, and up to 98% yield of N-acetyl-a-phenylglycine was
obtained in [C6mim]PF6 as solvent, which was the best result achieved
in amidocarbonylation of benzaldehyde to date. We believe the ligand-
free synthetic method and convenient separation process based on ILs
are attractive for many organic chemists working in this and related
areas.

Scheme 2. Proposed mechanism for the Pd-catalyzed amidocarbonylation.
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EXPERIMENTAL

1H NMR and 13C NMR spectra were recorded in DMSO-d6 solution on
400 and 100 MHz, respectively, using Bruker AM 400 spectrometer with
tetramethylsilane (TMS, d¼ 0.00) as internal standard. Proton chemical
shifts (d) and coupling constants (J) were given in parts per million
(ppm) and in hertz, respectively. Spin multiplicities were given as s (sing-
let), d (doublet), t (triplet), and m (multiplet) as well as b (broad). IR
spectra were taken with Bruker IFS 120 HR FT-IR spectrometer. MS
spectra were obtained on Waters ZQ 4000. All the melting points were
determined on an X-4 Electrothermal digital melting-point apparatus
and are uncorrected. The ILs used herein were prepared according to
the reported procedures.[20] All other reagents were commercially
available.

Typical Experimental Procedure

In a 200-mL stainless steel reactor with a magnet-driven propeller stir-
rer, 30 mmol aromatic aldehyde, 25 mmol acetamide, 0.5 mol% PdBr2,
15 mol% LiBr �H2O, 6 mol% H2SO4, and 11 mL ILs were allowed to
react at 50 bar of initial CO pressure and 80 �C for 12 h. At the end
of this period, the residue gas was released, and 20 mL of dichloro-
methane was added to the reactor. Treatment of the mixture with
30 mL of aqueous 1.5 mol L�1 NaOH formed two phases of liquid.
The aqueous phase was extracted with dichloromethane (30 mL� 3)
and then adjusted to pH¼ 2 with 85% phosphoric acid. The white pre-
cipitate was filtered off, washed by distilled water, and dried in vacuo.
The products were recrystallized from water=methanol mixtures
(v=v, 1=1) and characterized by 1H NMR, 13C NMR, IR, and mass
spectroscopy.

Data

N-Acetyl-a-phenylglycine (3a)[5b]

White solid (4.75 g, 98% yield); mp 199–201 �C. IR (KBr): 3343, 1716,
1601, 1544 cm�1. 1H NMR (400 MHz, DMSO-d6): d¼ 8.61 (d,
J¼ 7.6 Hz, 1H), 7.34 (m, 5H), 5.30 (d, J¼ 7.6 Hz, 1H), 1.88 (s, 1H).
13C NMR (100 MHz, DMSO-d6): d¼ 172.1, 169.1, 137.2, 128.5, 128.0,
127.7, 56.3, 22.3. ESI-MS: m=z (%)¼ 191.9 (85) [M–H], 147.8 (100)
[M–COOH].

Amidocarbonylation Reaction in Ionic Liquids 4467
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N-Acetyl-a-(2-tolyl)glycine (3b)

White solid (3.1 g, 80% yield); mp 196–197 �C. IR (KBr): 3363, 1740,
1608, 1546 cm�1. 1H NMR (400 MHz, DMSO-d6): d¼ 8.57 (d, J¼ 7.2 Hz,
Hz, 1H), 7.19 (m, 4H), 5.25 (d, J¼ 7.6 Hz, 1H), 2.29 (s, 3H), 1.88 (s, 3H).
13C NMR (100 MHz, DMSO-d6): d¼ 172.1, 169.2, 137.7, 137.1, 128.6,
128.5, 128.3, 124.8, 56.3, 22.3, 21.0. ESI-MS: m=z (%)¼ 206.1 (97)
[M–H], 162.1 (100) [M–COOH], 163.1 (12) [M–H–CH3CO].

