

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 61 (2005) 9791-9798

Use of tetrahydropyrimidinium salts for highly efficient palladium-catalyzed cross-coupling reactions of aryl bromides and chlorides

Ismail Özdemir,^{a,*} Serpil Demir^a and Bekir Çetinkaya^b

^aDepartment of Chemistry, Inönü Universityt, 44280 Malatya, Turkey ^bDepartment of Chemistry, Ege University, 35100 Bornova-Izmir, Turkey

Received 4 March 2005; revised 6 May 2005; accepted 10 June 2005

Available online 9 August 2005

Abstract—New, sterically demanding 1,3-dialkyl-3,4,5,6-tetrahydropyrimidinium salts (2) as NHC precursors have been synthesized and characterized. These salts, in combination with palladium acetate, provided active catalysts for the cross-coupling of aryl chlorides and bromides under mild conditions. The catalytic system was applied to the Heck, Suzuki and benzaldehyde (Kumada) coupling reactions. Catalyst activity was found to be influenced by the presence of a methoxy group on the ring of the *p*-position of benzyl substituent of the ligand precursor. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Transition metal complexes incorporating 1,3-diorganyl *N*heterocyclic carbene (NHC) ligands, such as imidazol-2ylidene (A=CH=CH), imidazolidin-2-ylidene (A= CH₂CH₂) and benzimidazol-2-ylidene (A=C₆H₄-*o*) have attracted a great interest in recent years.¹⁻⁶ They are often synthesized by reaction of an azolinium salt (LHX) with a basic salt such as Pd(OAc)₂, to give M(NHC)Lm.

Keywords: N-Heterocyclic carbene; Suzuki coupling.

Research in this area was principally driven by the employment of these complexes as potential catalysts. Many catalytic applications of NHC complexes have been described.^{7–9} Palladium-catalyzed cross-coupling reactions are particularly attractive because of their versatility in the formation of C–C and C–X bonds (X=O, S, N etc.).¹⁰⁻¹³ The main advantages of these coupling processes stems from the readily availability of starting materials and the broad tolerance of palladium catalysts to various functional groups. Pd-catalyzed cross-coupling reactions are generally thought to proceed through three distinctive steps:¹⁴ (i) an aryl halide reacts with Pd(0) through oxidative addition to give an electrophilic Pd(II) species. (ii) A transmetallation reaction then occurs with an appropriate nucleophile to yield a Pd(II) complex, containing the two moieties to be coupled. (iii) Reductive elimination of the product, which regenerates the active Pd(0) species.

The ancillary ligand (NHC) coordinated to the metal center has a number of important roles in homogeneous catalysis such as providing a stabilizing effect and governing the activity and selectivity through alteration of the steric and electronic parameters. The number, nature and position of the substituents on the nitrogen atom(s) and/or NHC ring have been found to play a crucial role in tuning the catalytic activity. Whilst modifications to the five-membered ring of the ligand aryl substituent have been described, relatively little attention has been paid to the effect of the ring size.¹⁵ For the present study, we selected 3,4,5,6-tetrahydopyrimidin-2-ylidene precursors (**2**). This choice was guided by several considerations. An important characteristic of the carbene ligands in active complexes is their strong-electron

^{*} Corresponding author. Tel.: +90 4223410010; fax: +90 4223410037; e-mail: iozdemir@inonu.edu.tr

^{0040–4020/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2005.06.064

donating effect, primarily a σ -effect. We have previously reported the use of a in situ formed imidazolidin-2ylidenepalladium(II) system, which exhibits high activity in various coupling reactions of aryl bromides and aryl chlorides.¹⁶ In order to obtain a more stable, efficient and active system, we have also investigated benzo-annelated derivatives.¹⁷ Due to their six-membered ring geometry, tetrahydopyrimidine-2-ylidenes are stronger σ -donating ligands in comparison to their five-membered relatives.¹⁵

2. Results and discussion

2.1. Synthesis and characterization of the salts, 2

The synthesis of the tetrahydropyrimidinium chlorides was achieved via two synthetic routes (Scheme 1). The alkylation of 1-alkyltetrahydropyrimidine derivatives¹⁸ with alkyl chlorides produced symmetrical or unsymmetrical 1,3-dialkylpyrimidinium salts (Route A). On the other hand, reaction of N,N'-dialkylpropan-1,3-diamine with triethyl orthoformate and ammonium chloride yielded the symmetrical tetrahydropyrimidinium salt (Route B) (Scheme 1).

Elemental analysis and ¹H and ¹³C NMR spectra confirmed the formation of **2** (see Section 4). An important feature of the ligand precursors (**2**) is their facile preparation. While these studies were in progress, other workers have addressed the synthesis and catalytic properties of 1,3-dimesityltetrahydropyrimidine-2-ylidene complexes of palladium.^{19,20} Contrary to the claims made by Buchmeister and coworkers,^{19a} and unlike other silver NHC complexes, it has been reported that the chlorodimesityltetrahydrpyrimidin-2ylidenesilver does not transfer the carbene ligand to Pd(NCCH₃)₂Cl₂ to afford Pd(NHC)₂Cl₂.²⁰

2.2. The Heck reaction

The Heck alkenylation reaction²¹ is useful approach to the preparation of disubstituted olefins. The rate of coupling is dependent on a variety of parameters such as temperature, solvent, base and catalyst loading. Generally, Heck reactions conducted with tertiary phosphine²² or NHC^{9,23} complexes require high temperatures (higher than 120 °C) and polar solvents. For the choice of base, we chose to use $C_{s_2}CO_3$, K_2CO_3 , and K_3PO_4 . Finally, use of 1.5% mol Pd(OAc)₂, 3% mol **2**, 2 equiv Cs₂CO₃ in DMF/H₂O (1:1) at

50 °C led to the best conversion within 5 h. We initially evaluated the catalytic activity of $Pd(OAc)_2/2a$ for the coupling of bromobenzene with styrene (Table 1, entry 1).

Control experiments indicate that the coupling reaction did not occur in the absence of **2a**. Under these reaction conditions a wide range of aryl bromides bearing electrondonating or electron-withdrawing groups react with styrene affording the coupled products in excellent yields. As expected, electron-deficient bromides coupled well under the conditions. Enhancement in activity, although less significant, is further observed employing 4-bromobenzaldehyde instead of 4-bromoacetophenone (entries 16–20 and 21–25, respectively).

A systematic study on the substituent effect in the tetrahydropyrimidinium salts **2** indicated that the introduction of a methoxy group to the *p*-position of the benzyl substituent on the *N*-atoms notably increased the reaction rate and the yield of the coupled product. The catalytic activity of the salts used fall in the order of c > b > d > a > e. The ether functionality in **2e** does not contribute with any great effect as seen with the arylation of benzaldehyde derivatives (see Section 2.4). These results indicated that the catalytic system generated in situ from tetrahydropyrimidinium salts and Pd(OAc)₂ have an activity, which is superior

Table 1. Pd-catalyzed Heck coupling

Entry	LHCl	R	Yield (%) ^{a-c}
1	2a	Н	80
2	2b	Н	88
3	2c	Н	89
4	2d	Н	85
5	2e	Н	78
6	2a	OCH ₃	88
7	2b	OCH ₃	87
8	2c	OCH ₃	88
9	2d	OCH ₃	90
10	2e	OCH ₃	80
11	2a	CH ₃	84
12	2b	CH ₃	90
13	2c	CH ₃	92
14	2d	CH_3	83
15	2e	CH_3	80
16	2a	COCH ₃	90
17	2b	COCH ₃	88
18	2c	COCH ₃	92
19	2d	COCH ₃	85
20	2e	COCH ₃	84
21	2a	CHO	91
22	2b	CHO	94
23	2c	CHO	96
24	2d	CHO	87
25	2e	СНО	85

^a Reaction conditions: 1.0 mmol of $R-C_6H_4X$ -p, 1.5 mmol of styrene, 2 mmol Cs_2CO_3 , 1.50 mmol% $Pd(OAc)_2$, 3.0 mmol% **2**, water (3 mL)-DMF (3 mL).

