Received: 30 November 2010

(wileyonlinelibrary.com) DOI 10.1002/jms.1889

Published online in Wiley Online Library: 2011

How to identify and discriminate between the methyl quinates of chlorogenic acids by liquid chromatography-tandem mass spectrometry

Accepted: 7 January 2011

Rakesh Jaiswal and Nikolai Kuhnert*

The methyl esters of chlorogenic acids, methyl quinates, are widely distributed in plant materials and frequently appear as extraction artifacts in plant samples. This is the first time when liquid chromatography-tandem mass spectrometry methods have been used for the identification and characterization of the methyl quinates. For this purpose, methyl quinates of mono caffeoylquinic acids and mono feruloylquinic acids were synthesized as authentic standards. The methyl quinates of mono and diacyl chlorogenic acids have shown characteristic fragmentation pattern in their tandem mass spectra. MS^{n+1} spectra of the methyl quinates of diacyl chlorogenic acids were identical to MS^n spectra of mono acyl derivatives. These quinates do not produce any methyl quinate peak at m/z 205 if compared with quinic acid peak at m/z 191 in negative ion mode. In the MS^n spectra of these quinates, cinnamic acid part or cinnamoyl part was detected as a base peak in negative ion mode. The retention time, order of elution and fragmentation pattern were completely different if compared with LC– MS^n methods developed for chlorogenic acids. These LC– MS^n methods have been applied for the identification and regioisomeric characterization of the methyl quinates of chlorogenic acids in maté tea and woodruff (*Galium odoratum*). Two methyl caffeoylquinates (2 and 4) were identified as methyl 3-caffeoylquinate and methyl 5-caffeoylquinate. Copyright © 2011 John Wiley & Sons, Ltd.

Keywords: chlorogenic acids; methyl feruloylquinate; methyl caffeoylquinate; LC-MSⁿ

Introduction

Classically, chlorogenic acids (CGAs) are a family of esters formed between quinic acid and certain *trans*-cinnamic acids, most commonly caffeic, *p*-coumaric and ferulic acids;^[1-3] sinapic acid and dimethoxycinnamic acid are also present in certain plant species.^[4-7] Structures are shown in Fig. 1. In the IUPAC system, used throughout this manuscript, (–) -quinic acid is defined as 1L-1(OH),3,4/5-tetrahydroxycyclohexane carboxylic acid but Eliel and Ramirez^[8] recommend 1 α ,3*R*,4 α ,5*R*-tetrahydroxycyclohexane carboxylic acid. The CGAs show a variety of biological activities like antioxidant, anti-inflammatory, anti-HIV, anti-HBV, radical scavenging, inhibit mutagenesis and carcinogenesis and are considered to be beneficial to human health.^[9–13]

Structurally related, but much less common, are similar esters between quinic acid alkyl ester (quinate) and caffeic acid or quinic acid alkyl ester and ferulic acid. These alkyl esters show biological activities like antioxidant, anti-stress, anti-aging and they inhibit collagenase, reverse transcriptase and DNA polymerase.^[14-17] On many occasions, methyl caffeoylquinates,^[18-20] ethyl caffeoylquinates,^[21] butyl caffeoylquinates,^[22] methyl feruloylquinates,^[23] methyl dicaffeoylquinates,^[15,16,24] butyl dicaffeoylquinates,^[25] methyl caffeoyl-sinapoylquinates and ethyl caffeoyl-sinapoylquinates^[26] are reported in nature by the tedious isolation and purification methods followed by spectroscopic identification. On occasions methyl quinates might as well be the product formed after methanolic extraction and could frequently be artifacts in plant analysis. On no occasion have the alkyl quinates of CGAs in nature or dietary materials have been analyzed by tandem mass spectrometry and characterized to their regioisomeric level.

Plants that synthesize CGAs commonly produce many related compounds (over 70 in the coffee bean, for example) and using liquid chromatography-tandem mass spectrometry ($LC-MS^n$) it has been possible to discriminate between individual isomers of monoacyl, diacyl and triacyl CGAs, without the need to isolate the pure compounds.^[4,6,7,27,28] This paper reports the development and application of $LC-MS^n$ methods to the CGAs methyl esters.

