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Convenient and facile one step synthesis of medicinally relevant new 3,6-epoxy[1,5]dioxocines from
2-hydroxyaromatic benzaldehydes is described. The scope of the method was validated by examining
the use of both electron rich and electron-deficient 2-hydroxyaromatic benzaldehydes.
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Dioxocines are synthetic intermediates in the preparation of a
variety of organic compounds of medicinal interest. The dehydrat-
ing dimerization of salicylaldehydes is known to furnish 6H,
12H-6,12-epoxydibenzo[b,f][1,5]dioxocins1 which upon further
functionalization, could be converted to preussomerin family of
natural products, which were first isolated from the coprophilous
fungus Preuussia Isomera.2 Furthermore, some 12H-dibenzo[d,g]
[1,3]dioxocin derivatives have also been investigated for their anti-
dyslipidemic activity. In fact, it is interesting to note that such a
structure, is necessarily related to their pharmacological activity
and is present in many biologically active natural products. Figure
1 shows the chemical structures of some naturally occurring
potent dioxocine derivatives.3,4

Due to their interesting biological activities, various diverse
synthetic strategies have been developed for the synthesis of these
compounds.5–8 Their synthesis is associated with many drawbacks
such as the use of potentially hazardous catalyst, application of
costly reagents, sophisticated reaction conditions, unwanted side
products, poor yield and some starting materials that are not read-
ily available. On the other hand, recently Getautis co-workers have
reported an one-pot method for the synthesis of 3,6-epoxy
[1,5]dioxocines, catalysed by the phase transfer catalyst (benzyl
triethylammonium chloride) condensation of electron-deficient
salicylaldehydes with epichlorohydrin, but this method has limita-
tions like longer reaction times (60 h) and is applicable for elec-
tron-deficient salicylaldehydes only.9 So there is scope to develop
a convenient and general approach towards the synthesis of
ll rights reserved.
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3,6-epoxy[1,5]dioxocines. Herein, we wish to report a facile and
general method for the preparation of new substituted 3,6-
epoxy[1,5]dioxocines in good yields by the Et3N catalysed reaction
of epichlorohydrin with both electron rich and electron-deficient
salicyl aldehydes.

Et3N is quite economical, eco-friendly and a mild base that can
also avoid the problem of side reactions in base-sensitive sub-
strates. It has been demonstrated that this commercially available
base could be used as an efficient catalyst for the synthesis of a
wide variety of organic compounds.10–24

An initial study was performed by the treatment of 4-hydroxy-
5-methylisophthalaldehyde 1a, with epichlorohydrin in the pres-
ence of a catalytic amount of potassium carbonate at ambient
temperature. Initially, we observed the formation of two products
(TLC monitoring during the course of the reaction) that differed
slightly in their polarity. As the reaction time increased, the more
polar product gradually got converted (TLC monitoring) in to the
less polar one. It is apparent that compound 1aa undergoes intra-
molecular cyclization, which results in the formation of the stable
3,6-epoxy[1,5]dioxocines 2a. Complete conversion and 80% iso-
lated yield were obtained after 8 h. The synthetic approach is
depicted in Scheme 1.

Encouraged by these results, we screened several different
bases (organic and inorganic) as catalyst for the reaction of 4-hy-
droxy-5-methylisophthalaldehyde 1a, with epichlorohydrin. The
results are shown in Table 1. Much to our delight, Et3N was found
to be an excellent catalyst to catalyse the reaction. It not only
shortens the reaction time but also provides excellent yields. To
the best of our knowledge, there are no reports of Et3N-catalysed
synthesis of 3,6-epoxy[1,5]dioxocines.

To optimize the Et3N requirements, 0.5, 0.75, 1.0 and 1.5 mmol
(entries 5–8 in Table 1) were employed, and the best results were
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Table 2
Optimization of reaction solvents

Entry Product Solvent Time (h) Yield (%)

1 2a Ethanol 3.5 72
2 2a DCM 2.5 76
3 2a DMF 3.0 68
4 2a Neat 1.0 93
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Figure 1. Structures of some naturally occurring potent dioxocine derivatives.

