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The efficiency and selectivity of hydrogen atom transfer from organic
molecules is often difficult to control in the presence of multiple potential
hydrogen atom donors and acceptors. Herein, we describe the mechanistic
evaluation of a mode of catalytic activation that accomplishes the highly

gioselectivity of HAT from mul-
tiple C-H groups of similar
strength (10).

We questioned whether the
basic principles of PRC could be
integrated into a catalytic system
for the selective activation of
alcohol «o-C-H bonds in the
presence of a wide range of other
C-H bonds (e.g., a-C=0, a-ether,
allylic or benzylic C-H) (11, 12).
Specifically, we postulated that
the selective C-alkylation of al-
cohols could be achieved via a
photoredox-catalyzed, H-bond-
assisted bond activation strategy
(Fig. 1) (I13-15), wherein the hy-

selective photoredox a-alkylation/lactonization of alcohols with methyl
acrylate via a hydrogen atom transfer mechanism. Our studies indicate a
unique role of tetra-n-butylammonium phosphate in enhancing the
selectivity for « C-H bonds in alcohols in the presence of allylic, benzylic,

a-C=0, and a-ether C-H bonds.

Complex molecules, such as medicinal agents and natural
products, often possess multiple types of C-H bonds, each
with a different inherent reactivity. This intrinsic reactivity
depends on a multi-faceted interplay of steric effects, induc-
tive and conjugative influences, as well as innate strain (7,
2). The intermolecular catalytic functionalization of C(sp®)-
H bonds in a selective manner represents a longstanding
challenge that has inspired decades of effort within the syn-
thetic community. Notable early studies by Bergman (3), as
well as recent advances in selective intermolecular transi-
tion metal catalyzed C(sp®)-H activation—including, among
others, Hartwig’s rhodium-catalyzed borylation of terminal
methyl groups (4), and White’s iron-catalyzed oxidation of
both secondary (2°) and tertiary (3°) aliphatic C-H bonds
(5)—highlight the importance of catalyst structure on site
selectivity.

Catalyst structure has also proven critical to the selectivi-
ty of C(sp®)-H functionalization via hydrogen atom transfer
(HAT) catalysis. HAT—the effective movement of a hydro-
gen atom between two molecular sites—represents a ubiqui-
tous elementary reaction step in organic chemistry (6-8).
The rate of hydrogen abstraction from a C-H bond depends
not only on the C-H bond dissociation enthalpy (BDE), but
also on polar effects in the transition state. In 1987, Roberts
noted that certain electrophilic radicals (e.g., #-butoxyl)
preferentially abstract hydrogen from electron-rich C-H
bonds, while nucleophilic radicals (e.g., amine-boryl) selec-
tively cleave electron-deficient C-H bonds (9). The generali-
ty of this concept was subsequently delineated through the
broad application of polarity reversal catalysis (PRC), which
takes advantage of favorable polar effects to control the re-

droxyalkyl C-H bond is selective-
ly polarized and weakened via
O-H hydrogen bonding.

It is well known that the
strength of o C-H bonds of alco-
hols decreases upon deprotona-
tion of the alcohol O-H group.
This so-called “oxy anionic substituent effect” (16, 17) leads
to the acceleration of a wide range of organic reactions (e.g.,
oxyanionic [1,3] and [3,3] sigmatropic rearrangements and
HAT from alkoxides (18)). More recently, it has been shown
that intermolecular hydrogen bonding between alcohols and
various acceptor molecules gives rise to a similar polariza-
tion and weakening of the adjacent C-H bond (19), the
strength of which is reflected in the *C NMR chemical shift
and the one-bond *C-'H coupling constant (Ven) (20, 21). In
particular, it was found that a 1 kJ/mol increase in the en-
thalpy of the H-bond resulted in a 0.2 Hz decrease in Uy for
hexafluoroisopropanol complexed to various amines (20).
On the basis of these studies, we reasoned that the efficien-
cy and selectivity of alcohol C-H activation could be en-
hanced by catalytic complexation with a suitable hydrogen-
bond acceptor. In particular, interaction of the hydroxyl
group of an alcohol with a hydrogen-bond acceptor catalyst
should increase n-o* delocalization of the oxygen lone pair,
thereby rendering the o« C-H bond more hydridic (i.e., more
polarized) and more susceptible to HAT by an elecrophilic
radical species.

