by Kimiyasu Isobe*, Nahoko Fukuda, Shouko Nagasawa, and Kaoru Saitou

Department of Biological Chemistry and Food Science, Iwate University, 18-8 Ueda-3, Morioka 020-8550, Japan (phone/fax: +81-19-621-6155; e-mail: kiso@iwate-u.ac.jp)

The enzymes responsible for the conversion of N^{α} -[(benzyloxy)carbonyl]-D-lysine (N^{α} -Z-D-lysine) to N^{α} -Z-D-aminoadipic acid (N^{α} -Z-D-AAA) by *Rhodococcus* sp. AIU Z-35-1 were identified. N^{α} -Z-D-Lysine was first converted to N^{α} -Z-D-aminoadipic δ -semialdehyde (N^{α} -Z-D-AASA) by D-specific amino acid deaminase, whereas N^{α} -Z-L-lysine was converted to N^{α} -Z-L-AASA by L-specific amino acid oxidase. The resulting N^{α} -Z-D-AASA was then converted to N^{α} -Z-D-AAA by the same aldehyde dehydrogenase that is responsible for N^{α} -Z-L-AASA oxidation. The product amount of the D-specific amino acid deaminase reached the maximum at one day of cultivation in the L-lysine medium. The aldehyde dehydrogenase reached the maximum at three days of cultivation.

Introduction. – L- α -Aminoadipic δ -semialdehyde (L- α -AASA) and L- α -aminoadipic acid (L- α -AAA) are precursors of biosynthesis of β -lactam antibiotics, and both compounds and their derivatives provide interesting raw materials for the chemical synthesis of pharmaceuticals or physiologically active peptides. Some biochemical methods for the production of L- α -AASA, L- α -AAA, and their related compounds have been developed using L-lysine-6-aminotransferase or L-lysine-6-dehydrogenase [1][2]. However, these methods had some drawbacks such as the requirement of a second substrate or cofactor regeneration system, and the yields were low. We, therefore, isolated a new bacterial strain, Rhodococcus sp. AIU Z-35-1, as a high producer of N^{α} -Z-L-AAA from N^{α} -Z-L-lysine, to overcome the above drawbacks, and developed an efficient method for production of N^{α} -Z-L-AAA by the cell reaction [3]. This strain was also useful for the production of N^{α} -Z-L-AASA, N^{α} -Z-D-AASA, and N^{α} -Z-D-AAA, since N^{α} -Z-L-lysine was converted to N^{α} -Z-L-AAA via N^{α} -Z-L-AASA and N^{α} -Z-D-lysine was converted to N^{α} -Z-D-AAA via N^{α} -Z-D-AASA [3][4]. Recently, we identified the enzymes catalyzing the conversion of N^{α} -Z-L-lysine to N^{α} -Z-L-AAA [5][6]. However, the enzymes responsible for the conversion of N^{α} -Z-D-lysine to N^{α} -Z-D-AAA have not been identified. Therefore, the present article describes the identification of the enzymes catalyzing the conversion of N^{α} -Z-D-lysine to N^{α} -Z-D-AAA. The optimal cultivation time for the production of these enzymes was also determined.

Results and Discussion. – *Identification of the Enzyme Catalyzing the Conversion of* N^{α} -Z-D-Lysine to N^{α} -Z-D-AASA. Cells from *Rhodococcus* sp. AIU Z-35-1, harvested from the L-lysine medium after 1 d of cultivation, were incubated with N^{α} -Z-D-lysine,

© 2010 Verlag Helvetica Chimica Acta AG, Zürich

and the reaction products were analyzed. In this reaction, formation of N^{α} -Z-D-AASA and NH₃, but not of H₂O₂, was observed (data not shown). When the crude enzyme solution was incubated with N^{α} -Z-D-lysine, formation of N^{α} -Z-D-AASA and NH₃ was also detected, but that of H₂O₂ and NAD(P)H was not (data not shown). In addition, the produced amount of N^{α} -Z-D-AASA increased in parallel with that of NH₃ (*Fig. 1*). Then, the stereospecificity of the enzyme was analyzed using the partially purified enzyme. The formation of NH₃ was detected from N^{α} -Z-D-lysine, but not from N^{α} -Z-Llysine. These results indicate that the conversion of N^{α} -Z-D-lysine to N^{α} -Z-D-AASA was catalyzed by a D-specific amino acid deaminase in *Rhodococcus* sp. AIU Z-35-1, according to *Scheme 1*.

