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Abstract—Novel methanocarba adenosine analogues, having the pseudo-ribose northern (N) conformation preferred at adenosine
receptors (ARs), were synthesized and tested in binding assays. The 50-uronamide modification preserved [N6-(3-iodobenzyl)] or
enhanced (N6-methyl) affinity at A3ARs, while the 20-deoxy modification reduced affinity and efficacy in a functional assay. Pub-
lished by Elsevier Science Ltd.

There are four subtypes of adenosine receptors (A1,
A2A, A2B, and A3), all of which are G protein-coupled
receptors (GPCRs). Modulation of adenosine receptors
by selective agonists and antagonists1,2 has the potential
for the treatment of a wide range of diseases, including
those of the cardiovascular, inflammatory, and central
nervous systems. For example, selective A1 and A3

receptor agonists protect cardiac myocytes from the
damaging effects of ischemia.3 Such agonists have also
been shown to be protective in models of cerebral
ischemia.4 In general, adenosine acts as a protective
local mediator, which responds to stress applied to a
system as a negative feedback control, leading to either
increased energy supply (usually via the A2A receptor)
to the organ or diminished energy demand (usually via
the A1 receptor). Recently, A2A receptor agonists have
been proposed as antiinflammatory agents and for use
in ischemia reperfusion.5

Numerous structure–activity studies of adenosine deri-
vatives as receptor agonists2,6 conclude that selectivity
may be provided by specific substitutions of the adenine
ring. For example, N6-cycloalkyl groups favor selectiv-
ity for A1 versus A2A/A3 subtypes, and N6-benzyl sub-
stitutions favor selectivity for A3 versus A1/A2A

subtypes. Selectivity for the A2A receptor is often

achieved through substitution at the 2-position. There
are currently no selective agonists of the A2B receptor.
Modifications of the ribose moiety of adenosine ago-
nists are less well tolerated and therefore less amenable
to extensive modifications. However, small alkyl 50-uro-
namide modification of the ribose often enhances affi-
nity of adenosine derivatives at multiple subtypes.

We have recently examined conformational require-
ments of the ribose moiety in adenosine agonists.7 In
general, the ribose rings of nucleosides and nucleotides
may adopt a range of conformations as described by the
‘pseudorotational cycle’.8 The northern [(N), 20-exo] and
southern [(S), 20-endo] conformations are the most rele-
vant to the biological activities observed for nucleosides
and nucleotides in association with DNA, RNA, and
various enzymes. We have defined a preference for the
(N) conformation of ribose at both adenosine7 and P2Y
receptors9 using methanocarba analogues in which a
cyclopropane moiety constrains a pseudosugar (cyclo-
pentane) ring of the nucleoside to either a (N)-, 1, or
(S)-, 2, envelope conformation (Fig. 1). Such analogues
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have helped to define the role of sugar puckering in
stabilizing the active adenosine receptor-bound con-
formation, and thereby have allowed identification of
the (N) conformation as the favored isomer.

In the present study, we have combined N6-substituted
adenosine agonists containing the (N)-methanocarba
modification with either 50-uronamide groups or the 20-
deoxy modification. The 20-deoxy modification is

Table 1. Affinities of methanocarba-adenosine analogues of the N-conformation and their 20-deoxy analogues in radioligand binding assays at rat

A1,
a rat A2A,

b and human A3 receptors,
c unless notedd

Ki (nM) or % displacement

Compd R1 R2 R3 R4 rA1
a rA2A

b hA3
c

3 H H OH CH2OH 1680�80 22,500�100 (human) 404�70e

4 H Cl OH CH2OH 273�36 1910�240 84.7�18.7
5 H H OH CONHCH2CH3 31.8�6.9 100�18 29.9�6.8
6 Me H OH CH2OH 1470�190 410% at 10 mM 126�18
7 Me Cl OH CH2OH 884�99 410% at 10 mM 22.5�7.4
8 Me Cl OH CONHCH3 805�197 410% at 10 mM 6.19�0.42
9 CP H OH CH2OH 5.06�0.51 6800�1800 170�51
10 CP H H CH2OH 5110�790 15% at 100 mM 2880�910
11 CP Cl OH CH2OH 8.76�0.81 3390�520 466�58
12 CP Cl H CH2OH 3600�780 45�5% at 100 mM 1090�190
13 IB H OH CH2OH 69.2�9.8 601�236 4.13�1.76
14 IB H OH CONHCH3 52.7�5.2 548�115 2.39�0.54
15 IB Cl OH CH2OH 141�22 732�207 2.24�1.45
16 IB Cl OH CONHCH3 83.9�10.3 1660�260 1.51�0.23
17 IB Cl H CH2OH 8730�370 25,400�3800 912�29