Table 1
Optimization of reaction conditions for the synthesis of 3,6-epoxy[1,5]dioxocines 2a
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CHO CHO
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Base, reflux, time

Entry Product Base (mmol) Time (h) Yield (%)

1 2a K2CO3 (1.0) 8.0 80
2 2a KOH (1.0) 6.0 72
3 2a NaHCO3 (1.0) 30.0 65
4 2a DABCO (1.0) 2.0 84
5 2a Et3N (1.5) 0.8 84
6 2a Et3N (1.0) 1.0 88
7 2a Et3N (0.75) 1.0 93
8 2a Et3N (0.5) 1.2 86
9 2a N-Methylmorpholine (1.0) 1.1 92
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Scheme 1. Synthesis of 3,6-epoxy[1,5]dioxocines 2a.
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obtained with 0.75 mol of Et3N at reflux in terms of yield and time
duration (entry 7 in Table 1). In the absence of Et3N, the reaction
did not proceed. Initially, the reaction was attempted with differ-
ent solvents (ethanol, DCM, DMF) but the yields were found to
be better in the absence of any solvent as shown in Table 2 (entry
4).

With this finding, we examined the applicability of this catalytic
system to various substituted 2-hydroxyaromatic benzaldehydes,
possessing electron-donating or electron-withdrawing substitu-
ents and all afforded the desired products in very satisfactory
yields. A variety of new 3,6-epoxy[1,5]dioxocines were synthesized
in a one-step process in good to high yields in the presence of Et3N
under reflux to afford the respective products. The representative
results are shown in Table 3. Substituents on the salicylaldehydes
had little influence both on the yield and the time of the reaction.
Interestingly, electron-deficient 2-hydroxyaromatic benzalde-
hydes underwent faster condensation with epichlorohydrin
compared to neutral and electron rich 2-hydroxyaromatic benzal-
dehydes to afford the respective products.

To demonstrate the generality and the applicability of the opti-
mized reaction conditions to other more complex molecules, that
is, electron rich 2-hydroxyaromatic benzaldehydes containing
chalcone moiety at para-position was utilized for the reaction.
These derivatives (1k–p) readily condensed with epichlorohydrin
to form their corresponding 3,6-epoxy[1,5]dioxocines (2k–p) in
good to excellent yields, indicating that this reaction is quite
general and has very broad substrate scopes. These chalcones
(1k–p) were obtained from the condensation reaction of respec-
tive 2-hydroxyaromatic dicarbaldehydes with acetophenones
(Table 3).25

This reaction is clean and free from side reactions, such as self-
condensation of aldehydes, which are normally observed under
basic conditions. It is apparent that the polycyclic compound
formed is the result of intramolecular cyclization of the initial ad-
duct formed by the reaction of epichlorohydrin on the phenol. This
was also confirmed by the fact that we could isolate the interme-
diate formed during the early course of the reaction. The structures
of the products were established from their spectroscopic (IR, 1H
NMR, 13C NMR, 2D NMR and elemental analysis or HRMS) data.26
The isolated product was found to be a mixture of two enantio-
mers, in which the chiral centres have R,S and S,R configuration.9

To the best of our knowledge, there is only one report of the
condensation of salicylaldehydes and epichlorohydrin, using
benzyl triethylammonium chloride as PTC to form 3,6-epoxy[1,5]
dioxocines.9 The reaction was conducted in the presence of PTC
and required a long time (60 h). Moreover, electron rich salicylal-
dehydes failed to give the desired product under the reaction
conditions employed.

In conclusion, we have demonstrated here a simple, and effi-
cient route for the synthesis of 3,6-epoxy[1,5]dioxocines utilizing
Et3N as a catalyst. This method not only provides an excellent com-
plement to dioxocines synthesis, but also avoids the use of hazard-
ous acids or bases and harsh reaction conditions. The advantages of
this method include good substrate generality, the use of inexpen-
sive reagents/catalyst and experimental operational ease. The
functional groups such as aldehyde and a–b unsaturated carbonyl



Table 3
Et3N mediated general synthesis of 3,6-epoxy[1,5]dioxocines
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Entry Reactant Product Time (min) Yielda (%) Mp (�C)

1

1a

OH

CHO

CHO

2a CHO

OO O

60 93 98–100

2

1b 

OH

CHO

CHO

2b 
CHO
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65 91 98–100
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H
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Table 3 (continued)

Entry Reactant Product Time (min) Yielda (%) Mp (�C)

9
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H

O

2i 

OO O
75 90 Oily
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O
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Table 3 (continued)

Entry Reactant Product Time (min) Yielda (%) Mp (�C)

16

1p 

OH
CHO

O

O

2p 

O

OO O

O

70 87 174–175

Reagents and conditions: (a) Epichlorohydrin, Et3N, reflux, 45–90 min; (b) concd HCl, p-R1C6H4COCH3, dioxane, 80–90 �C, 2.5–3.5 h.
a Isolated yields.
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groups are tolerated under the reaction conditions to provide
structurally interesting 3,6-epoxy[1,5]dioxocines in high yields.
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