Fig. 1. Formation of NH_3 and N^{α} -Z-D-AASA from N^{α} -Z-D-lysine. N^{α} -Z-D-Lysine (30 µmol) was incubated with 0.009 units of D-amino acid deaminase at 30° and pH 7.0. Open circles, N^{α} -Z-D-AASA; closed circles, NH_3 .

Scheme 1. Conversion of N^a-Z-D-Lysine to N^a-Z-D-AASA by Rhodococcus sp. AIU Z-35-1

We have already reported [5] that when N^{α} -Z-L-lysine was used as substrate, its conversion to N^{α} -Z-L-AASA was catalyzed by an oxidase purified from *Rhodococcus* sp. AIU Z-35-1 and that the amount of H₂O₂ produced increased in parallel with that of NH₃ and N^{α} -Z-L-AASA. We further revealed that this enzyme also exhibited oxidase activity on N^{α} -acetyl-L-lysine, N^{ϵ} -acetyl-L-lysine, and L-amino acids, except for glycine, L-proline, and L-cysteine, but not on N^{α} -Z-D-lysine, N^{α} -acetyl-D-lysine, N^{ϵ} -acetyl-Dlysine, and D-amino acids [5]. Thus, N^{α} -Z-L-lysine was converted to N^{α} -Z-L-AASA by the L-specific amino acid oxidase with broad substrate specificity in *Rhodococcus* sp. AIU Z-35-1. In our studies on the enzymes responsible of the conversion of N^{a} -Z-D-lysine to N^{a} -Z-D-AASA and N^{a} -Z-L-lysine to N^{a} -Z-L-AASA, it was concluded that N^{a} -Z-D-lysine was converted to N^{a} -Z-D-AASA by the D-specific amino acid deaminase, whereas N^{a} -Z-L-lysine was converted to N^{a} -Z-L-AASA by the L-specific amino acid oxidase in *Rhodococcus* sp. AIU Z-35-1. We have already revealed in an earlier report [7] that N^{a} -Z-L-lysine and N^{a} -Z-D-lysine were converted to N^{a} -Z-L-AASA and N^{a} -Z-D-AASA, respectively, by amine oxidase from *Aspergillus niger* AKU 3302. Thus, the enzyme catalyzing the conversion of N^{a} -Z-D-lysine to N^{a} -Z-D-AASA in the *Rhodococcus* strain was also different from that of *A. niger*.

Identification of the Enzyme Catalyzing the Conversion of N^a-Z-D-AASA to N^a-Z-D-AAA. When the crude enzyme solution, which was prepared from the cells incubated in the L-lysine medium, was incubated with N^a-Z-D-AASA, no formation of H₂O₂ and N^a-Z-D-AAA was detected. However, formation of N^a-Z-D-AAA was observed when NAD⁺ was added to the solution. Moreover, the produced amount of NADH increased in parallel with that of N^a-Z-D-AAA (*Fig. 2*). Thus, it was concluded that N^a-Z-D-AASA was converted to N^a-Z-D-AAA by aldehyde dehydrogenase, according to Scheme 2. Then, the substrate specificity of this aldehyde dehydrogenase was analyzed with the purified enzyme. This enzyme also exhibited dehydrogenase activity towards N^a-Z-L-AASA. These results indicated that the enzyme catalyzing the conversion of

Fig. 2. Formation of NADH and N^{α}-Z-D-AAA from N^{α}-Z-D-AASA. N^{α}-Z-D-AASA (30 µmol) was incubated with 0.02 units of aldehyde dehydrogenase at 30° and pH 7.0. Open circles, N^{α}-Z-D-AAA; closed circles, NADH.

Scheme 2. Conversion of N^a-Z-D-AASA to N^a-Z-D-AAA by Rhodococcus sp. AIU Z-35-1

 N^{α} -Z-D-AASA to N^{α} -Z-D-AAA did not show stereospecificity, and both conversions N^{α} -Z-D-AASA to N^{α} -Z-D-AASA

Production of Enzyme. Rhodococcus sp. AIU Z-35-1 was incubated in the L-lysine medium at 30° for four days, and the N^a -Z-D-lysine deaminase activity and the N^a -Z-D-AASA dehydrogenase activity were assayed each day using cell-free extract. The N^a -Z-D-lysine deaminase activity reached the maximum at 1 d of cultivation and was reduced by a longer cultivation time. In contrast, the N^a -Z-D-AASA dehydrogenase activity reached the maximum (*Fig. 3*). These results were in good agreement with our previous results, which indicated that a selective production of N^a -Z-D-AASA was achieved using the cells harvested after one day of cultivation in the L-lysine medium and that N^a -Z-D-AAA was efficiently produced using the cells harvested after two days of cultivation.