N-Acetyl-a-(3-tolyl)glycine (3c)

White solid (4.3 g, 83% yield); mp 202–203 �C. IR (KBr): 3361, 3335,
1704, 1617, 1544 cm�1. 1H NMR (400 MHz, DMSO-d6): d¼ 12.80 (s,
1H), 8.54 (d, J¼ 7.6 Hz, 1H), 7.22 (m, 4H), 5.52 (d, J¼ 7.6 Hz, 1H),
2.33 (s, 3H), 1.86 (s, 3H). 13C NMR (100 MHz, DMSO-d6): d¼ 172.4,
169.1, 136.3, 136.0, 130.4, 127.9, 127.1, 126.2, 52.8, 22.2, 19.0. ESI-MS:
m=z (%)¼ 206.1 (62) [M–H], 162.1 (100) [M–COOH], 163.1 (12)
[M–H–CH3CO].

N-Acetyl-a-(4-tolyl)glycine (3d)[2b]

White solid (4.2 g, 81% yield); mp 226–228 �C. IR (KBr): 3339, 1717,
1546, 1601 cm�1. 1H NMR (400 MHz, DMSO-d6): d¼ 12.6 (s, 1H),
8.47 (d, J¼ 7.60 Hz, 1H), 7.26 (d, J¼ 8.0 Hz, 2H), 7.16 (d, J¼ 7.6 Hz,
2H), 5.25 (d, J¼ 7.2 Hz, 1H), 2.28 (s, 3H), 1.87 (s, 3H). 13C NMR
(100 MHz, DMSO-d6): d¼ 172.5, 168.9, 136.9, 134.9, 128.9, 127.5, 56.3,
22.3, 20.7. ESI–MS: m=z (%)¼ 413.4 (22) [2M–H], 205.8 (100) [M–H],
161.7 (17) [M–COOH].

N-Acetyl-a-(2-methoxyphenyl)glycine (3e)[21]

White solid (2.8 g, 50% yield); mp 165–167 �C. IR (KBr): 3358, 1740,
1604, 1531 cm�1. 1H NMR (400 MHz, DMSO-d6): d¼ 12.54 (bs, 1H),
8.35 (d, J¼ 8.0 Hz, 1H), 7.30 (m, 2H), 7.01 (d, J¼ 8.4 Hz, 1H), 6.93
(dd, J¼ 7.6, 7.6 Hz, 1H), 5.63 (d, J¼ 7.6 Hz, 1H), 3.77 (s, 3H), 1.85 (s,
3H). 13C NMR (100 MHz, DMSO-d6): d¼ 172.3, 169.1, 156.7, 129.3,
128.6, 125.6, 120.4, 111.3, 55.6, 50.3, 22.3. ESI-MS: m=z (%)¼ 222.2
(70) [M–H], 178.1 (100) [M–COOH], 179.1 (19) [M–H–CH3CO], 163.0
(18) [M–H–CH3CONH].
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N-Acetyl-a-(3-methoxyphenyl)glycine (3f)[2g]

White solid (3.4 g, 60% yield); mp 146–147 �C. IR (KBr): 3343, 1718,
1610, 1587, 1540 cm�1. 1H NMR (400 MHz, DMSO-d6): d¼ 8.58 (d,
J¼ 7.6 Hz, 1H), 7.27 (dd, J¼ 8.4, 8.0 Hz, 1H), 6.92 (m, 3H), 5.28 (d,
J¼ 7.6 Hz, 1H), 3.73 (s, 3H), 1.88 (s, 3H). 13C NMR (100 MHz,
DMSO-d6): d¼ 172.0, 169.1, 159.3, 138.7, 129.6, 119.9, 113.4, 113.3,
56.2, 55.1, 22.3. ESI-MS: m=z (%)¼ 222.2 (58) [M–H], 178.1 (100)
[M–COOH], 179.1 (19) [M–H–CH3CO].