Experimental

Chemicals and materials

All the analytical grade solvents were purchased from Sigma–Aldrich (Bremen, Germany). The CGAs, 3-caffeoylquinic acid, 4-caffeoylquinic acid, 5-caffeoylquinic acid (CGA), 3, 4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4, 5-dicaffeoylquinic acid were purchased from PhytoLab (Vestenbergsgreuth, Germany). Green maté tea and green Robusta coffee beans were purchased from a supermarket in Bremen (Germany). Woodruff (*Galium odoratum*) leaves were collected from the Rhododendron Botanical Garden, Bremen (Germany).

* Correspondence to: Nikolai Kuhnert, Department of Chemistry, School of Engineering and Science, Jacobs University Bremen, Campus Ring 8, 28759 Bremen, Germany. E-mail: n.kuhnert@jacobs-university.de

Department of Chemistry, School of Engineering and Science, Jacobs University Bremen, Campus Ring 8, 28759 Bremen, Germany

Figure 1. Representative structures of the methyl quinates of chlorogenic acids.

Extracts of green coffee beans, maté tea and woodruff (G. odoratum)

The extraction of green Robusta coffee beans, maté tea and woodruff were carried out using the methods reported previously.^[6,7] The aqueous extractions were also carried out to confirm that methyl quinates were not only artifacts of methanolic extractions.

Preparation of a mixture of methyl quinates of CGAs from green coffee extract

A green Robusta coffee beans extract of 500 mg was refluxed with methanol (20 ml) and acidic resin (Amberlite IR 120 H⁺, 500 mg) for 12 h, and then filtered to remove the resin. The methanol was removed by evaporation *in vacuo* and the extracts were stored at -20 °C until required, thawed at room temperature, dissolved in methanol (60 mg/10 ml of methanol), filtered through a membrane filter and used directly for LC-MS.

Synthesis of methyl 3-, 4- and 5-caffeoylquinate and methyl 3,4-, 3,5- and 4,5-dicaffeoylquinate

The CGAs (0.5 mg of each) were dissolved in methanol (5 ml) and refluxed in the presence of an acid catalyst (Amberlite IR 120 H⁺, 2 mg) for 10 h, filtered and used directly for $LC-MS^n$ analysis.

Synthesis of the mixtures of regioisomers of methyl caffeoylquinate (MCQ) (1–4) and methyl feruloylquinate (MFQ) (5–8)

To a solution of methyl quinate (101 mg, 0.49 mmol) and DMAP (16 mg, 0.12 mmol) in CH₂Cl₂ (10 ml) were added triethylamine (4 ml) and 3,4-diacetylcaffeic acid chloride/4-acetylferuloylchloride (0.49 mmol) at room temperature. The reaction mixture was stirred for 4 h and acidified with 2 M HCl (pH \approx 1) and then stirred for an additional 1 h to remove the acetyl protecting groups. The layers were separated and the aqueous phase was re-extracted with CH₂Cl₂ (1 × 20 ml) and EtOAc (2 × 20 ml). The combined organic layers were dried over Na₂SO₄, filtered and the solvents were removed *in vacuo*. The resulting

esters were analyzed by high-performance liquid chromatography (HPLC)/MS.

Liquid chromatography-tandem mass spectrometry (LC-MSⁿ)

The LC equipment (Agilent 1100 series, Karlsruhe, Germany) comprised a binary pump, an auto sampler with a 100 µl loop and a DAD detector with a light-pipe flow cell (recording at 320 and 254 nm and scanning from 200 to 600 nm). This was interfaced with an ion-trap mass spectrometer fitted with an ESI source (Bruker Daltonics HCT Ultra, Bremen, Germany) operating in full scan, auto MS^n mode to obtain fragment ion m/z. Tandem mass spectra were acquired in auto-MSⁿ mode (smart fragmentation) using a ramping of the collision energy. Maximum fragmentation amplitude was set to 1 V, starting at 30% and ending at 200%. MS operating conditions (negative mode) had been optimized using 5-caffeoylquinic acid with a capillary temperature of 365 °C, a dry gas flow rate of 10 l/min and a nebulizer pressure of 10 psi. High resolution LC-MS was carried out using the same HPLC equipped with a MicrOTOF Focus mass spectrometer (Bruker Daltonics) fitted with an ESI source and internal calibration was achieved with 10 ml of 0.1 M sodium formate solution injected through a six-port valve prior to each chromatographic run. Calibration was carried out using the enhanced quadratic mode.