Fig. 3. Production of D-amino acid deaminase and aldehyde dehydrogenase. Rhodococcus sp. AIU Z-35-1 was incubated in the L-lysine medium at 30° for 4 d, and the D-amino acid deaminase and the aldehyde dehydrogenase activities were assayed each day using cell-free extract. Closed circles, D-amino acid deaminase; open circles, aldehyde dehydrogenase; triangles, cell growth (OD₆₆₀ nm).

Conclusions. – To identify the enzymes catalyzing the conversion of N^{α} -Z-D-lysine to N^{α} -Z-D-AAA in *Rhodococcus* sp. AIU Z-35-1, a crude enzyme solution from the cells cultivated in the L-lysine medium were prepared, and the enzyme activities towards N^{α} -Z-D-lysine and N^{α} -Z-D-AASA were assayed. When N^{α} -Z-D-lysine was used as substrate, formation of NH₃, but not of H₂O₂ and NAD(P)H, was observed. In addition, the product amounts of NH₃ and N^{α} -Z-D-AASA were stoichiometrically increased by the reaction with partially purified enzyme. This enzyme did not catalyze the deamination of N^{α} -Z-L-lysine. It was, therefore, concluded that the conversion of N^{α} -Z-D-lysine to N^{α} -Z-D-AASA was catalyzed by D-specific amino acid deaminase in *Rhodococcus* sp. AIU Z-35-1.

When N^{α} -Z-D-AASA was incubated with the crude enzyme solution, formation of NADH and N^{α} -Z-D-AAA, but not of H₂O₂, was observed. This enzyme also exhibited dehydrogenase activity towards N^{α} -Z-L-AASA. It was therefore concluded that N^{α} -Z-

D-AASA was converted to N^{α} -Z-D-AAA by non-stereospecific aldehyde dehydrogenase.

In our previous studies of the enzymes responsible for the production of N^{α} -Z-L-AASA and N^{α} -Z-L-AAA from N^{α} -Z-L-lysine by the cells of *Rhodococcus*, we have revealed that N^{α} -Z-L-AASA was produced from N^{α} -Z-L-lysine by L-specific amino acid oxidase, and the resulting N^{α} -Z-L-AASA was converted to N^{α} -Z-L-AAA by aldehyde dehydrogenase. It was therefore concluded that N^{α} -Z-L-AAA and N^{α} -Z-D-AAA were produced from N^{α} -Z-L-lysine by the combination of L-amino acid oxidase and non-stereospecific aldehyde dehydrogenase, respectively, in *Rhodococcus* sp. AIU Z-35-1.

Experimental Part

Chemicals. N^{α} -[(Benzyloxy)carbonyl]-D-lysine (N^{α} -Z-D-lysine) and N^{α} -Z-L-lysine were purchased from Watanabe Chemical Industries (Hiroshima, Japan), and β -NAD⁺ and NADP⁺ were obtained from Oriental Yeast (Osaka, Japan). N^{α} -Z-D-aminoadipic δ -semialdehyde (N^{α} -Z-D-AASA) and N^{α} -Z-L-AASA were prepared according to the method described in [4]. Peroxidase was a gift from Amano Enzyme (Nagoya, Japan). All other chemicals used were of analytical grade and commercially available.

Cultivation of Microorganisms. Rhodoccocus sp. AIU Z-35-1 was incubated in an L-lysine medium at 30° for 1 or 2 d with shaking at 120 strokes per min, according to the method of *Isobe et al.* [3]. The cells were harvested by centrifugation at 20,000g for 10 min, washed with 0.1M potassium phosphate buffer pH 7.0, and stored at -20° until use.

Purification of Enzymes. The cells cultivated in the L-lysine medium were suspended in 1.0 ml of 10 mM buffer (pH 7.0) and disrupted with glass beads using a multi-bead shocker (*Yasui Kikai*, Osaka) at 2500 rpm for 8 min (4×2 min). The supernatant was obtained by centrifugation at 20,000g for 10 min and used as crude enzyme soln. The crude enzyme soln. was applied to column chromatography (CC; *DEAD-Gigacap Q (Tosoh*, Tokyo, Japan) and hydroxyapatite). The eluate from the hydroxyapatite column was used as a partially purified D-amino acid deaminase.