aDisplacement of specific [3H]R-PIA binding to A1 receptors in rat brain membranes, expressed as Ki�SEM (n=3–5).
bDisplacement of specific [3H]CGS 21680 binding to A2A receptors in rat striatal membranes, expressed as Ki�SEM (n=3–6), and at A2B receptors
expressed in HEK-293 cells versus [3H]ZM241,385, unless noted.
cDisplacement of specific [125I]AB-MECA binding at human A3 receptors expressed in CHO cells, in membranes, expressed as Ki�SEM (n=3–4).
dMe, methyl; CP, cyclopentyl; IB, 3-iodobenzyl.
eMeasured in the absence of adenosine deaminase.

Scheme 1. (a) (i) BCl3, CH2Cl2, �78 �C; (ii) p-TsOH, DMP, acetone; (b) NaIO4, RuO2, K2CO3, MeCN/CHCl3/H2O=2:2:3; (c) (i) EDAC, DMAP,
MeNH3, CH2Cl2/DMF=1:1; (ii) 10% CF3CO2H/MeOH, H2O; (d) 3-I-benzylamine.HCl, TEA, MeOH; (e) (i) (COCl)2, 50

�C, then MeNH2,
CH2Cl2; (ii) 10% CF3CO2H/MeOH, H2O; (f) NH3/2-propanol, 90

�C; (g) (i) (COCl)2, 50
�C, then EtNH2, CH2Cl2; (ii) 10% CF3CO2H/MeOH,

H2O, 60 �C.
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known to diminish agonist efficacy, to create partial
agonists.10

The structures of (N)-methanocarba adenosine analo-
gues (3–17) synthesized and tested in binding assays at
three subtypes of adenosine receptors11�13 are shown in
Table 1. We combined the (N)-methanocarba modifica-
tion of known potent adenosine agonists with either 50-
uronamide groups (5, 8, 14, and 16) or a 20-deoxy mod-
ification (10, 12, and 17). These adenosine agonists
contain methyl (6–8), cyclopentyl (9–12), or 3-iodo-
benzyl (13–17) substitution at the N6-position. Both 2-H
and 2-Cl analogues are included. Several of the com-
pounds, that is the triols 9, 11, 13, and 15, were reported
to be selective adenosine agonists in a previous study.7

The synthetic methods used to prepare the new 50-uro-
namide analogues are shown in Scheme 1. Nucleoside
analogues, 20 and 21, containing a 6-Cl and a 50-OH
group, and protected as the 20,30-acetonides, were oxi-
dized using basic sodium periodate and ruthenium
tetraoxide. The resulting carboxylic acid derivatives,
23–25,14 were substituted at the 6-position by amine
treatment, converted to the acid chloride using oxalyl
chloride, and reacted immediately with methyl- or ethyl-
amine to form 50-uronamides.15 In the case of an N6-
methyl 50-uronamide derivative, the substitution of the
6-Cl and the formation of the uronamide from 22 were
carried out in a single step, using a carbodiimide con-
densing reagent, to yield, after deprotection, 8.16 20-
Deoxy analogues were synthesized by the methods
reported earlier9 via the (N)-methanocarba analogue of
2,6-dichloropurine-20-deoxyriboside, 28, as an inter-
mediate (Scheme 2).17

In binding assays at A1, A2A, and A3ARs, the (N)-
methanocarba analogue of 2-chloroadenosine, 4, in
comparison to the (N)-methanocarba adenosine, 3,
reported earlier,7 showed substantial enhancement of
affinity at all three subtypes and displayed mixed A1/
A3AR selectivity. The (N)-methanocarba analogue, 5,
of the potent, nonselective agonist NECA (50-N-ethyl-
uronamidoadenosine) was slightly selective for A1 and
A3ARs versus the A2AAR. For this 6-NH2 analogue,
the 50-uronamide, 5, enhanced affinity at the A1AR by
53-fold and at the A3AR by only 14-fold in comparison
to the triol, 3.