Herein, we demonstrate the selective c-activation of al-
cohol C-H bonds in the presence of allylic, benzylic, c-oxy
and o-acyl C-H groups via a photoredox protocol, which
relies on the cooperation of three distinct catalysts: an iridi-
um-based photoredox catalyst; an HAT catalyst; and tetra-n-
butylammonium phosphate (or TBAP), a hydrogen-bonding
catalyst. On the basis of kinetic analyses, NMR structural
data, and kinetic isotope effects (KIEs), we demonstrate the
role of TBAP in facilitating the highly selective o hydrogen
atom abstraction from alcohols.
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The past several years have witnessed a dramatic in-
crease in the application of photoredox catalysis—the use of
visible light-activated organic dyes or metal complexes to
facilitate single electron transfer events—to the develop-
ment of organic transformations (22). By combining photo-
redox activation with organocatalysis (23, 24) and nickel
catalysis (25), we have recently highlighted the unique po-
tential of photoredox catalysis to achieve bond construc-
tions that are not possible with more traditional methods.

We became interested in the selectivity and efficiency of
C-H bond activation in the context of our ongoing cam-
paign to merge visible light photoredox catalysis with HAT
catalysis (26-29). We have previously demonstrated the util-
ity of thiols (S-H BDE = 87 Kkcal/mol) as HAT catalysts in
the photoredox coupling of benzylic ethers (C-H BDE = 86
kcal/mol) with arenes (26) and imines (27). We recognized
that the ability to catalytically activate stronger C-H bonds,
such as those present in aliphatic alcohols and ethers (o0 C-
H BDE > 90 kcal/mol), would hinge on the identification of
a catalyst that satisfies two critical requirements: (i) homo-
lytic cleavage of a strong substrate C-H bond must be coun-
terbalanced by formation of a stronger H-[catalyst] bond,
and (ii) selective activation of hydridic C-H bonds (i.e.,
bonds that are significantly polarized due to oxygen lone
pair donation) must be realized. With these criteria in mind,
we questioned whether it might be possible to transiently
generate a hydridophilic amine radical cation from quinu-
clidine (3, Fig. 2A), which would be uniquely suited to ab-
straction of relatively strong, hydridic C-H bonds, while
resisting o-deprotonation due to poor H-C-N orbital over-
lap in this rigid bicyclic structure (30, 3I). As outlined in
Fig. 2A, we envisioned an initial excitation of the well
known photocatalyst, Ir[dF(CF3)ppylo(dtbbpy)PFs
[dF(CFs)ppy = 2-(2,4-difluorophenyl)-5-
(trifluoromethyl)pyridine, dtbbpy = 4,4’-di-tert-butyl-2,2’-
bipyridine] (1), to *Ir[dF(CF;)ppyl.(dtbbpy)* (2) with visible
light. Reductive quenching of 2 (Ei,"*¢ = +1.21 V vs. SCE in
CH;CN) (32) via oxidation of 3 (E»™ = +1.1 V vs. SCE in
CH;CN) (33, 34) would then afford radical cation 4 and
Ir(IT) (5). At this stage, the electrophilic quinuclidinium rad-
ical 4 should abstract a hydrogen atom from an alcohol (6)
to afford o-hydroxy radical 7 and quinuclidinium ion 8 [H-
N* BDE = 100 kcal/mol, (33)]. Nucleophilic addition of «-oxy
radical 7 to an electron-deficient alkene would furnish alkyl
radical 9. Single electron reduction of this electron-deficient
radical 9 by Ir(Il) (5) (Ey»™® = -1.37 V vs. SCE in CH;CN),
would then afford the «-alkylated product 10 following pro-
tonation and lactonization, while simultaneously regenerat-
ing both the photocatalyst (5-1) and the HAT catalyst (8-3)
(35, 36).

We initially validated our proposed alkylation protocol
by subjecting 1-hexanol (11) and methyl acrylate to blue
light in the presence of amine 3 (10 mol%) and photocata-
lyst 1, which afforded after 24 hours y-nonalactone (12) in
67% yield after acidic work-up (Fig. 2B). We next evaluated a

range of hydrogen-bond acceptor catalysts, including the
tetra-n-butylammonium salts of phosphate, trifluoroacetate,
and diphenyl phosphate (Fig. 2B). Superior levels of product
formation were achieved with catalytic TBAP (25 mol%),
which provided the desired lactone in 84% yield. Initial rate
kinetic analysis of the alkylation/lactonization of 11 revealed
rate enhancements in the presence of each hydrogen-
bonding catalyst examined, with the largest initial rate ac-
celeration using BusNCO,CF; or Bus,N(PhO),PO, (7. = 2.6
and 2.5, respectively).