Aldehyde dehydrogenase was purified from the crude enzyme soln. by CC (*DEAE-Toyopearl*, *Phenyl-Toyopearl*, and *Blue-Sepharose*), according to the method of *Isobe et al.* [6].

Analysis of Reaction Products. The reaction products were identified by HPLC using a TSK-Gel DEAE-5PW column (Tosoh, Tokyo, Japan), according to the method of Isobe et al. [8]. The product was collected by monitoring the absorbance at 210 nm, and the molecular mass was then analyzed by a Finnigan Mass Spectrometer LCQ Deca (Thermo Electron, Yokohama, Japan). The aldehyde group of the product was confirmed using 3-methyl-2-benzothiazolinone hydrazone, according to the method of Paz et al. [9]. The amounts of reaction products were calculated from the peak area of the HPLC chromatograms obtained with the TSK-Gel DEAE-5PW column under the same conditions as used for the identification of the reaction products.

Assay of Enzyme Activity. The oxidase activity was assayed by measuring the rate of H_2O_2 formation as follows. The standard mixture contained 40 µmol of substrate, 0.6 µmol of 4-aminoantipyrine, 1.94 µmol of N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline sodium salt dihydrate, 6.7 units of peroxidase, 0.1 mmol of potassium phosphate (pH 7.0), and an appropriate amount of enzyme in a final volume of 1.0 ml. The color development by H_2O_2 formation was spectrophotometrically followed at 30° by measuring the absorbance at 555 nm [5].

The dehydrogenase activity was spectrophotometrically assayed by measuring the rate of NADH formation as follows. The standard mixture contained 20 μ mol of substrate, 0.6 μ mol of β -NAD⁺, 0.2 mmol of potassium phosphate (pH 8.0), and an appropriate amount of enzyme in a final volume of 1.0 ml. The formation of NADH was followed at 30° by measuring the absorbance at 340 nm [6].

The deaminase activity was assayed by measuring the rate of NH_3 formation by coupling with glutamate dehydrogenase (EC 1.4.1.4, GLDH) as follows. The standard mixture contained 30 µmol of

 N^{α} -Z-D-lysine, 0.36 µmol of β -NADPH, 20 units of GLDH, 3 µmol of 2-oxoglutaric acid, 0.1 mmol of potassium phosphate (pH 7.5), and an appropriate amount of enzyme in a final volume of 1.0 ml. The amount of NADP⁺ generated from NH₃ was spectrophotometrically followed at 30° by measuring the absorbance at 340 nm.

One unit of enzyme activity was defined as the amount of enzyme catalyzing the formation of one μ mol of H₂O₂, NADH, or NADPH per min, resp.

REFERENCES

- [1] T. Hammer, R. Bode, Zentralbl. Mikrobiol. 1992, 147, 65.
- [2] T. Fujii, T. Narita, H. Agematu, N. Agata, K. Isshiki, J. Biochem. 2000, 128, 391.
- [3] K. Isobe, K. Tokuta, Y. Narita, A. Matsuura, T. Sakaguchi, N. Wakao, J. Mol. Catal. B: Enzym. 2004, 32, 27.
- [4] K. Isobe, S. Nagasawa, K. Tokuta, A. Matsuura, T. Sakaguchi, N. Wakao, J. Biosci. Bioeng. 2005, 100, 288.
- [5] K. Isobe, S. Nagasawa, J. Biosci. Bioeng. 2007, 104, 218.
- [6] K. Isobe, N. Fukuda, S. Nagasawa, J. Biosci. Bioeng. 2007, 104, 398.
- [7] K. Isobe, K. Tokuta, Y. Narita, A. Matsuura, T. Sakaguchi, N. Wakao, J. Mol. Catal. B: Enzym. 2004, 30, 119.
- [8] K. Isobe, K. Tokuta, Y. Narita, A. Matsuura, T. Sakaguchi, N. Wakao, J. Mol. Catal. B: Enzym. 2004, 30, 13.
- [9] M. A. Paz, O. O. Blumenfeld, M. Rojkind, E. Henson, C. Furfine, P. M. Gallop, Arch. Biochem. Biophys. 1965, 109, 548.