
Tetrahedron Letters 53 (2012) 5467–5470
Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate/ tet le t
1,4-Addition of an aryllithium reagent to diethyl ketomalonate. Scalable
synthesis of ethyl 1-(hydroxymethyl)-1,3-dihydroisobenzofuran-1-carboxylate

Benjamin N. Rocke ⇑, Edward L. Conn, Shane A. Eisenbeis, Roger B. Ruggeri
Pfizer Worldwide Research and Development, Eastern Point Rd., Groton, CT 06340, USA

a r t i c l e i n f o
Article history:
Received 23 November 2011
Revised 9 May 2012
Accepted 10 May 2012
Available online 17 May 2012

Keywords:
Directed ortho metalation
1,4-Addition
Annulation
Mono-reduction
Diethyl ketomalonate
0040-4039/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.tetlet.2012.05.052

⇑ Corresponding author. Tel.: +1 860 715 0089; fax
E-mail address: benjamin.n.rocke@pfizer.com (B.N
a b s t r a c t

While optimizing the synthesis of pharmaceutical building block 3 [ethyl 1-(hydroxymethyl)-1,3-
dihydroisobenzofuran-1-carboxylate], we encountered an unusual addition of an aryllithium reagent
to the ketone oxygen atom of diethyl ketomalonate. Compound 3 was ultimately prepared on a large
scale by a two-step sequence involving (1) annulation of a functionalized Grignard reagent with diethyl
ketomalonate and (2) selective mono-reduction of a geminal diester using lithium tri-tert-butoxyalumi-
num hydride.

� 2012 Elsevier Ltd. All rights reserved.
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Introduction

Drug discovery programs depend on the rapid synthesis of
experimental medicines. To this end, research organizations main-
tain stores of small, multi-functional molecules that can be readily
incorporated or transformed into novel structures of pharmaceuti-
cal interest. Naturally, robust synthetic procedures to access these
building-block molecules are critical, as they allow rapid progres-
sion from milligram to multi-gram preparations.

Historically, organometallic methods have been limited due to
incompatibility with pharmaceutically desirable polar functional-
ity,1 but recent developments have led to increased versatility. For
instance, the use of in situ protecting groups2 and, significantly, the
development of a myriad of functionalized Grignard3 and organo-
zinc4 reagents have produced highly attractive, scalable methods.

In the course of our medicinal chemical research program, we
desired a preparative method for the chiral, conformationally
restricted alcohol intermediate 3 to support advanced studies.
The following account details our efforts culminating in a scalable
synthetic route, as well as the observation of an unusual reaction
defying the expected reactivity pattern of a ketone.

Results and discussion

Our milligram-scale synthesis of alcohol 3 is shown in Scheme 1.
We selected phthalan (1) as our starting point, reasoning that use
ll rights reserved.
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. Rocke).
of a pre-constructed ring system would minimize the length of the
synthetic route. Elaboration to alcohol 3 relied on the reactivity of a
benzylic methylene group through iterative deprotonation and
treatment with electrophilic reagents.5,6 Whereas CO2 was the only
precedented electrophile giving a product in the desired (carbox-
ylic acid) oxidation state, we were able to access the ethyl ester
directly in higher yield via inverse addition to ethyl cyanoformate.
Theoretically, addition of phthalan anion to a solution of excess
electrophile should suppress subsequent reaction of the similarly
electrophilic product. We found compound 2 to be sufficiently
acidic to allow hydroxymethylation simply using paraformaldehyde
3
(56 % b.r.s.m)

Scheme 1. Milligram-scale synthesis of pharmaceutical building block 3.
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Figure 1. Annulation approach to compound 3.

5468 B. N. Rocke et al. / Tetrahedron Letters 53 (2012) 5467–5470
in the presence of a catalytic amount of DBU. Use of paraformalde-
hyde (vs gaseous or aqueous formaldehyde) provided a suitable
balance between the need for anhydrous conditions and ease of
handling. These conditions proved to be superior to traditional
methods involving stoichiometric enolates,7 which we found to
be highly sensitive to both time and temperature.

Whereas this synthesis was succinct, and alcohol 3 was ob-
tained in reasonable yield, two safety considerations precluded
its use on larger scale: (1) tert-butyllithium solution is pyrophoric
and (2) cyanide, a byproduct of addition to ethyl cyanoformate, is
highly acutely toxic. Furthermore, chromatographic purification of
ester 2 was difficult, and we observed it to undergo slow air
oxidation.

Changing strategies, we anticipated that the 1,3-dihydro-iso-
benzofuran ring system could be constructed via annulation of
an appropriate toluene zwitterion synthon8 (5) with diethyl keto-
malonate (4) (Fig. 1). Inspired by a report from Ayers,9 we expected
that the resulting geminal diester could be selectively mono-re-
duced to install the desired b-hydroxy ester.

In our first attempt to reduce this strategy to practice, directed
ortho lithiation of benzyl alcohol (6) was accomplished using nBu-
Li/TMEDA (Scheme 2).10 Treatment of the resulting carbanion (7)
with diethyl ketomalonate afforded predominately the undesired
lactone 8 along with the desired diol 9. Although we hypothesized
that compound 9 could be converted into compound 3 in three
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Scheme 2. Unexpected 1,4-addition of aryllithium reagent 11 to diethyl ketomalona
steps (selective tosylation of the primary alcohol, intramolecular
nucleophilic displacement, and selective mono-reduction of the
geminal diester), we opted rather to explore methods that could
circumvent formation of the lactone side product.