High-performance liquid chromatography (HPLC)

Separation was achieved on a 150 mm \times 3 mm i.d. column containing diphenyl 5 μ m, with a 5 mm \times 3 mm i.d. guard column (Varian, Darmstadt, Germany). Solvent A was water/formic acid (1000:0.02, v/v) and solvent B was methanol. Solvents were delivered at a total flow rate of 500 μ l/min. The gradient profile was from 10% B to 70% B linearly in 60 min followed by 10 min isocratic, and a return to 10% B at 80 and 10 min isocratic to re-equilibrate.

Results and Discussion

General LC-MS chromatographic and spectroscopic data

All data for methyl quinates of CGAs presented in this paper use the recommended IUPAC numbering system^[1] and specimen structures are presented in Fig. 1. In general, peak identities were consistent both within and between analyses. However, when the mass spectrum for a particular compound included two ions of similar mean intensities, within-analysis experimental error dictated that in some individual MS scans one would be more intense and for other scans the reverse would be true. This phenomenon was encountered primarily when the signal intensity was lower, that is with quantitatively minor components and/or higher order spectra. For example, methyl 3-caffeoyl-5-pcoumaroylquinate (M3C,5pCoQ) (**19**) produces MS² ions at m/z 349 and 367 which are essentially coequal in some spectra. However, in this particular case the lower mass ion has been assigned consistently as the base peak. Fragment ions with intensities <10% of the base peak have been reported only when they are needed for comparison.

For the selective syntheses of M3CQ (2), M4CQ (3), M5CQ (4), M3,4-diCQ (12), M3,5-diCQ (13) and M4,5diCQ (14), their respective CGAs were treated with methanol in the presence of an acid catalyst. Mixtures of the regioisomers of mono-acylated CGA methyl esters were synthesized by a simple condensation reaction between a cinnamoyl chloride and methyl quinate (Fig. 2). In these mixtures, their elemental composition was confirmed by high-resolution mass spectrometry with the error being below 5 ppm (Table 1).

It is well known that green coffee beans are rich in CGAs (more than 70 compounds) and therefore the extract of green coffee beans was treated with methanol in the presence of an acid catalyst to generate a series of methyl quinates of CGAs (Table 2).

R₁=H, R₂=CH₃, Methyl feruloylquinate

Figure 2. Synthesis of regioisomers of methyl caffeoylquinates and methyl feruloylquinates.