^b The purity of the products were confirmed by NMR and yields are based on aryl bromide.

^{° 50 °}C, 5 h.

or comparable to the imidazolinium/Pd(OAc)₂ system.¹⁶ However, chloroarenes do not react under standard conditions; yields of <5% were recorded.

2.3. The Suzuki coupling

Suzuki cross-coupling represents a powerful method for carbon–carbon bond formation.²⁴ Recently, the reaction of aryl chlorides catalyzed by palladium/tertiary phosphine²² and palladium/NHC²⁵⁻²⁸ systems have been extensively studied due to the economically attractive nature of the starting materials and the production of the less toxic salt by-products, for example, NaCl as opposed to NaBr. Here, various tetrahydropyrimidinium salts (2a-e) were compared as ligand precursors under the same reaction conditions. To survey the parameters for Suzuki coupling, we chose to examine Cs₂CO₃, K₂CO₃, and K₃PO₄ as base and DMF/ H_2O (1:1) and dioxane as the solvent mixture. We found that the reactions performed in DMF/H₂O (1:1) with Cs₂CO₃ or K₂CO₃ at 50 °C appeared to be best. We initiated our investigation with coupling of chlorobenzene and phenylboronic acid, in the presence of $Pd(OAc)_2/2$. Table 2 summarizes the results obtained in the presence of **2a–e** (Table 2, entries 1–5).

Table 2. Pd-catalyzed Suzuki coupling

Entry	LHCl	R	Yield (%) ^{a-d}		
1	2a	Н	93		
2	2b	Н	89		
3	2c	Н	93		
4	2d	Н	85		
5	2e	Н	81		
6	2a	OCH ₃	88		
7	2b	OCH ₃	90		
8	2c	OCH ₃	92		
9	2d	OCH ₃	87		
10	2e	OCH ₃	72		
11	2a	CH ₃	87		
12	2b	CH_3	91		
13	2c	CH ₃	94		
14	2d	CH ₃	85		
15	2e	CH ₃	83		
16	2a	COCH ₃	96		
17	2b	COCH ₃	96		
18	2c	COCH ₃	98		
19	2d	COCH ₃	94		
20	2e	COCH ₃	91		
21	2a	СНО	94		
22	2b	CHO	94		
23	2c	CHO	95		
24	2d	CHO	90		
25	2e	CHO	84		

^a Reactions conditions: 1.0 mmol of R-C₆H₄Cl-*p*, 1.2 mmol of phenylboronic acid, 2 mmol K₂CO₃, 1.5 mmol% Pd(OAc)₂, 3 mmol% **2**, water (3 mL)–DMF (3 mL).

^b The purity of the products was confirmed by NMR and yields are based on aryl chloride.

^c All reactions were monitored by GC.

^d 50 °C, 2 h.

The scope of the reaction with respect to the aryl chloride component was also investigated. It can be seen that 2c is an effective ligand precursor for the coupling of unactivated, activated and deactivated chlorides (entries 1–25). With chlorobenzene, 4-chloroanisole, 4-chloroacetophenone and 4-chlorobenzaldehyde, a similar activity sequence was observed: c > b > d > a > e.

In summary, we have demonstrated that in situ generated tetrahydropyrimidin-2-ylidene complexes of palladium are effective catalyst systems for Suzuki cross-coupling, surpassing the catalytic activity observed with the corresponding imidazolidin-2-ylidene palladium complexes.

2.4. Arylation of benzaldehyde derivatives

Another interesting cross-coupling process (Miura reaction) is palladium-catalyzed *o*-arylation(s) of benzaldehyde derivatives with aryl halides providing 2- or 2,6-diarylbenz-aldehydes.²⁹ Using similar reaction conditions, we investigated the arylation of benzaldehyde derivatives using in situ generated palladium complexes of tetrahydropyrimidine-2-ylidene derived from **2**. The results are summarized in Table 3.

Here, **2e** is one of the best ligand precursors for the reaction of aryl chlorides. The use of cesium carbonate as the base in dioxane produced good to excellent yields of the corresponding products. The selectivity for mono- or di-arylation can be shifted to some extent by judicious choice of halide X, that is, for X=Cl, only the monoarylated product is seen; whereas for X=Br; the 2,6-diarylated product is formed predominantly when the aldehyde/aryl bromide ratio is 1:2.

3. Conclusions

We have shown that amongst the various saturated NHC precursors, tetrahydopyrimidinium salts (2) are excellent ligand precursors for the direct functionalization of aryl halides, in particular, aryl chlorides. The Heck, Suzuki and a variant of the Miura reaction of aryl bromides and chlorides have been investigated in the presence of a $Pd(OAc)_2/2$ catalyst system. The cross-coupling results obtained using the $Pd(OAc)_2/2$ mixture do not necessarily indicate a palladium carbene complex as the active catalyst species. Good to excellent yields of the desired products were obtained for the benchmark reactions in this study. In general, the 2c catalyst system appears to be more efficient for the Heck reactions of aryl bromides; the activity is lower for the coupling of aryl chlorides. On the other hand, the catalyst 2e work well in a version of Miura coupling of aryl chlorides.

Clearly, 1,3-dialkyltetrahydropyrimidin-2-ylidene palladium complexes are superior when compared to the corresponding 1,3-dialkylimidazolidin-2-ylidene palladium complexes. Once again, we observed that the in situ formed Pd–NHC catalysts, which consist of mixtures of palladium and ligands, gave better yields in the coupling reactions compared to the isolated carbene palladium(II) complexes.