N-Acetyl-a-(4-methoxyphenyl)glycine (3g)[2b]

White solid (2.9g, 52% yield); mp 210–212 �C. IR (KBr): 3340, 1717,
1612, 1547, 1516cm�1. 1H NMR (400 MHz, DMSO-d6): d¼ 12.7 (s,
1H), 8.52 (d, J¼ 7.6 Hz, 1H), 7.29 (d, J¼ 8.4 Hz, 2H), 6.92 (d, J¼ 8.8 Hz,
Hz, 2H), 5.22 (d, J¼ 7.60 Hz, 1H), 3.73 (s, 3H), 1.86 (s, 3H). 13C NMR
(100 MHz, DMSO-d6): d¼ 172.3, 169.0, 160.0, 129.1, 129.0, 113.9, 55.6,
55.2, 22.3. ESI-MS: m=z (%)¼ 445.4 (12) [2M–H], 219.9 (100) [M–H],
177.8 (27) [M–COOH], 178.8 (10) [M–H–CH3CO].

N-Acetyl-a-(2-chlorophenyl)glycine (3h)[2b,22]

White solid (0.8 g, 14% yield); mp 164–165 �C. IR (KBr): 3360, 1717,
1610, 1537 cm�1. 1H NMR (400 MHz, DMSO-d6): d¼ 13.01 (s, 1H),
8.68 (d, J¼ 8.0 Hz, 1H), 7.40 (m, 4H), 5.76 (d, J¼ 7.6 Hz, 1H), 1.88
(s, 3H). 13C NMR (100 MHz, DMSO-d6): d¼ 171.4, 169.1, 135.4,
133.0, 129.7, 129.5, 129.1, 127.5, 53.1, 22.2. ESI-MS: m=z
(%)¼ 226.2 (18) [M–H], 182.0 (90) [M–COOH], 184.0 (28) [M(37Cl)–
COOH].

N-Acetyl-a-(4-chlorophenyl)glycine (3i)[2b]

White solid (1.5 g, 26% yield); mp 196–198 �C. IR (KBr): 3339, 1717,
1546, 1601 cm�1. 1H NMR (400 MHz, DMSO-d6): d¼ 13.0 (s, 1H),
8.67 (d, J¼ 7.6 Hz, 1H), 7.41 (m, 4H), 5.33 (d, J¼ 7.60 Hz, 1H),
1.88 (s, 3H). 13C NMR (100 MHz, DMSO-d6): d¼ 171.7, 169.1,
136.4, 132.6, 129.5, 128.5, 55.5, 22.3. ESI-MS: m=z (%)¼ 453.3 (25)
[2M–H], 225.9 (100) [M–H], 181.8 (96) [M–COOH], 183.7 (32)
[M(37Cl)–COOH].
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R.; Thompson, J. M.; Wähälä, K. Chloroindate(III) ionic liquids: Recyclable
media for Friedel–Crafts acylation reactions. Chem. Commun. 2005, 903–905.

10. (a) Herrmann, W. A.; Bohm, V. P. W. Heck reaction catalyzed by phospha-
palladacycles in non-aqueous ionic liquids. J. Organometal. Chem. 1999, 572,
141–145; (b) Li, S.; Lin, Y.; Xie, H.; Zhang, S.; Xu, J. Brønsted guanidine
acid–base ionic liquids: Novel reaction media for the palladium-catalyzed
heck reaction. Org. Lett. 2006, 8, 391–394.

11. Xiao, Y.; Malhotra, S. V. Diels–Alder reactions in pyridinium based ionic
liquids. Tetrahedron Lett. 2004, 45, 8339–8342.

12. (a) Gordon, C. M.; McCluskey, A. Ionic liquids: A convenient solvent for
environmentally friendly allylation reactions with tetraallylstannane. Chem.
Commun. 1999, 1431–1432; (b) Gordon, C. M.; Ritchie, C. Indium and tin-
mediated allylation in ionic liquids. Green Chem. 2002, 4, 124–128; (c) Calò,
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