We reasoned that a suitable annulation precursor could be de-
rived from benzaldehyde (10) by in situ protection using lithiated
N,N,N0-trimethylethylenediamine2a and subsequent directed ortho
lithiation. After treatment of this carbanion (11) with diethyl keto-
malonate and an acidic workup, we isolated a product nearly con-
sistent with structure 12 in terms of 1H NMR and mass spectra.
However, we were surprised to observe UV kmax = 276 nm
(MeCN/H2O) for this compound having only an unconjugated ben-
zene ring. Reduction of this intermediate using triethylsilane under
the action of boron trifluoride11 afforded a compound clearly
inconsistent with structure 13 by 1H NMR spectroscopy. Rather,
the analytical data were consistent with the isomer 15. Apparently,
1,4-addition of the aryllithium reagent 11 to diethyl ketomalonate and
subsequent intramolecular aldol reaction occurred, completely revers-
ing the traditional reactivity of diethyl ketomalonate. Instead of
hemiacetal 12, we obtained the similarly-behaved vinylogous
hemiacetal 14.12

To further prove the structure of compound 14, we treated it
with hot aq HCl in dioxane. Ester saponification and decarboxyla-
tive elimination of the resulting b-hydroxy carboxylic acid afforded
benzofuran-2-carboxylic acid (16), which was spectroscopically
identical to an authentic sample.

The unexpected reactivity of aryllithium reagent 11 toward
diethyl ketomalonate can be rationalized in these terms: Whereas
diethyl ketomalonate does not typically show nucleophilic suscep-
tibility on the oxygen atom of its central carbonyl (1,2-addition is
usually favored),13,14 1,4-addition is thermodynamically feasible
when other factors intervene.15,16 We postulate that in this case,
the transition state leading to compound 12 or 14 is sterically
encumbered due to the combined presence of the diamine direct-
ing group, the neighboring lithium alkoxide moiety, and coordi-
nated solvent molecules. Kinetically, this would favor addition to
the ketone oxygen atom, which is significantly more exposed than
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Table 1
Reactivity of selected metalated benzaldehydes toward diethyl ketomalonate

O

R

1.
,

1. THF
N

LiN

R
O

OH

CO2Et
CO2Et

2. metalation conditions
3. diethyl ketomalonate

Entry Bezaldehyde Metalation conditions Product Yielda/%

1

O

nBuLi (3 equiv), 24 h, �20 �C2a

O

OH

CO2Et
CO2Et 29c

2

O

nBuLi (3 equiv), 48 h, �20 �C2a

O

OH

CO2Et
CO2Et 33b

3

OCl

nBuLi (3 equiv), 2.5 h, �20 �C2a

O

OH

CO2Et
CO2Et

Cl

11

4

O

Cl

nBuLi (3 equiv), 2.8 h, �20 �C2a

O

OH

CO2Et
CO2Et

Cl

22

5

O

t-BuO

nBuLi (3 equiv), 24 h, �20 �C2a

O

OH

CO2Et
CO2Et

t-BuO

53b

6

O

OMe

PhLi (3 equiv), 7 h, rt19

O

O

CO2Et
CO2Et

HO

14c

a Refers to isolated yields. As noted, some products contained small amounts of impurities derived from diethyl ketomalonate and not containing aromatic rings.
b Product isolated in ca. 90% purity.
c Product isolated in ca. 85% purity.
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Scheme 3. Scalable synthesis of compound 3.
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the fully-substituted carbon atom.17 We also note precedence for
the 1,4-addition of organomagnesium, -aluminum, and -zinc re-
agents to select iminomalonate diesters.18

To explore the generality of this result, we applied these condi-
tions to a series of substituted benzaldehydes (Table 1). Accord-
ingly, we found the reaction to tolerate simple substitution at
any position (entries 2–5), as well as 2,3-ring fusion (entry 1). A
particularly high yield in the reaction of 4-tert-butoxybenzalde-
hyde and lower yields in the case of 2- and 4-chlorobenzaldehyde
suggest that electron donating substituents facilitate the reaction
(entries 3–5). Interestingly, substrates bearing an ortho directing
group in the 3-position either failed to produce product (3-fluoro-
benzaldehyde20) or afforded the initially expected 1,2-addition
product in low yield (entry 6).

Still having not succeeded in our original goal, we focused our
efforts on a transformation of the functionalized Grignard reagent
18.21 Using diethyl ketomalonate as the electrophile, this strategy
quickly yielded positive results in the laboratory. Treatment of 2-
iodobenzyl chloride (17) with iPrMgCl at �5 �C afforded the re-
agent 18, which reacted smoothly with diethyl ketomalonate at
temperatures below �50 �C. Finally, overnight heating of the reac-
tion mixture induced cyclization, reliably affording compound 13
in acceptable yield (Scheme 3).

Reduction of compound 13 according to published procedure9

afforded a surprisingly low yield of alcohol 3, due to (1) incomplete
conversion of compound 13 and (2) formation of significant
quantities of compound 2 via retro-Claisen or retro-aldol side
reactions. Optimization of these conditions (equiv of reducing agent,
temperature, and time) led to a modified procedure whereby com-
pound 13 is treated with only 2 equiv of lithium tri-tert-butoxyalu-
minum hydride for a short period at reflux. Reduction according to
this procedure afforded compound 3 in 42% yield (Scheme 3).
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Conclusion

We have developed a scalable synthesis of the pharmaceutical
building block 3 [ethyl 1-(hydroxymethyl)-1,3-dihydroisobenzofu-
ran-1-carboxylate] via annulation of a functionalized Grignard
reagent with diethyl ketomalonate and subsequent selective
mono-reduction of the intermediate geminal diester 13. In the
process, we encountered an unusual electrophilic oxygenation of
protected and ortho-lithiated benzaldehydes. In the future, this
reaction might provide orthogonal access to 2,2-disubstituted
dihydrobenzofurans22 and 2-carboxybenzofurans.23 Significantly,
it might also lead to a method for electrophilic oxygenation,
currently a limited but important transformation.24
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