Table 3. Arylation of benzaldehyde derivatives

$R_n = 3,4,5-(OCH_3),$	4-OCH ₃ , 4-H, 4-C(CH ₃) ₃ , 4-N(CH ₃) ₂ , 4-CHO
$R = COCH_3, OCH_3$	

	Entry	Ar–X	Aldehyde	Product	LHCl	Time (h)	Yield ^{a-d} (%)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4-(CH ₃ CO)-C ₆ H ₄ -			2a	5	89
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	2	$4-(CH_{3}CO)-C_{6}H_{4}-$		2-(p-Acetylphenyl)-3,4,5-	2b	5	92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	$4-(CH_{3}CO)-C_{6}H_{4}-$	3,4,5-Trimethoxy benzaldehyde	(trimethoxy)benzal-	2c	5	86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$4-(CH_3CO)-C_6H_4-$		dehyde	2d	5	96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	$4-(CH_{3}CO)-C_{6}H_{4}-$			2e	5	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$4-(CH_{3}O)-C_{6}H_{4}-$			2a	5	90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	$4-(CH_{3}O)-C_{6}H_{4}-$		2-(p-Methoxyphenyl)-3,4,	2b	24	87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$4-(CH_{3}O)-C_{6}H_{4}-$	3,4,5-Trimethoxy benzaldehyde	5-(trimethoxy)benzal-	2c	20	93
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	$4-(CH_{3}O)-C_{6}H_{4}-$		dehvde	2d	24	84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$4-(CH_{3}O)-C_{6}H_{4}-$			2e	24	89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	$4-(CH_{3}O)-C_{6}H_{4}-$			2a	20	95
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	$4-(CH_{3}O)-C_{6}H_{4}-$			2b	24	87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	$4-(CH_2O)-C_2H_4-$	n Mathovy banzaldabyda	2-(p-Methoxyphenyl)-4-	-~ 2c	24	91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	$4-(CH_2O)-C_2H_4$	<i>p</i> -Methoxy benzaidenyde	methoxybenzaldehyde	2d	24	93
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	$4 (CH_{2}O) - C_{2}H_{4}$			20	24	97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	4 (CH CO) C H			20	24	97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$4 (CH CO) - C_6 H_4 - 4 (CH CO) - C_6 H_4 - 4 (CH CO) - C_6 H_4 - 4 (CH CO) - C_6 H_6 - 4 (CH CO) - 4 (CH CO$			2a 2b	10	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	$4 - (CH_3 CO) - C_6 H_4 - 4 - (CH_5 CO) - C_6 H_5 - (CH_5 CO) - (CH_5 CO$		2-(p-Acetylphenyl)-4-	20	10	92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	$4-(CH_3CO)-C_6H_4-$	<i>p</i> -Methoxy benzaldehyde	methoxybenzaldehyde	2¢	10	89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	$4-(CH_3CO)-C_6H_4-$			20	10	95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	$4-(CH_3CO)-C_6H_4-$			2e	10	97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	$4-(CH_{3}O)-C_{6}H_{4}-$			2a	24	76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	$4-(CH_{3}O)-C_{6}H_{4}-$		2 (n Methovynhenyl)	2b	24	79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	$4-(CH_{3}O)-C_{6}H_{4}-$	Benzaldehyde	2-(p-Methoxyphenyl)	2c	24	83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	$4-(CH_{3}O)-C_{6}H_{4}-$	-	benzaidenyde	2d	24	78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	$4-(CH_{3}O)-C_{6}H_{4}-$			2e	24	84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	4-(CH ₃ CO)–C ₆ H ₄ –			2a	10	83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	$4-(CH_{3}CO)-C_{6}H_{4}-$			2b	10	77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	$4-(CH_3CO)-C_6H_4-$	<i>n</i> -(<i>tert</i> -Butyl) benzaldehyde	2-(p-Acetylphenyl)-4-	2c	10	82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	$4-(CH_3CO)-C_6H_4-$	p (terr Duty)) comunicating de	<i>tert</i> -butylbenzaldehyde	2d	10	86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	$4-(CH_{3}CO)-C_{6}H_{4}-$			2e	10	85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	$4-(CH_2O)-C_2H_4-$			2a	15	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	$4-(CH_{2}O)-C_{2}H_{4}$			2h	24	89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	$4-(CH_{2}O)-C_{2}H_{4}$	n (tart Putul) hanzaldahuda	2-(p-Methoxyphenyl)-4-	20	24	82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	$4 (CH_{2}O) - C_{2}H_{4}$	<i>p</i> -(<i>ien</i> -Butyl) benzaldenyde	tert-butylbenzaldehyde	2d	24	86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	4 (CH O) C H			2u 2o	15	02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	$4 - (CH_3O) - C_6H_4 - 4 - (CH_2O) - C_1H_4 - 4 - (CH_2O) - C_2H_4 - 4 - (CH_2O) - (CH_$			20	15	92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	$4 - (CH_3 CO) - C_6 H_4 - 4 - (CH_5 CO) - C_6 H_5 - (CH_5 CO) - (CH_5 CO$			2a 2h	5	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	$4-(CH_3CO)-C_6H_4-$		2-(p-Acetylphenyl)-4-	20	5	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	$4-(CH_3CO)-C_6H_4-$	<i>p</i> -Dimethylaminobenzaldehyde	dimethylamino benzal-	2c	5	91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	$4-(CH_3CO)-C_6H_4-$		dehyde	2d	5	95
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	$4-(CH_3CO)-C_6H_4-$			2e	5	98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	$4-(CH_{3}O)-C_{6}H_{4}-$			2a	28	79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	$4-(CH_{3}O)-C_{6}H_{4}-$		2-(p-Methoxyphenyl)-4-	2b	28	70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	$4-(CH_{3}O)-C_{6}H_{4}-$	p-Dimethylaminobenzaldehyde	dimethylamino benzal-	2c	28	74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	$4-(CH_{3}O)-C_{6}H_{4}-$		dehyde	2d	36	74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	$4-(CH_{3}O)-C_{6}H_{4}-$		-	2e	36	81
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46	4-(CH ₃ O)–C ₆ H ₄ –			2a	12	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	4-(CH ₃ O)–C ₆ H ₄ –		2,6-Bis(p-methoxyphe-	2b	12	85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	$4-(CH_{3}O)-C_{6}H_{4}-$	<i>p</i> -Methoxy benzaldehvde	nvl)-4-methoxybenzalde-	2c	12	80
50 $4-(CH_3O)-C_6H_4-$ 2e 12 92	49	$4-(CH_{3}O)-C_{6}H_{4}-$	r jj ac	hyde	2d	12	83
	50	$4-(CH_{3}O)-C_{6}H_{4}-$,	2e	12	92

Table 3 (continued)

Entry	Ar–X	Aldehyde	Product	LHCl	Time (h)	Yield ^{a-d} (%)
51	4-(CH ₃ O)–C ₆ H ₄ –			2a	12	86
52	$4-(CH_{3}O)-C_{6}H_{4}-$		2.6-Bis(<i>p</i> -methoxyphe-	2b	12	80
53	$4-(CH_{3}O)-C_{6}H_{4}-$	<i>p</i> -Dimethylami-nobenzaldehyde	nyl)-4-dimethylamino benzaldehyde	2c	12	89
54	$4-(CH_{3}O)-C_{6}H_{4}-$			2d	12	85
55	$4-(CH_3O)-C_6H_4-$			2e	12	91
56	$4-(CH_3O)-C_6H_4-$			2a	12	83
57	$4-(CH_3O)-C_6H_4-$		2.6-Bis(p-methoxyphe-	2b	12	85
58	$4-(CH_3O)-C_6H_4-$	<i>p</i> -(<i>tert</i> -Butyl) benzaldehyde	nvl)-4-tert-butylbenzalde-	2c	12	87
59	$4-(CH_{3}O)-C_{6}H_{4}-$	p (left 2 aly) contailed ly ac	hyde	2d	12	82
60	$4-(CH_{3}O)-C_{6}H_{4}-$			2e	12	88
61	4-(CH ₃ O)–C ₆ H ₄ –	Terephtalaldehyde	2,5-Bis(<i>p</i> -methoxyphe- nyl) terephtalaldehyde	2e	12	91

^a For entries 46–61, aryl bromides (2 equiv) were used as aryl halide. In all other cases aryl chlorides were used.

^b Reactions conditions: 1.0 mmol of R–C₆H₄Cl-*p*, 1.0 mmol of aldehyde, 2 mmol Cs₂CO₃, 1.0 mmol% Pd(OAc)₂, 2 mmol% 1,3-dialkyl pyrimidinium salt **2**, dioxane (3 mL), 80 °C.