Table 1.	High-resolution mass (MS-TOF) data of methyl quinates of chlorogenic acids and their parent ions (M – H)												
No.	Methyl quinate	Mol. formula	Theor. <i>m/z</i> (M — H)	Exp. <i>m/z</i> (M — H)	Error (ppm)	Exp. <i>m/z</i> (M — H) ^a	Error (ppm)						
1	M1CQ	C ₁₇ H ₂₀ O ₉	367.1035	-		367.1021	3.7						
2	M3CQ	$C_{17}H_{20}O_9$	367.1035	367.1038	-1.0	367.1032	0.8						
3	M4CQ	$C_{17}H_{20}O_9$	367.1035	367.1038	-1.0	367.1026	2.3						
4	M5CQ	C ₁₇ H ₂₀ O ₉	367.1035	367.1044	-2.5	367.1032	0.8						
5	M1FQ	C ₁₈ H ₂₂ O ₉	381.1191	-		381.1185	1.5						
6	M3FQ	C ₁₈ H ₂₂ O ₉	381.1191	381.1201	-2.7	381.1176	4.0						
7	M4FQ	C ₁₈ H ₂₂ O ₉	381.1191	381.1197	-1.6	381.1185	1.5						
8	M5FQ	C ₁₈ H ₂₂ O ₉	381.1191	381.1198	-1.8	381.1192	-0.4						
9	M3pCoQ	C ₁₇ H ₂₀ O ₈	351.1085	351.1098	-3.6	-							
10	M4pCoQ	C ₁₇ H ₂₀ O ₈	351.1085	351.1085	0.0	-							
11	M5pCoQ	C ₁₇ H ₂₀ O ₈	351.1085	351.1087	-0.3	-							
12	M3,4-diCQ	C ₂₆ H ₂₆ O ₁₂	529.1351	529.1331	3.8	-							
13	M3,5-diCQ	C ₂₆ H ₂₆ O ₁₂	529.1351	529.1357	-1.0	-							
14	M4,5-diCQ	C ₂₆ H ₂₆ O ₁₂	529.1351	529.1373	-4.0	-							
15	M3C-4FQ	C ₂₇ H ₂₈ O ₁₂	543.1508	543.1518	-1.9	-							
16	M3C-5FQ	C ₂₇ H ₂₈ O ₁₂	543.1508	543.1519	-2.0	-							
17	43C-5FQ	C ₂₇ H ₂₈ O ₁₂	543.1508	543.1516	-1.4	-							
18	M3C-4pCoQ	C ₂₆ H ₂₆ O ₁₁	513.1402	513.1413	-2.0	-							
19	M3C-5pCoQ	C ₂₆ H ₂₆ O ₁₁	513.1402	513.1416	-2.6	-							
20	M4pCo-5CQ	C ₂₆ H ₂₆ O ₁₁	513.1402	513.1406	-0.7	-							
21	M3,4-diFQ	C ₂₈ H ₃₀ O ₁₂	557.1664	557.1685	-3.7	-							
22	M3,5-diFQ	$C_{28}H_{30}O_{12}$	557.1664	557.1672	-1.4	-							
23	M4,5-diFQ	C ₂₈ H ₃₀ O ₁₂	557.1664	557.1675	-1.8	-							
24	M3C-5SiQ	C ₂₈ H ₃₀ O ₁₃	573.1614	573.1626	-2.1								
^a Syntheti	c methyl quinates.												

Table 2. Numbering and abbreviations of Chlorogeinic acids of green Robusta coffee beans and their respective methyl quinates (after the treatment with acidic methanol) (* denotes not detected)

No.	Methyl quinate	Abbreviation	Chlorogenic acid	Abbreviation
1	Methyl 1-caffeoylquinate*	M1CQ	1-Caffeoylquinic acid*	1-CQA
2	Methyl 3-caffeoylquinate	M3CQ	3-Caffeoylquinic acid	3-CQA
3	Methyl 4-caffeoylquinate	M4CQ	4-Caffeoylquinic acid	4-CQA
4	Methyl 5-caffeoylquinate	M5CQ	5-Caffeoylquinic acid	5-CQA
5	Methyl 1-feruloylquinate*	M1FQ	1-Feruloylquinic acid*	1-FQA
6	Methyl 3-feruloylquinate	M3FQ	3-Feruloylquinic acid	3-FQA
7	Methyl 4-feruloylquinate	M4FQ	4-Feruloylquinic acid	4-FQA
8	Methyl 5-feruloylquinate	M5FQ	5-Feruloylquinic acid	5-FQA
9	Methyl 3-p-coumaroylquate	M3pCoQ	3-p-Coumaroylquinic acid	3-pCoQA
10	Methyl 4-p-coumaroylquate	M4pCoQ	4-p-Coumaroylquinic acid	4-pCoQA
11	Methyl 5-p-coumaroylquate	M5 <i>p</i> CoQ	5-p-Coumaroylquinic acid	5- <i>p</i> CoQA
12	Methyl 3,4-dicaffeoylquinate	M3,4-diCQ	3,4-Dicaffeoylquinic acid	3,4-diCQA
13	Methyl 3,5-dicaffeoylquinate	M3,5-diCQ	3,5-Dicaffeoylquinic acid	3,5-diCQA
14	Methyl 4,5-dicaffeoylquinate	M4,5-diCQ	4,5-Dicaffeoylquinic acid	4,5-diCQA
15	Methyl 3-caffeoyl-4-feruloylquinate	M3C-4FQ	3-Caffeoyl-4-feruloylquinic acid	3C-4FQA
16	Methyl 3-caffeoyl-5-feruloylquinate	M3C-5FQ	3-Caffeoyl-5-feruloylquinic acid	3C-5FQA
17	Methyl 4-caffeoyl-5-feruloylquinate	M4C-5FQ	4-Caffeoyl-5-feruloylquinic acid	4C-5FQA
18	Methyl 3-caffeoyl-4-p-coumaroylquinate	M3C-4pCoQ	3-Caffeoyl-4-p-coumaroylquinic acid	3C-4pCoQA
19	Methyl 3-caffeoyl-5-p-coumaroylquinate	M3C-5pCoQ	3-Caffeoyl-5-p-coumaroylquinic acid	3C-5 <i>p</i> CoQA
20	Methyl 4-p-coumaroyl-5-caffeoylquinate	M4pCo-5CQ	4-p-Coumaroyl-5-caffeoylquinic acid	4pCo-5CQA
21	Methyl 3,4-diferuloylquinate	M3,4-diFQ	3,4-Diferuloylquinic acid	3,4-diFQA
22	Methyl 3,5-diferuloylquinate	M3,5-diFQ	3,5-Diferuloylquinic acid	3,5-diFQA
23	Methyl 4,5-diferuloylquinate	M4,5-diFQ	4,5-Diferuloylquinic acid	4,5-diFQA
24	Methyl 3-caffeoyl-5-sinapoylquinate	M3C-5SiQ	3-Caffeoyl-5-sinapoylquinic acid	3C-5SiQA

