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Abstract: An efficient synthesis of 2H-indazole derivatives based
on the one-pot three-component reaction of 2-chloro- and 2-bromo-
benzaldehydes, primary amines and sodium azide is described. The
reaction is catalyzed by copper(I) oxide nanoparticles (Cu2O-NP)
under ligand-free conditions in polyethylene glycol (PEG 300) as a
green solvent.

Key words: Cu2O nanoparticle, 2H-indazole derivatives, ligand-
free, three-component, green solvent

Indazole derivatives represent a class of pharmacological-
ly important compounds exhibiting a broad range of bio-
logical activities including HIV protease inhibition,1 anti-
inflammatory,2 antitumor,3 antimicrobial,4 antiplatelet5

and anticancer activities.6

In addition to the use of these heterocyclic compounds as
electronically active materials,7 they have been also re-
ported to have agricultural applications.8 Considering
their wide range of applications, indazoles have become
the center of attention in many research studies.

Due to difficulties in the synthesis of 2H-indazoles com-
pared to that of 1H-indazoles, their preparation has been
much less studied. In this regard, most existing protocols
give mixtures of 1H- and 2H-indazoles and therefore their
selective synthesis remains a challenging subject.9

Several modifications for preparing indazole derivatives
have been reported.10 However, all of these procedures
have drawbacks such as the requirement for expensive li-
gands, requiring several steps to prepare the starting ma-
terials and long reaction times. Therefore the need for
direct, and effective, multicomponent, selective proce-
dures for the synthesis of 2H-indazoles using readily
available starting materials still exists.

Recently, Cu2O catalysts have shown wide applicability
for conversions such as cross-couplings of aryl halides
and heteroaryl halides with terminal alkynes,11 C–S cross-
coupling,12 tandem ring-opening/coupling cyclization
processes for the synthesis of 2,3-dihydro-1,4-benzodiox-
ins,13 Ullmann-type reaction of vinyl bromides with imid-
azole and benzimidazole,14 synthesis of benzimidazole
derivatives from amidine hydrochlorides and o-halo-

aniline15 and synthesis of triazoles.16 Furthermore it has
been reported that Cu2O can be used in ligand-free cross-
coupling procedures.17 Owing to the low cost of Cu2O and
its low sensitivity to light and air it is interesting to inves-
tigate its efficiency as a copper source in different organic
reactions.14

In continuation of our previous studies,18 we herein report
an efficient route to the synthesis of 2H-indazole deriva-
tives by the reaction of 2-halobenzaldehydes, primary
amines and NaN3 using stable and cheap Cu2O-NP under
ligand-free conditions. The reactions are performed in
polyethylene glycols (PEG) as cheap and commercially
available solvents, which have been widely used as substi-
tutes for volatile organic solvents.19

To optimize the catalyst and conditions for the synthesis
of 2H-indazole derivatives, the reaction of 2-bromobenz-
aldehyde (1.0 mmol), p-toluidine (1.1 mmol) and NaN3

(2.0 mmol) was chosen as a model (Scheme 1) under a va-
riety of conditions (Table 1).

Scheme 1  Model reaction for one-pot synthesis of 2-p-tolyl-2H-in-
dazole using 2-bromobenzaldehyde, p-toluidine and NaN3 in the pres-
ence of Cu2O-NP in PEG

As expected, no product was obtained in the absence of
catalyst even after 12 hours (Table1, entry 1); so, we em-
ployed Cu2O-NP as catalyst. These observations show
that the catalyst plays an important role in the preparation
of 2H-indazole derivatives. Using the catalyst at 2 mol%,
5 mol% and 10 mol% concentrations gave 53%, 82% and
82% yields, respectively at 120 °C in PEG (Table 1, en-
tries 2–4). We therefore chose 5 mol% of Cu2O-NP as the
optimal amount of the catalyst.

We then examined the effect of varying solvent and dis-
covered that the use of dipolar aprotic solvents, such as
DMF and DMSO, in the presence of catalyst led to the for-
mation of the product in moderate yield, but that PEG was
the best choice (Table 1, entries 3, 5 and 6). No reaction
was observed in nonpolar solvents, such as toluene (Table
1, entry 7). Finally, we studied the catalytic efficiency of
Cu2O-NP for the synthesis of 2H-indazole derivatives at
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various temperatures, and 120 °C was selected as the op-
timal temperature for this reaction. Therefore, the most
suitable reaction conditions for the synthesis of 2H-inda-
zole derivatives were obtained at 120 °C in PEG in the
presence of Cu2O-NP (5 mol%) as catalyst (Table 1, entry
3).

However, when we applied these conditions using 2-chlo-
robenzaldehyde (1.0 mmol), p-toluidine (1.1 mmol) and
NaN3 (2.0 mmol) as starting materials, the reaction failed.
However, during these studies, we observed that Cu2O-
NP could catalyze the conversion at 170 °C (Scheme 2);
the reaction was complete within six hours with 2-p-tolyl-
2H-indazole being obtained in good yield (80%). From an
economic point of view, 2-chlorobenzaldehyde is prefer-
able to 2-bromobenzaldehyde as starting material.