^c The purity of the products was confirmed by NMR and yields are based on aldehyde.

^d All reactions were monitored by TLC.

4. Experimental

4.1. General

All reactions for the preparation of 1,3-dialkylpyrimidinium salts were carried out under argon using standard Schlenk flasks. Test reactions for the catalytic activity of palladium catalysts in the Suzuki and Heck cross-coupling reactions were carried out in the presence of air. All reagents were purchased from Aldrich Chemical Co. The solvents, Et₂O over Na, DMF over BaO, EtOH over Mg were distilled prior to use. All ¹H and ¹³C NMR spectra were performed in CDCl₃. ¹H and ¹³C NMR spectra were recorded using a Bruker AC300P FT spectrometer operating at 300.13 MHz (¹H), 75.47 MHz (¹³C). Chemical shifts (δ) are given in ppm relative to TMS; coupling constants (J) in Hz. FT-IR spectra were recorded on a Mattson 1000 spectrophotometer, wave numbers in cm^{-1} . Melting points were measured in open capillary tubes with an Electrothermal-9200 melting point apparatus and uncorrected. Elemental analyses were performed by TUBITAK (Ankara, Turkey) Microlab.

4.1.1. Preparation of 1,3-bis(2,4,6-trimethylbenzyl)-3,4, 5,6-tetrahydropyrimidinium chloride (2a). A mixture of N,N'-bis(2,4,6-trimethylbenzyl)propane (3.38 g, 10.0 mmol), NH₄Cl (0.53 g, 10.0 mmol) in triethyl orthoformate (50 mL) was heated in a distillation apparatus until the distillation of ethanol ceased. The temperature of the reaction mixture reached 110 °C. Upon cooling to rt, a colorless solid precipitated, which was collected by filtration, and dried in vacuum. The crude product was recrystallized from absolute ethanol to give colorless needles, and the solid was washed with diethyl ether $(2 \times 10 \text{ mL})$, dried under vacuum, and the yield was 3.77 g (98%). Mp 288–289 °C, $\nu_{(CN)} =$ 1688 cm⁻¹. ¹H NMR (300.13 MHz, CDCl₃) δ 8.56 (s, 1H, NCHN), 6.73 (s, 4H, CH₂C₆H₂(CH₃)₃-2,4,6), 4.74 (s, 4H, $CH_2C_6H_2(CH_3)_3$ -2,4,6), 3.36 (t, J = 5.7 Hz, 4H, NC H_2CH_2 -CH₂N), 2.16 and 2.20 (s, 18H, CH₂C₆H₂(CH₃)₃-2,4,6), 2.01 (quint, J = 5.3 Hz, 2H, NCH₂CH₂CH₂N). ¹³C NMR (75.47 MHz, CDCl₃) δ 151.9 (NCHN), 125.3, 130.0, 137.9 and 138.9 (CH₂C₆H₂(CH₃)₃-2,4,6), 52.1 (CH₂C₆H₂(CH₃)₃-2,4,6), 42.6 (NCH₂CH₂CH₂N), 19.8 and 20.9 (CH₂C₆H₂ (CH₃)₃-2,4,6), 19.1 (NCH₂CH₂CH₂N). Anal. Calcd for C₂₄H₃₃N₂Cl: C, 74.87; H, 8.64; N, 7.27. Found: C, 74.83; H, 8.66; N, 7.30.

4.1.2. Preparation of 1,3-bis(2,4,6-trimethoxybenzyl)-3, 4.5.6-tetrahydropyrimidinium chloride (2b). Compound **2b** was prepared in the same way as **2a** from N,N'-bis(2,4,6trimethoxybenzyl)propane (4.34 g, 10 mmol), NH₄Cl (0.53 g, 10 mmol) in triethyl orthoformate (50 mL) to give white crystals of **2b** 4.27 g (89%). Mp 233–234 °C, $\nu_{(CN)} =$ 1682 cm⁻¹. ¹H NMR (300.13 MHz, CDCl₃) δ 7.82 (s, 1H, NCHN), 6.03 (s, 4H, CH₂C₆H₂(OCH₃)₃-2,4,6), 4.46 (s, 4H, CH₂C₆H₂(OCH₃)₃-2,4,6), 3.69 and 3.75 (s, 18H, CH₂C₆- $H_2(OCH_3)_3$ -2,4,6), 3.32 (t, J=5.6 Hz, 4H, NCH₂CH₂CH₂-N), 1.96 (quint, J = 5.2 Hz, 2H, NCH₂CH₂CH₂N). ¹³C NMR (75.47 MHz, CDCl₃) δ 162.7 (NCHN), 90.8, 101.7, 151.8 and 159.9 (CH₂C₆H₂(OCH₃)₃-2,4,6), 58.1 (CH₂C₆H₂ $(OCH_3)_3$ -2,4,6), 55.7 and 56.1 $(CH_2C_6H_2(OCH_3)_3$ -2,4,6), 43.3 (NCH₂CH₂CH₂N), 19.4 (NCH₂CH₂CH₂N). Anal. Calcd for C₂₄H₃₃N₂O₆Cl: C, 59.93; H, 6.91; N, 5.82. Found: C, 59.89; H, 6.94; N, 5.80.

4.1.3. Preparation of 1,3-bis(3,4,5-trimethoxybenzyl)-3, 4,5,6-tetrahydropyrimidinium chloride (2c). Compound **2c** was prepared in the same way as **2a** from N,N'-bis(3,4,5trimethoxybenzyl)propane (4.34 g, 10 mmol), NH₄Cl (0.53 g, 10 mmol) in triethyl orthoformate (50 mL) to give white crystals of **2c** 4.51 g (94%). Mp 266–267 °C, $\nu_{(CN)} =$ 1701 cm⁻¹. ¹H NMR (300.13 MHz, CDCl₃) δ 10.43 (s, 1H, NCHN), 6.72 (s, 4H, CH₂C₆H₂(OCH₃)₃-3,4,5), 4.75 (s, 4H, CH₂C₆H₂(OCH₃)₃-3,4,5), 3.76 and 3.81 (s, 18H, CH₂C₆- $H_2(OCH_3)_3$ -3,4,5), 3.21 (t, J = 5.2 Hz, 4H, $NCH_2CH_2CH_2N$), 1.93 (quint, J=5.2 Hz, 2H, NCH₂CH₂CH₂N). ¹³C NMR (75.47 MHz, CDCl₃) δ 154.7 (NCHN), 106.6, 129.0, 138.7 and 153.9 ($CH_2C_6H_2(OCH_3)_3$ -3,4,5), 61.0 ($CH_2C_6H_2$) $(OCH_3)_3$ -3,4,5), 56.8 and 59.0 $(CH_2C_6H_2(OCH_3)_3$ -3,4,5), 42.0 (NCH₂CH₂CH₂N), 19.3 (NCH₂CH₂CH₂N). Anal. Calcd for C₂₄H₃₃N₂O₆Cl: C, 59.93; H, 6.91; N, 5.82. Found: C, 59.95; H, 6.90; N, 5.84.