Figure 3. Extracted ion chromatogram (EIC) of methyl-caffeoylquinic acids (1-4) in negative ion mode at m/z 367.

Characterization of methyl caffeoylquinates (Mr 367)

3-Caffeoylguinic acid, 4-caffeoylguinic acid and 5-caffeoylguinic acid were treated with methanol in the presence of an acid catalyst which resulted in the formation of their respective methyl esters. The retention times and fragmentation patterns were compared with the synthetic mixture of mono caffeoyl quinic acid methyl esters, and the presence of these esters was investigated in the green coffee extract after treatment with methanol. Three of the four regioisomers present in the mixture of caffeoylquinic acid methyl esters could thus be identified by their retention times and fragmentation patterns in mass spectra and the fourth isomer followed automatically (Fig. 3). The order of elution for the four isomers was M3CQ > M1CQ > M4CQ > M5CQ. This order of elution is completely different when compared with the one observed for the caffeoyl quinic acids (1 > 3 > 5 > 4). The first and third eluting isomers M3CQ (2) and M4CQ (3), respectively, produced both the MS² base peak at m/z 161 ([caffeic acid-H₂O-H⁺]⁻) and an MS² secondary peak at m/z 135 ([caffeic acid-CO₂-H⁺]⁻) (Figs 4 and 5). They produced the MS^3 base peak at m/z 133 and

Figure 5. Proposed fragmentation pathway for methyl 3-caffeoylquinate 2 and methyl 4-caffeoylquinate 3.

Figure 4. MS^3 spectra of methyl caffeoylquinates (1-4) (parent ion at m/z 367 in negative ion mode).

Figure 6. Proposed fragmentation pathway for methyl 1-caffeoylquinate 1 and methyl 5-caffeoylquinate 4.

no MS³ secondary peaks were observed. The second and fourth eluting isomers M1CQ (**1**) and M5CQ (**4**) produced the MS² base peak at m/z 179 and MS² secondary peaks at m/z 135 ([caffeic acid-CO₂-H⁺]⁻), 161 ([caffeic acid-H₂O-H⁺]⁻) and 191 ([quinic acid-H⁺]⁻) (Fig. 4). They produced the MS³ base peak at m/z 135 ([caffeic acid-CO₂-H⁺]⁻) by the loss of a CO₂ molecule. The isomer **1** produced the MS² secondary peak at m/z 297 by the loss of 70 amu (C₃H₂O₂) from the phenyl ring (Fig. 6) in which peak is completely absent in **4** (Fig. 4).