We next demonstrated that a wide range of 1° and 2° al-
cohols undergo selective o-hydroxy alkylation with methyl
acrylate in good to excellent yields using TBAP catalysis
(Fig. 2C). As outlined in Fig. 3, these conditions clearly ena-
ble the selective activation of alcohol C-H bonds in the
presence of various o-oxy C-H groups, including cyclic and
acyclic alkyl ethers (21, 24 and 25, 85%, 71% and 77% yield,
respectively); silyl ethers (23, 73% yield); and esters (22,
81% yield). Moreover, excellent selectivity was achieved in
the presence of both allylic and benzylic hydrogens (e.g.,
26-29, 70-75% yield). The selectivity of this H-bond-
assisted C-H activation platform was further demonstrated
via the C-H alkylation/lactonization of bifunctional steroid
derivatives, which provided the corresponding lactone
products in good levels of efficiency (25 and 26, 77% and
70%, respectively). It should be noted that electron-deficient
a-benzoyloxy and o-acyl C-H bonds (22 and 26) are ex-
pected to be inherently deactivated toward HAT with re-
spect to electrophilic radical HAT systems (10), such as
quinuclidinium radical cation. In the absence of TBAP,
higher levels of substrate concentration were required to
achieve useful efficiencies. However, under those conditions,
non-selective C-H abstraction of weaker, less hydridic C-H
bonds was observed. Importantly, in all cases outlined in
Fig. 3, we only observed alkylation products arising from the
activation of the hydroxyalkyl C-H bonds present in the
various substrates.

We next turned our attention to defining the capacity for
selective a-hydroxy C-H functionalization in the presence of
C-H bonds that have similar polarity and strength. Specifi-
cally we selected tetrahydrofuran (THF) as a prototypical
ether substrate, which would normally undergo C-H activa-
tion via HAT with rates similar to alcohol substrates. In-
deed, we found that the dual catalytic system involving
quinuclidine and photoredox catalyst 1 enabled the efficient
alkylation of THF with rates that were competitive with 1-
hexanol in competition experiments, affording a 1.7:1 mix-
ture of lactone and ether products (Fig. 4A) (37). However,
the addition of 25 mol% of TBAP catalyst enabled a dra-
matic increase in overall reaction selectivity to afford almost
exclusively the alcohol C-H alkylation product (75% lactone,
1% ether).

To further understand the role of hydrogen-bonding in
this H-bond-assisted C-alkylation process, a series of compu-
tational calculations and NMR experiments were undertak-
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en. These studies were to evaluate the interaction of 1-
hexanol with various hydrogen-bonding catalysts (high-
lighted in Fig. 2B) and to determine their accompanying
effect on the o-hydroxy C-H bond strength. Density func-
tional theory (DFT) calculations, were performed using an
unrestricted BBLYP functional with a 6-31G basis set. In the
presence of either phosphate, diphenyl phosphate, or tri-
fluoroacetate tetrabutylammonium salts, a BDE weakening
of approximately 3 kcal/mol was calculated (see Supplemen-
tary Material). While this represents a significant change in
the «-C-H BDE of 1-hexanol from 94.1 kcal/mol to 91.0
kcal/mol when bonded to the TBAP catalyst, it clearly
demonstrates that BDE is not the only factor defining this
HAT selectivity and bond polarization effects are likely im-
portant.

NMR experiments were also performed to explore the in-
fluence of both quinuclidine and TBAP as hydrogen-bonding
catalysts for 1-hexanol. In the absence of either additive, the
3C NMR chemical shift of the o carbon of 1-hexanol (5C1) in
CDCl; (38) appeared at 63.1 ppm with Jchexanon=141.1 Hz.
Addition of an equimolar amount of quinuclidine resulted
in a 0.4 ppm upfield shift (5Clhexano:3=62.7 ppm) and a slight
decrease in the one-bond “¥C-'H coupling constant
(*JcHihexanot:31 = 140.4 Hz). For comparison, a 1:1 mixture of 1-
hexanol and TBAP gave rise to a similarly upfield shift in
the 3C signal for C1 of 1-hexanol (5Clhexanoitear = 62.6 ppm;
AS5C1=0.5 ppm), with 1JCH(hexanol:TBAP) = 140.3 Hz. These data
clearly indicate that both quinuclidine and TBAP can induce
bond weakening of the o-Cl-H of 1-hexanol via hydrogen
bonding. These data are also consistent with decreased s-
character in the hybrid carbon orbitals of the C-H bond
(i.e., increased hydridicity) of hexanol upon H-bond for-
mation (39).

To more thoroughly outline the factors governing both
the rate and selectivity of the C-alkylation of alcohols, a
suite of mechanistic experiments was undertaken. The ini-
tial rate of the reaction of 1-hexanol with methyl acrylate
showed first-order dependence on [hexanolli: and [acry-
late]ii. The observed increase in the initial rate of reaction
in the presence of TBAP (Fig. 2B), coupled with first-order
dependence on both reactants, implies that TBAP serves to
lower the energy barrier of: (i) the C-H abstraction step
(due to o-C-H bond weakening); (ii) the C-C bond forming
step, i.e., addition of radical 9 to methyl acrylate (due to
enhanced nucleophilicity of the H-bonded o-hydroxy radi-
cal); or (iii) a combination of both of these steps.