4.1.4. Preparation of 1-(2,4,6-trimethylbenzyl)-3-cyclohexyl-(3,4,5,6-tetrahydropyrimidinium chloride (2d). To a solution of 1-cyclohexyl(3,4,5,6-tetrahydropyrimidine) (1.66 g, 10 mmol) in DMF (10 mL) was added slowly 2,4,6-trimethylbenzyl chloride (1.68 g, 10.1 mmol) at 25 °C and the resulting mixture was stirred at rt for 5 h. Diethyl ether (15 mL) was added to obtain a white crystalline solid, which was filtered off. The solid was washed with diethyl ether $(3 \times 15 \text{ mL})$, dried under vacuum, and the yield was 3.07 g (92%). Mp 210–211 °C. $\nu_{(CN)} = 1682 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 9.50 (s, 1H, NCHN), 6.60 (s, 4H, CH₂C₆H₂(CH₃)₃-2,4,6), 4.81 (s, 4H, CH₂C₆H₂(CH₃)₃-2,4,6), 3.50 (quint, J=8.2 Hz, 1H, NCH(CH₂)₄CH₂), 3.19 and 2.87 (t, J = 5.6 Hz, 4H, NCH₂CH₂CH₂N), 2.01 and 2.07 (s, 9H, CH₂C₆H₂(CH₃)₃-2,4,6), 1.39 (m, 10H, NCH(CH₂)₄CH₂), 1.79 (quint, J=5.3 Hz, 2H, NCH₂CH₂CH₂N). ¹³C NMR (75.47 MHz, CDCl₃) δ 153.0 (NCHN), 125.6, 129.7, 137.9 and 138.5 (CH₂C₆H₂(CH₃)₃-2,4,6), 64.0 (CH₂C₆H₂(CH₃)₃-2,4,6), 51.9 (NCH(CH₂)₄CH₂), 40.2 and 41.2 (NCH₂CH₂-CH₂N), 24.5, 24.9 and 30.8 (NCH(CH₂)₄CH₂), 20.2 and 20.8 (CH₂C₆H₂(CH₃)₃-2,4,6), 19.2 (NCH₂CH₂CH₂N). Anal. Calcd for C₂₀H₃₁N₂Cl: C, 71.72; H, 9.33; N, 8.36. Found: C, 71.71; H, 9.35; N, 8.40.

4.1.5. Preparation of 1-methoxyethyl-3-(2,4,6-trimethylbenzyl)-3,4,5,6-tetrahydropyrimidinium chloride (2e). Compound 2e was prepared in the same way as 2d from 1-methoxyethyl(3,4,5,6-tetrahydropyrimidine) (1.42 g, 10 mmol) and 2,4,6-trimethylbenzyl chloride (1.68 g, 10.1 mmol) to give white crystals of **2e** 2.69 g (87%). Mp 118–119 °C, $\nu_{(CN)} = 1688 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 9.26 (s, 1H, NCHN), 6.80 (s, 4H, CH₂C₆H₂ (CH₃)₃-2,4,6), 4.84 (s, 4H, CH₂C₆H₂(CH₃)₃-2,4,6), 3.26 (s, 3H, $CH_2CH_2OCH_3$), 3.77 (t, J=4.5 Hz, 2H, CH_2CH_2 -OCH₃), 3.49 (t, J = 4.7 Hz, 2H, $CH_2CH_2OCH_3$), 3.12 and 3.36 (t, J = 5.7 Hz, 4H, NCH₂CH₂CH₂N), 2.19 and 2.25 (s, 9H, $CH_2C_6H_2(CH_3)_3$ -2,4,6), 2.00 (quint, J=5.6 Hz, 2H, NCH₂CH₂CH₂CH₂N). ¹³C NMR (75.47 MHz, CDCl₃) δ 153.9 (NCHN), 125.2, 129.7, 138.0 and 138.9 (CH₂C₆H₂(CH₃)₃-2,4,6), 69.1 (CH₂C₆H₂(CH₃)₃-2,4,6), 58.8 (CH₂CH₂OCH₃), 54.2 (CH₂CH₂OCH₃), 52.2 (CH₂CH₂OCH₃), 43.9 and 41.3 (NCH₂CH₂CH₂N), 19.8 and 20.8 (CH₂C₆H₂(CH₃)₃-2,4,6), 19.0 (NCH₂CH₂CH₂N). Anal. Calcd for C₁₇H₂₇N₂OCl: C, 65.68; H, 8.75; N, 9.01. Found: C, 65.65; H, 8.73; N, 9.00.

4.2. General procedure for the Heck coupling reaction

Pd(OAc)₂ (1.0 mmol%), 1,3-dialkyl(3,4,5,6-tetrahydropyrimidinium) chloride, **2** (2 mmol%), aryl chloride (1.0 mmol), styrene (1.5 mmol), C₂CO₃ (2 mmol) and water (3 mL)/ DMF (3 mL) were added to a small Schlenk tube and the mixture heated to 50 °C for 5 h. At the conclusion of the reaction, the mixture was cooled, extracted with ethyl acetate/hexane (1:5), filtered through a pad of silica gel with copious washings ether, the filtrate concentrated in vacuo to afford a solid, which was purified by flash chromatography on silica gel. The purity of the compounds was confirmed by NMR spectroscopy and yields are based on the aryl halide.

4.3. General procedure for Suzuki coupling

Pd(OAc)₂ (1.5 mmol%), 1,3-dialkyl(3,4,5,6-tetrahydropyrimidinium) chloride, **2** (3 mmol%), aryl chloride (1.0 mmol), phenylboronic acid (1.2 mmol), K₂CO₃ (2 mmol) and water (3 mL)/DMF (3 mL) were added to a small Schlenk tube and the mixture heated to 50 °C for 2 h. At the conclusion of the reaction, the mixture was cooled, extracted with Et₂O, filtered through a pad of silica gel with copious washings ether, then concentrated in vacuo and purified by flash chromatography on silica gel. The purity of the compounds was confirmed by NMR spectroscopy and yields are based the on aryl halide.

4.4. General procedure for the arylation of benzaldehyde reaction

A dried Schlenk flask equipped with a magnetic stirring bar was charged with the aldehyde (1.0 mmol), aryl chloride (1.0 mmol), Pd(OAc)₂ (0.01 mmol), 1,3-dialkyl(3,4,5,6tetrahydropyrimidinium)chloride, **2** (0.02 mmol), Cs₂CO₃ (2.0 mmol) and dioxane (3 mL). After stirring at 80 °C for 5–24 h, the mixture was cooled to rt and then quenched by addition of aqueous 1 N HCl and extracted with diethyl ether. The organic layer was dried over MgSO₄, filtered, then concentrated in vacuo and purified by column chromatography on silica gel eluting with ethyl acetate/ hexane (1:5). Analysis of the reaction product was carried out by NMR spectroscopy and GC–MS.