Scheme 2  Synthesis of 2-p-tolyl-2H-indazole using 2-chlorobenzal-
dehyde, p-toluidine and NaN3

In the next step, using the optimized conditions, 2-bromo-
benzaldehyde and 2-chlorobenzaldehyde were tested in
one-pot reactions with a variety of substituted amines and
NaN3 in the presence of Cu2O-NP in PEG to give the cor-
responding 2H-indazole derivatives in good yields
(Scheme 3).

As shown, various anilines with substituents such as Me,
Et, OMe, OEt, N(Me)2 and Cl were treated with 2-bromo-
benzaldehyde and NaN3 under the optimized reaction
conditions. The yield of the 2H-indazole derivatives are
shown in Table 2. In addition, aliphatic amines such as

tert-butylamine gave the corresponding 2H-indazoles in
good yield under similar reaction conditions (Table 2, en-
try 9). The present procedure was also examined for 2-
chlorobenzaldehyde with different amines and NaN3, and
the desired 2H-indazole derivatives were obtained at 170
°C (Table 3). Similar to the reactions of 2-bromobenzal-
dehyde, the use of 2-chlorobenzaldehyde produced the de-
sired products with good yields. The 2H-indazole
derivatives were characterized by their melting points, IR,
1H NMR, 13C NMR spectroscopic, mass spectrometric
and elemental analysis data.

Table 1  Effect of Different Solvents and the Amount of Catalyst on 
the Preparation of 2-p-Tolyl-2H-indazole under a Variety of Reaction 
Conditions at 120 °C

Entry Catalyst Solvent Time (h) Yield (%)a

1 – PEG 12 –

2 2 mol% PEG 6 53

3 5 mol% PEG 6 82

4 10 mol% PEG 6 82

5 5 mol% DMF 8 55

6 5 mol% DMSO 8 63

7 5 mol% toluene 12 –

8 5 mol% H2O
b 12 –

9 5 mol% EtOHb 12 –

a Isolated yield.
b The reaction was carried out under reflux.
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Table 2  One-Pot Synthesis of 2H-Indazole Derivatives Using 2-
Bromobenzaldehyde, Amines and NaN3 in the Presence of Cu2O-NP 
in PEG at 120 °C 

Entry Amine Product Yield (%)a

1

2a 4a

82

2

2b 4b

83

3

2c 4c

88

4

2d 4d

90

5

2e 4e

85

6

2f 4f

90

7

2g 4g

91

Scheme 3  Synthesis of 2H-indazole derivatives using 2-halobenzal-
dehydes (1.0 mmol), amines (1.1 mmol) and NaN3 (2.0 mmol) in the
presence of Cu2O-NP (5.0 mol%) under ligand-free conditions in
PEG
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We propose a mechanism, for the formation of the 2H-in-
dazole derivatives using 2-halobenzaldehydes, amines
and NaN3 in the presence of Cu2O-NP (Scheme 4). This
mechanism is analogous to the established mechanisms
reported in the literature,10a,c although Cu2O-NP in PEG
appears to exhibit better activity for the one-pot three-
component synthesis of 2H-indazole derivatives. In the
presence of Cu2O-NP, 2-halobenzaldehyde reacts with
aniline to give imine I by elimination of H2O. We believe
that the catalyst helps to form imine I in this reaction.
Then addition of NaN3 to imine I forms the intermediate
II followed by generation of intermediate III. Cyclization
of the intermediate III gives the intermediate IV, which
subsequently forms product V by elimination of N2.

In conclusion, a facile and efficient Cu2O nanoparticle
catalyzed protocol for the synthesis of 2H-indazole deriv-
atives from 2-halobenzaldehydes, primary amines and
NaN3 as a nitrogen source in the absence of any supple-
mentary ligand in polyethylene glycol (PEG 300) as a
green solvent, has been developed.20 This procedure al-
lows the use of a wide range of amines and 2-halobenz-
aldehydes to assemble various 2H-indazole derivatives in
moderate to good yields. The methodology has the advan-
tages of using commercially available reagents. It occurs
under ligand-free reaction conditions in short reaction
time and, in addition, does not require the purification of
intermediates. The methodology is applicable to 2-bromo-
benzaldehyde and 2-chlorobenzaldehyde and a wide vari-
ety of amines.

8

2h 4h

78

9
2i

4i

79

10

2j 4j

85

11

2k 4k

83

12

2l 4l

87

13

2m 4m

83

a Isolated yield.