In order to distinguish between these three possibilities,
a series of experiments was conducted to assess potential
deuterium Kkinetic isotope effects on the C-H abstraction
step of the proposed catalytic cycle. First, the rate constants
for the coupling of methyl acrylate with either 3-pentanol or
D-3-pentanol (30-16, Fig. 4B) were found to be identical,
i.e.,, KIE = 1, clearly demonstrating that C-H/D abstraction
from the alcohol 30 does not occur during the turnover-
limiting transition state (TLTS) of our proposed catalytic

cycle (Fig. 2A). However, an intramolecular competition
experiment of mono-deuterated alcohol 31 afforded a mix-
ture of deuterated and undeuterated lactones (Pp and Py)
with a 1.6:1 ratio (Fig. 4C). This result demonstrates that
even though C-H/D abstraction is not rate-limiting, it rep-
resents the selectivity-determining step of the C-alkylation
of hexanol 31. The recovered starting material from this
experiment did not contain any fully protonated 1-hexanol
nor d.-hexanol, confirming that C-H/D abstraction is irre-
versible in this process. The irreversibility of the C-H ab-
straction step was further confirmed by two additional
experiments: first, in an intermolecular competition be-
tween 1-hexanol and di-deuterated hexanol 32 (Fig. 4D), in
which no amount of mono-deuterated alcohol 31 was de-
tected during the process; and second, in the C-alkylation of
enantiopure alcohol 33 (Fig. 4E), in which no racemization
of starting material was observed upon recovery of excess
starting material (40). Taken together, these results are con-
sistent with the mechanistic scenario (iii): a dual role of
TBAP in both accelerating the C-H abstraction from alco-
hols and enhancing the rate of addition of the resulting rad-
ical to Michael acceptors (41).

Finally, compelling experimental evidence for our pro-
posed C-H activation pathway was attained in the form of
initial rate data for the conversion of cyclopropyl radical
clock alcohol 35 to aldehyde 36 in the presence and ab-
sence of TBAP catalyst (Fig. 4F). Specifically, we reasoned
that C-H abstraction from 35 to generate the 2-
(alkoxycarbonyl)cyclopropylcarbinyl radical (rate constant
for rearrangement = 5-8 x 10'° s at 25°C (42-44)] would be
rate-limiting. As such, enhancement in the rate of C-H ab-
straction via H-bond-assisted C-H activation should be
clearly manifested in the observed rate of conversion of 35
to 36 in the presence and absence of TBAP catalyst. Indeed,
under our photoredox/HAT conditions, a nine-fold rate en-
hancement in the rate of conversion of alcohol 35 to alde-
hyde 36 was observed upon addition of 25 mol% TBAP (45).
This result clearly corroborates our mechanistic proposal,
wherein TBAP facilitates C-H abstraction from alcohols via
hydrogen bond activation. The activation concept presented
here is likely pertinent to a wide range of C-H abstraction
reactions.
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Can we activate strong C-H bonds in the presence of weaker C—H bonds?
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Fig. 1. Proposed hydrogen bond assisted C—H activation of alcohols. See (13-15) for
BDE values.
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A Harnessing a powerful HAT catalyst: quinuclidine
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Fig. 2. Reaction development. (A) H-bond-assisted C—H activation of alcohols: proposed mechanistic
pathway for the C-alkylation of alcohols with Michael acceptors. SET = single-electron transfer. HAT =
hydrogen atom transfer. (B) Evaluation of hydrogen-bonding catalysts. Yield determined by H NMR
using an internal standard. (C) Selected scope of simple alcohol addition to methyl acrylate (only
products are shown; experimental conditions as in B). Isolated yields are reported.
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Selective alkylation of alcohol C—H in the presence of ether C—H (@ = strong C-H = weaker C—H)
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Fig. 4. Mechanistic studies. (A)
H-bond-dependent selectivity of a-
oxy C-H alkylation. (B) Kinetic
isotope effect determined from
two parallel kinetic analyses. (C)
Kinetic isotope effect determined
from intramolecular competition
experiment. (D) Kinetic isotope
effect determined from
intermolecular competition
experiment. (E) Evaluation of the
enantiomeric excess of unreacted
alcohol  under standard C-
alkylation conditions. (F) Effect of
TBAP on the rate of C-H
abstraction from 35.
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