4.4.1. 2-(p-Acetylphenyl)-3,4,5-(trimethoxy)benzal**dehyde.** Colourless oil, $\nu_{(C=O)} = 1708 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 9.80 (s, 1H, 2-C₆H₄(*p*-COCH₃) $C_6H(OCH_3)_3$ -3,4,5CHO), 7.85 and 7.48 (d, J=2.5 Hz, 4H, 2-C₆H₄(p-COCH₃)C₆H(OCH₃)₃-3,4,5CHO), 7.06 (s, 1H, 2-C₆H₄(*p*-COCH₃)C₆H(OCH₃)₃-3,4,5CHO), 3.89 and 3.88 (s, 9H, 2-C₆H₄(*p*-COCH₃)C₆H(OCH₃)₃-3,4,5CHO), 2.54 (s, 3H, 2-C₆H₄(*p*-COCH₃)C₆H(OCH₃)₃-3,4,5CHO). ¹³C NMR $(75.47 \text{ MHz}, \text{ CDCl}_3) \delta 188.9 (2-C_6H_4(p-\text{COCH}_3))$ C₆H(OCH₃)₃-3,4,5CHO), 108.2, 121.4, 126.7, 127.2, 127.9, 128.7, 130.1, 132.3, 136.7 and 154.5 (2-C₆H₄(p-COCH₃) $C_6 H(OCH_3)_3 - 3, 4, 5 CHO),$ 194.2 $(2-C_6H_4(p-COCH_3))$ C₆H(OCH₃)₃-3,4,5CHO), 54.1 and 54.6 (2-C₆H₄(*p*-COCH₃) $C_6H(OCH_3)_3-3,4,5CHO),$ 24.8 $(2-C_6H_4(p-COCH_3))$ C₆H(OCH₃)₃-3,4,5CHO). Anal. Calcd for C₁₈H₁₈O₅: C, 68.78; H, 5.77. Found: C, 68.75; H, 5.80.

4.4.2. 2-(*p*-Methoxyphenyl)-3,4,5-(trimethoxy)benzaldehyde. Colourless crystals. Mp 65–66 °C, $\nu_{(C=O)}$ = 1716 cm^{-1. 1}H NMR (300.13 MHz, CDCl₃) δ 9.85 (s, 1H, 2-C₆H₄(*p*-OCH₃)C₆H(OCH₃)₃-3,4,5CHO), 7.21 and 6.79 (d, *J*=4.7 Hz, 4H, 2-C₆H₄(*p*-OCH₃)C₆H(OCH₃)₃-3,4, 5CHO), 7.11 (s, 1H, 2-C₆H₄(*p*-OCH₃)C₆H(OCH₃)₃-3,4, 5CHO), 3.91 and 3.92 (s, 9H, 2-C₆H₄(*p*-OCH₃) C₆H(OCH₃)₃-3,4,5CHO), 3.76 (s, 3H, 2-C₆H₄(*p*-OCH₃) C₆H(OCH₃)₃-3,4,5CHO). ¹³C NMR (75.47 MHz, CDCl₃) δ 189.2 (2-C₆H₄(*p*-OCH₃)C₆H(OCH₃)₃-3,4,5CHO), 113.7, 123.8, 124.5, 125.1, 127.6, 128.2, 129.0, 130.3, 132.7 and 156.8 (2-C₆H₄(*p*-OCH₃)C₆H(OCH₃)₃-3,4,5CHO), 54.3 and 54.8 (2-C₆H₄(*p*-OCH₃)C₆H(OCH₃)₃-3,4,5CHO), 53.7 (2-C₆H₄(*p*-OCH₃)C₆H(OCH₃)₃-3,4,5CHO), 53.7 (2-C₆H₄(*p*-OCH₃)C₆H(OCH₃)₃-3,4,5CHO), 53.7

4.4.3. 2-(*p*-Methoxyphenyl)-4-methoxybenzaldehyde. Colourless oil, $\nu_{(C=O)} = 1708 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 9.88 (s, 1H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-OCH₃)CHO), 7.66 and 7.38 (d, *J* = 4.9 Hz, 4H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-OCH₃)CHO), 6.81 (m, 3H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-OCH₃) CHO), 3.88 (s, 3H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-OCH₃)CHO), 3.77 (s, 3H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-OCH₃)CHO). ¹³C NMR (75.47 MHz, CDCl₃) δ 188.7 (2-C₆H₄(*p*-OCH₃)CHO), C₆H₃(*p*-OCH₃)CHO), 110.8, 111.2, 112.9, 113.8, 124.1, 126.2, 130.0, 131.1, 153.1 and 157.2 $(2-C_6H_4(p-OCH_3)C_6H_3(p-OCH_3)CHO)$, 54.2 $(2-C_6H_4(p-OCH_3)C_6H_3(p-OCH_3)CHO)$, 53.8 $(2-C_6H_4(p-OCH_3)C_6H_3(p-OCH_3)CHO)$. Anal. Calcd for $C_{15}H_{14}O_3$: C, 74.36; H, 5.82. Found: C, 74.40; H, 5.80.

4.4.4. 2-(*p*-Acetylphenyl)-4-methoxybenzaldehyde. Colourless needles. Mp 53–54 °C, $\nu_{(C=O)} = 1689 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 9.78 (s, 1H, 2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-OCH₃)CHO), 7.87 and 7.62 (d, *J*=2.5 Hz, 4H, 2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-OCH₃)CHO), 7.82 (m, 3H, 2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-OCH₃)CHO), 3.85 (s, 3H, 2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-OCH₃)CHO), 3.85 (s, 3H, 2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-OCH₃)CHO), 2.55 (s, 3H, 2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-OCH₃)CHO), 110.1, 123.8, 126.8, 127.4, 128.5, 130.1, 134.8, 138.1 and 155.0 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-OCH₃)CHO), 194.3 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-OCH₃)CHO), 24.9 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-OCH₃)CHO), 24.9 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-OCH₃)CHO). Anal. Calcd for C₁₆H₁₄O₃: C, 75.57; H, 5.55. Found: C, 75.60; H, 5.58.

4.4.5. 2-(*p*-Methoxyphenyl)benzaldehyde. Colourless oil, $v_{(C=O)} = 1688 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 10.03 (s, 1H, 2-C₆H₄(*p*-OCH₃)C₆H₄CHO), 7.24 and 6.83 (d, J = 4.8 Hz, 4H, 2-C₆H₄(*p*-OCH₃)C₆H₄CHO), 7.55 (m, 4H, 2-C₆H₄(*p*-OCH₃)C₆H₄CHO), 3.78 (s, 3H, 2-C₆H₄(*p*-OCH₃) C₆H₄CHO). ¹³C NMR (75.47 MHz, CDCl₃) δ 192.5 (2-C₆H₄(*p*-OCH₃)C₆H₄CHO), 114.8, 125.2, 125.9, 126.0, 127.8, 128.3, 129.7, 130.1, 134.2 and 156.8 (2-C₆H₄(*p*-OCH₃)C₆H₄CHO), 53.4 (2-C₆H₄(*p*-OCH₃)C₆H₄CHO). Anal. Calcd for C₁₄H₁₂O₂: C, 79.22; H, 5.70. Found: C, 79.25; H, 5.68.

4.4.6. 2-(*p*-Acetylphenyl)-4-*tert*-butylbenzaldehyde. Colourless oil, $v_{(C=O)} = 1708 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 9.88 (s, 1H, 2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-C(CH₃)₃) CHO), 7.74 and 7.46 (d, *J*=2.4 Hz, 4H, 2-C₆H₄(*p*-COCH₃) C₆H₃(*p*-C(CH₃)₃)CHO), 7.29 (m, 3H, 2-C₆H₄(*p*-COCH₃) C₆H₃(*p*-C(CH₃)₃)CHO), 2.48 (s, 3H, 2-C₆H₄(*p*-COCH₃) C₆H₃(*p*-C(CH₃)₃)CHO), 1.21 (s, 9H, 2-C₆H₄(*p*-COCH₃) C₆H₃(*p*-C(CH₃)₃)CHO). ¹³C NMR (75.47 MHz, CDCl₃) δ 190.3 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 108.7, 123.5, 126.9, 127.4, 128.2, 129.4, 131.7, 133.8, 137.2 and 154.7 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 193.7 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 30.8 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 30.8 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 24.8 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-C(CH₃))CHO), 24.8 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-C(CH₃))CHO), 24.8 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-C(CH₃))CHO), 24.8 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-C(CH₃))CHO). Anal. Calcd for C₁₉H₂₀O₂: C, 81.40; H, 7.19. Found: C, 81.36; H, 7.20.