Table 2  One-Pot Synthesis of 2H-Indazole Derivatives Using 2-
Bromobenzaldehyde, Amines and NaN3 in the Presence of Cu2O-NP 
in PEG at 120 °C  (continued)

Entry Amine Product Yield (%)a
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Scheme 4  A plausible mechanism for the synthesis of 2H-indazole derivatives
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Table 3  One-Pot Synthesis of 2H-Indazole Derivatives Using 2-
Chlorobenzaldehyde, Amines and NaN3 in the Presence of Cu2O-NP 
in PEG at 170 °C

Entry Amine Product Yield (%)a

1 2a 4a 79

2 2b 4b 80

3 2c 4c 85

4 2d 4d 87

5 2e 4e 83

6 2f 4f 89

7 2g 4g 88

8 2h 4h 67

9 2i 4i 74

10 2j 4j 82

11 2k 4k 80

12 2l 4l 84

13 2m 4m 81

a Isolated yield.
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mmol) and NaN3 (2.0 mmol) in polyethylene glycol (PEG 
300; 3.0 mL) was added the Cu2O-NP catalyst (5 mol%) and 
the mixture was stirred at 120 °C for 2-bromobenzaldehyde 
or at 170 °C for 2-chlorobenzaldehyde. The progress of the 
reaction was monitored by TLC using n-hexane–EtOAc 
(10:1). After completion of the reaction, the reaction mixture 
was cooled to r.t., the mixture was poured into EtOAc (30.0 
mL) and washed with deionized H2O (3 × 20.0 mL) and 
brine (3 × 20.0 mL). The organic layer was dried (CaCl2), 
filtered and evaporated in vacuo to give the crude product, 
which was purified by silica gel column chromatography 
employing n-hexane–EtOAc (10:1) as eluent.
Typical Characterization Data for Some Compounds:
2-p-Tolyl-2H-indazole (4a): pale yellow solid; mp 98–100 
°C. IR (KBr): 748, 786, 817, 1041, 1118, 1195, 1380, 1450, 
1519, 1620, 2947, 3039, 3129 cm–1. 1H NMR (250 MHz, 
CDCl3): δ = 2.43 (s, 3 H), 7.08–7.14 (m, 1 H), 7.30–7.35 (m, 
3 H), 7.71 (d, J = 8.5 Hz, 1 H), 7.77–7.82 (m, 3 H), 8.37 (d, 
J = 0.7 Hz, 1 H). 13C NMR (62.9 MHz, CDCl3): δ = 21.0, 
117.8, 120.3, 120.4, 120.8, 122.3, 122.7, 126.7, 130.1, 
137.9, 138.2, 149.6. MS: m/z (%) = 210 (9.0) [M+ + 2], 209 
(89.6) [M+ + 1], 208 (100.0) [M+], 165 (51.4), 91 (61.1), 65 
(68.1). Anal. Calcd for C14H12N2 (208.262): C, 80.74; H, 
5.81; N, 13.45. Found: C, 80.70; H, 5.87; N, 13.51.

4-(2H-Indazol-2-yl)-N,N-dimethylaniline (4f): orange 
solid; mp 185–187 °C. IR (KBr): 732, 779, 817, 941, 1049, 
1141, 1195, 1226, 1350, 1434, 1519, 1596, 2923, 3055 cm–

1. 1H NMR (250 MHz, CDCl3): δ = 3.02 (s, 6 H), 6.80 (d, J 
= 9.0 Hz, 2 H), 7.07–7.13 (m, 1 H), 7.27–7.33 (m, 1 H), 
7.68–7.75 (m, 3 H), 7.79 (d, J = 8.5 Hz, 1 H), 8.29 (s, 1 H). 
13C NMR (62.9 MHz, CDCl3): δ = 40.5, 111.7, 112.4, 117.6, 
119.9, 120.2, 121.9, 122.1, 122.6, 124.0, 126.1, 130.4, 
149.3, 150.1. MS: m/z (%) = 239 (13.7) [M+ + 2], 238 (73.4) 
[M+ + 1], 237 (100.0) [M+], 208 (47.5), 165 (32.0), 118 
(21.3), 69 (38.2). Anal. Calcd for C15H15N2 (237.304): C, 
75.92; H, 6.37; N, 17.71. Found: C, 75.97; H, 6.48; N, 17.82.
2-(4-Chlorophenyl)-2H-indazole (4h): white solid; mp 
139–141 °C. IR (KBr): 748, 817, 948, 1002, 1087, 1195, 
1380, 1419, 1488, 15.21, 1627, 3062, 3132 cm–1. 1H NMR 
(250 MHz, CDCl3): δ = 7.09–7.15 (m, 1 H), 7.30–7.36 (m, 1 
H), 7.47–7.50 (m, 2 H), 7.69 (d, J = 8.5 Hz, 1 H), 7.78 (d, J 
= 8.7 Hz, 1 H), 7.83–7.86 (m, 2 H), 8.36 (s, 1 H). 13C NMR 
(62.9 MHz, CDCl3): δ = 117.9, 120.2, 120.4, 121.9, 122.7, 
122.9, 127.1, 129.6, 133.5, 138.9, 149.9. MS: m/z (%) = 230 
(35.1) [M+ + 2], 229 (79.8) [M+ + 1], 228 (100.0) [M+], 193 
(57.4), 166 (77.7), 139 (24.5), 111 (51.1), 75 (60.6). Anal. 
Calcd for C13H9ClN2 (228.681): C, 68.28; H, 3.97; N, 12.25. 
Found: C, 68.22; H, 4.07; N, 12.32.
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