In the series of N6-methyl derivatives, binding at
A2AARs was absent, and the simple 40-CH2OH com-
pounds, 6 and 7, were selective in binding at the A3

versus A1AR by 12- and 39-fold, respectively. Com-
pound 8 displayed a 4-fold increase in affinity at the
A3AR over 7, and consequently 130-fold selectivity
versus A1AR. The 50-uronamide-modified N6-(3-iodo-
benzyl) analogues, 14 and 16, maintained affinity at A1

and A3ARs and, therefore, selectivity for A3 receptors.
With an N6-methyl substituent, the 50-uronamide mod-
ification enhanced affinity at the A3AR. The 20-deoxy
modified N6-cyclopentyl analogues, 10 and 12, bound
weakly to adenosine receptors and were nonselective.
The 20-deoxy modified N6-(3-iodobenzyl) analogue, 17,
displayed greatly reduced affinity and selectivity for the
A3AR.

Agonist efficacy of selected adenosine derivatives was
determined in a functional assay consisting of stimula-
tion of binding of [35S]GTP-g-S by activation of human
A1 and A3ARs.7,18 EC50 values for 10 and 12 at the
A1AR were 2.89�0.14 mM (30�1% efficacy) and
2.28�0.99 mM (40�8% efficacy), respectively. Thus
these two 20-deoxy analogues, 10 and 12, were weak,
partial agonists at the A1AR. EC50 values (nM) at the
A3AR were: 25.5�6.1 (8), 6.80�1.95 (14), 5.25�2.20
(16), and 303�93 (NECA), and all four derivatives
reached full agonist efficacy.

As reported previously,7 (N)-methanocarba analogues,
such as 9, 13, and 15, containing various N6-sub-
stituents, in which the parent compounds were potent
agonists at either A1 (e.g., cyclopentyl) or A3ARs (e.g.,
3-iodobenzyl), retained the selectivity of the parent
compound, especially at the A3AR. As before, the pre-
sent ‘ribose-like’ (N)-methanocarba analogues (20-OH)
had preserved or enhanced A3AR affinity. For example,
5 was 6-fold more potent than the ribose equivalent at
the A3AR and slightly less potent at A1 and A2AARs.
The efficacy in present compound was reduced at A1AR
for 20-deoxy analogues (10 and 12) and increased at
A3AR for 50-uronamides (14 and 16).

In this study, we have introduced a new synthetic route
for the oxidation of the 50-carbon in the (N)-methano-
carba series. This has allowed us to extend the SAR to
include a modification that is generally potency-enhan-
cing in the ribose series (i.e., 50-uronamide). With a
bulky N6-substituent (3-iodobenzyl), the A3AR affinity-
enhancing effects of (N)-methanocarba and 50-uron-
amide groups were not additive. Since the 50-uronamide
modification had either unchanged (for a large N6-sub-
stituent) or enhanced (for a small N6-substituent,
methyl) affinity at the A3AR, we may conclude that in

Scheme 2. (a) (i) 2,6-Di-Cl-purine, DEAD, PPh3, THF; (ii) BCl3, CH2Cl2, 0
�C; (b) cyclopentylamine (for 12) or 3-I-benzylamine.HCl, TEA (for 17),

MeOH; (C) H2/Pd–C, MeOH.
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this series, requirements for N6- and 50-substitutions are
interrelated (i.e., non-independent in receptor binding).
Another small substituent at theN6-position (MeONH–),
when combined with modified 50-groups, resulted in
A3AR-selective agonists.19 Compound 8 (MRS 2346)
was 130-fold selective for the A3 versus A1AR, illus-
trating again that a bulky N6-substituent was not
required to achieve A3AR selectivity. Compound 16
(MRS 1898) was a potent and selective full agonist at
the human A3AR.

In conclusion, the (N)-methanocarba modification has
provided new analogues having A3AR selectivity, such
as 8, and mixed A1/A3AR selectivity. The pharmacol-
ogical properties of these analogues as agonists or par-
tial agonists of adenosine receptors may now be studied.
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