4.4.7. 2-(*p*-Methoxyphenyl)-4-*tert*-butylbenzaldehyde. Pale yellow needles. Mp 74–75 °C, $\nu_{(C=O)} = 1722 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 9.98 (s, 1H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 7.82 and 7.55 (d, *J*= 8.8 Hz, 4H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 7.11 (m, 3H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 3.77 (s, 3H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 1.36 (s, 9H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-C(CH₃)₃)CHO). ¹³C NMR (75.47 MHz, CDCl₃) δ 191.0 (2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 114.2, 124.4, 124.9, 125.5, 128.3, 128.7, 129.1, 130.4, 133.1 and 157.4 (2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 34.3 (2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-C(CH₃)₃) CHO), 30.1 (2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-C(CH₃)₃)CHO), 54.4 $(2-C_6H_4(p-OCH_3)C_6H_3(p-C(CH_3)_3)CHO)$. Anal. Calcd for $C_{18}H_{20}O_2$: C, 80.56; H, 7.51. Found: C, 80.53; H, 7.55.

4.4.8. 2-(p-Acetylphenyl)-4-dimethylaminobenzalde**hyde.** Yellow crystals. Mp 59–60 °C, $\nu_{(C=O)} = 1689 \text{ cm}^-$ ¹H NMR (300.13 MHz, CDCl₃) δ 9.69 (s, 1H, 2-C₆H₄(*p*- $COCH_3)C_6H_3(p-(CH_3)_2N)CHO)$, 7.84 and 7.68 (d, J=2.4 Hz, 4H, $2-C_6H_4(p-COCH_3)C_6H_3(p-(CH_3)_2N)CHO)$, 6.89 (m, 3H, 2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 2.54 (s, 3H, 2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 3.02 (s, 6H, $2-C_6H_4(p-COCH_3)C_6H_3(p-(CH_3)_2N)CHO$). ¹³C NMR (75.47 MHz, CDCl₃) δ 189.2 (2-C₆H₄(*p*-COCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 109.9, 124.1, 127.8, 127.9, 128.6, 129.8, 130.8, 134.4, 138.5 and 153.3 (2-C₆H₄(p-COCH₃)C₆H₃(p-(CH₃)₂N)CHO), 195.7 (2-C₆H₄(p-COCH₃) $C_6H_3(p-(CH_3)_2N)CHO)$, 38.9 (2- $C_6H_4(p-COCH_3)C_6H_3)C_$ $(CH_3)_2N$)CHO), 25.4 $(2-C_6H_4(p-COCH_3)C_6H_3(p-(CH_3)_2N))$ CHO). Anal. Calcd for C₁₇H₁₇NO₂: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.40; H, 6.44; N, 5.20.

4.4.9. 2-(*p*-Methoxyphenyl)-4-dimethylaminobenzaldehyde. Colourless needles. Mp 67–68 °C, $\nu_{(C=O)} = 1716 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 9.72 (s, 1H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 7.71 and 7.34 (d, *J*=4.8 Hz, 4H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 6.74 (m, 3H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 3.74 (s, 3H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 3.74 (s, 3H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 3.04 (s, 6H, 2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 1¹³C NMR (75.47 MHz, CDCl₃) δ 189.2 (2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 110.3, 111.7, 113.6, 114.7, 124.4, 126.6, 130.9, 131.2, 153.2 and 157.6 (2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 39.1 (2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-(CH₃)₂N)CHO), 54.4 (2-C₆H₄(*p*-OCH₃)C₆H₃(*p*-(CH₃)₂N)CHO). Anal. Calcd for C₁₆H₁₇NO₂: C, 75.27; H, 6.71; N, 5.49. Found: C, 75.25; H, 6.68; N, 5.50.

4.4.10. 2,6-Bis(*p*-methoxyphenyl)-4-methoxybenzaldehyde. Colourless solid. Mp 91–92 °C, $\nu_{(C=O)} = 1697 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 9.87 (s, 1H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-OCH₃)CHO), 7.34 and 6.75 (d, *J* = 2.4 Hz, 8H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-OCH₃)CHO), 7.83 (s, 2H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-OCH₃)CHO), 3.75 (s, 3H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-OCH₃)CHO), 3.86 (s, 6H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-OCH₃)CHO), 3.86 (s, 6H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-OCH₃)CHO), 1¹³C NMR (75.47 MHz, CDCl₃) δ 189.7 (2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-OCH₃)CHO), 113.3, 114.7, 126.6, 128.9, 130.9, 131.2, 157.7 and 163.6 (2, 6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-OCH₃)CHO), 54.3 (2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-OCH₃)CHO), 54.5 (2,6-C₆H₄(*p*-OCH₃)CHO), C₆H₂(*p*-OCH₃)CHO), Anal. Calcd for C₂₂H₂₀O₄: C, 75.84; H, 5.79. Found: C, 75.86; H, 5.82.

4.4.11. 2,6-Bis(*p*-methoxyphenyl)-4-dimethylaminobenzaldehyde. Pale yellow solid. Mp 108–109 °C, $\nu_{(C=O)} =$ 1708 cm⁻¹. ¹H NMR (300.13 MHz, CDCl₃) δ 9.75 (s, 1H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-(CH₃)₂N)CHO), 7.37 and 6.76 (d, *J*=2.4 Hz, 8H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-(CH₃)₂N) CHO), 7.63 (s, 2H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-(CH₃)₂N) CHO), 3.77 (s, 6H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-(CH₃)₂N) CHO), 3.08 (s, 6H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-(CH₃)₂N) CHO). ¹³C NMR (75.47 MHz, CDCl₃) δ 190.2 (2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-(CH₃)₂N)CHO), 112.7, 114.8, 125.9, 126.4, 128.7, 130.9, 132.5 and 157.6 (2,6-C₆H₄(*p*-OCH₃)C₆H₂ $(p-(CH_3)_2N)CHO)$, 39.3 $(2,6-C_6H_4(p-OCH_3)C_6H_2(p-(CH_3)_2N)$ CHO), 54.7 $(2,6-C_6H_4(p-OCH_3)C_6H_2(p-(CH_3)_2N)CHO)$. Anal. Calcd for $C_{23}H_{23}NO_3$: C, 76.43; H, 6.41; N, 3.88. Found: C, 76.45; H, 6.43; N, 3.84.

4.4.12. 2,6-Bis(p-methoxyphenyl)-4-tert-butylbenzaldehyde. Colourless solid. Mp 86–87 °C, $\nu_{(C=O)} = 1702 \text{ cm}^{-1}$ ¹H NMR (300.13 MHz, $CDCl_3$) δ 9.98 (s, 1H, 2,6-C₆H₄(p- $OCH_3)C_6H_2(p-C(CH_3)_3)CHO)$, 7.38 and 6.77 (d, J =2.4 Hz, 8H, $2,6-C_6H_4(p-OCH_3)C_6H_2(p-C(CH_3)_3)CHO)$, 7.54 (s, 2H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-C(CH₃)₃)CHO), 3.84 (s, 6H, 2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-C(CH₃)₃)CHO), 1.36 (s, 9H, $2,6-C_6H_4(p-OCH_3)C_6H_2(p-C(CH_3)_3)CHO$). ¹³C NMR (75.47 MHz, CDCl₃) δ 192.3 (2,6-C₆H₄(*p*-OCH₃)C₆H₂(*p*-C(CH₃)₃)CHO), 113.1, 115.9, 125.7, 126.2, 129.9, 130.3, 132.4 and 158.9 (2,6-C₆H₄(p-OCH₃)C₆H₂(p- $C(CH_3)_3)CHO$, 35.5 (2,6- $C_6H_4(p-OCH_3)C_6H_2(p-C(CH_3)_3)$) CHO), 31.3 $(2,6-C_6H_4(p-OCH_3)C_6H_2(p-C(CH_3)_3)CHO)$, 55.6 $(2,6-C_6H_4(p-OCH_3)C_6H_2(p-C(CH_3)_3)CHO)$. Anal. Calcd for C₂₅H₂₆O₃: C, 80.18; H, 7.00. Found: C, 80.20; H, 6.97.

4.4.13. 2,5-Bis(*p*-methoxyphenyl)terephtalaldehyde. Colourless solid. Mp 121–122 °C, $\nu_{(C=O)} = 1716 \text{ cm}^{-1}$. ¹H NMR (300.13 MHz, CDCl₃) δ 10.12 (s, 2H, 2,5-C₆H₄(*p*-OCH₃)C₆H₂(CHO)₂), 7.42 and 6.90 (d, *J*=8 Hz, 4H, 2,5-C₆H₄(*p*-OCH₃)C₆H₂(CHO)₂), 7.35 and 6.75 (d, *J*=1.2 Hz, 4H, 2,5-C₆H₄(*p*-OCH₃)C₆H₂(CHO)₂), 7.98 (s, 2H, 2,5-C₆H₄(*p*-OCH₃)C₆H₂(CHO)₂), 3.79 (s, 6H, 2,5-C₆H₄(*p*-OCH₃)C₆H₂(CHO)₂), 3.113.0, 114.6, 126.6, 128.9, 131.1 and 157.6 (2,5-C₆H₄(*p*-OCH₃)C₆H₂(CHO)₂), 54.1 (2,5-C₆H₄(*p*-OCH₃)C₆H₂(CHO)₂). Anal. Calcd for C₂₂H₁₈O₄: C, 76.29; H, 5.24. Found: C, 76.32; H, 5.26.

Acknowledgements

We thank the Technological and Scientific Research Council of Türkiye TÜBİTAK [TÜBITAK COST D17 and TBAG-2474 (104T085)] and Inönü University Research Fund (İ.Ü.B.A.P. 2005/42) for financial support of this work.

References and notes

- Herrmann, W. A.; Köcher, C. Angew. Chem., Int. Ed. 1997, 36, 2163.
- Weskamp, T.; Böhm, V. P. W.; Herrmann, W. A. J. Organomet. Chem. 2000, 600, 12.
- 3. Herrmann, W. A. Adv. Organomet. Chem. 2002, 48, 1.
- Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. *Chem. Rev.* 2000, 100, 39.
- 5. Magill, A. M.; McGuiness, D. S.; Cavell, K. J.; Britovsek,

G. J. P.; Gibson, V. C.; White, A. J. P.; Williams, D. J.; White, A. H.; Skelton, B. W. *J. Organomet. Chem.* **2001**, *617–618*, 546.

- 6. Crudden, C. M.; Allen, D. P. Coord. Chem. Rev. 2004, 248, 2247.
- 7. Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.
- 8. Perry, M. C.; Burgess, K. Tetrahedron: Asymmetry 2003, 14, 951.
- 9. Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239.
- 10. Zapf, A.; Beller, M. Chem. Commun. 2005, 431.
- Bedford, R. B.; Cazin, C. S. J.; Holder, D. Coord. Chem. Rev. 2004, 248, 2283.
- Lee, H. M.; Lu, C. Y.; Chen, C. Y.; Chen, W. L.; Lin, H. C.; Chiu, P. L.; Cheng, P. Y. *Tetrahedron* 2004, 60, 5807.
- Wang, A.-E.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Tetrahedron 2005, 61, 259.
- 14. Christmann, U.; Vilar, R. Angew. Chem., Int. Ed. 2005, 44, 366.
- Herrmann, W. A.; Ofele, K.; Preysing, D.; Herdtweck, E. J. Organomet. Chem. 2003, 684, 235.
- (a) Gürbüz, N.; Özdemir, I.; Demir, S.; Çetinkaya, B. J. Mol. Catal. A 2004, 209, 23. (b) Özdemir, I.; Çetinkaya, B.; Demir, S.; Gürbüz, N. Catal. Lett. 2004, 97, 37. (c) Özdemir, I.; Demir, S.; Yaşar, S.; Çetinkaya, B. Appl. Organomet. Chem. 2005, 19, 55. (d) Gürbüz, N.; Özdemir, I.; Seçkin, T.; Çetinkaya, B. J. Inorg. Organomet. Polym. 2004, 14, 149.
- (a) Özdemir, I.; Gök, Y.; Gürbüz, N.; Yaşar, S.; Çetinkaya, E.; Çetinkaya, B. *Pol. J. Chem.* **2004**, *78*, 2141. (b) Özdemir, I.; Gök, Y.; Gürbüz, N.; Çetinkaya, E.; Çetinkaya, B. *Synth. Commun.* **2004**, *34*, 4135. (c) Özdemir, I.; Gök, Y.; Gürbüz, N.; Çetinkaya, E.; Çetinkaya, B. *Heteroat. Chem.* **2004**, *15*, 419. (d) Özdemir, I.; Alıcı, B.; Gürbüz, N.; Çetinkaya, E.; Çetinkaya, B. *J. Mol. Catal. A* **2004**, *217*, 37.
- Alıcı, B.; Cetinkaya, E.; Cetinkaya, B. *Heterocycles* 1997, 45, 29.
- (a) Mayr, M.; Wurst, K.; Ongania, K.-H.; Buchmeiser, M. R. *Chem. Eur. J.* **2004**, *10*, 1256. (b) Mayr, M.; Buchmeiser, M. R. *Macromol. Rapid Commun.* **2004**, *25*, 231.
- Herrmann, W. A.; Schneider, S. K.; Öfele, K.; Sakamoto, M.; Herdtweck, E. J. Organomet. Chem. 2004, 689, 2441.
- 21. Farina, V. Adv. Synth. Catal. 2004, 346, 1553.
- 22. Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
- 23. Loch, J. A.; Albrecht, M.; Peris, E.; Mata, J.; Faller, J. W.; Crabtree, R. H. *Organometallics* **2002**, *21*, 700.
- 24. Ballie, C.; Xiao, J. Tetrahedron 2004, 60, 4159.
- Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem. 1999, 64, 3804.
- Grasa, G. A.; Viciu, M. S.; Huang, J.; Zhang, C.; Trudell, M. L.; Nolan, S. P. *Organometallics* **2002**, *21*, 2866.
- Hillier, A. C.; Grasa, G. A.; Mihai, S.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem. 2002, 653, 69.
- Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc. 2004, 126, 15195.
- Özdemir, I.; Gürbüz, N.; Çetinkaya, B. *Tetrahedron Lett.* 2005, 46, 2273.