Two methyl caffeoylquinates were detected in green maté tea and woodruff extracts. Based on the retention times and fragmentation patterns they were assigned as methyl 3-caffeoylquinate **2** and methyl 5-caffeoylquinate **4**, respectively.

Characterization of methyl feruloylquinates (Mr 381)

A mixture of regioisomers of methyl feruloylquinate was synthesized (Fig. 2) and analyzed by HPLC-MSⁿ. The fragmentation behavior and retention times were compared with the methyl feruloylquinates present in green coffee extract (treated with acidic methanol). They follow the order of elution M3FQ > M1FQ > M4FQ > M5FQ which is similar to methyl caffeoylquinates. The most hydrophilic isomer **6** produced the MS² base peak at *m/z* 175

([ferulic acid-H₂O-H⁺]⁻) and secondary peaks at m/z 160 ([ferulic acid-CH₃-H₂O-H⁺]⁻), 261 and 313 (Figs 7 and 8). It produced the MS³ base peak at m/z 160 ([ferulic acid-CH₃-H₂O-H⁺]⁻) and the MS⁴ base peak at m/z 132 ([ferulic acid-CO₂-CH₃-H₂O-H⁺]⁻). Based on the above arguments, this isomer was certainly identified as methyl 3-feruloylquinate.

The third eluting isomer **7** produced the MS² base peak at m/z 175 ([ferulic acid-H₂O-H⁺]⁻) and the secondary peak at m/z 160 ([ferulic acid-CH₃-H₂O-H⁺]⁻) (Figs 7 and 8 and Table 3). For this isomer specifically, there were no MS² secondary peaks observed at m/z 261 and 313 (Figs 7 and 8), which were present in methyl 3-feruloylquinate **6**. Its MS³ and MS⁴ spectra were similar to methyl 3-feruloylquinate. This specific fragmentation behavior was observed for methyl caffeoylquinates. Consequently, this isomer was assigned as methyl 4-feruloylquinate.

The second and fourth eluting isomers (**5** and **8**, respectively) produced their MS² base peak at m/z 193 and a secondary peak at m/z 134 (Figs 7 and 9). They produced the MS³ base peak at m/z 134 and the secondary peak at m/z 149. Isomer **5** produced the MS² secondary peak at m/z 261 which is completely absent in isomer **8**. These isomers produced the MS² base peak at m/z 193 (due to the ferulic acid part, which is similar to methyl 1-caffeoylquinate

Figure 7. MS^3 spectra of methyl feruloylquinates (5–8) (parent ion at m/z 381 in negative ion mode).

Figure 8. Proposed fragmentation pathway for methyl 3-feruloylquinate 6 and methyl 4-caffeoylquinate 7.

Table 3. Negative ion MS ² and MS ³ fragmentation data for the monoacyl methyl quinate of chlorogenic acids														
MS ¹									MS^2		MS ³			
			Base peak			9	Seconda	ary peak			Base peak	Seconda	ary peak	
No.	Compd.	Parent ion	m/z	m/z	Int	m/z	Int	m/z	Int	m/z	Int	m/z	m/z	Int
1	M1CQ	367.0	178.7	134.8	50	160.7	10	191.0	20	296.6	20	134.7	-	
2	M3CQ	367.1	160.7	134.7	25	b.p.		192.7	5	296.6	5	132.7	-	
3	M4CQ	367.1	160.7	134.7	30	b.p.		192.7	7	355.0	5	132.7	-	
4	M5CQ	367.1	178.7	134.8	40	160.7	14	191.0	20	-		134.7	-	
5	M1FQ	381.1	192.7	133.8	35	260.6	30	-		-		133.7	148.7	10
6	M3FQ	381.1	174.7	159.7	22	260.6	30	312.7	20	-		159.7	-	
7	M4FQ	381.1	174.7	159.7	25	-		-		-		159.7	-	
8	M5FQ	381.1	192.7	133.7	30	-		-		-		133.7	148.7	10
9	M3pCoQ	351.0	144.7	119.0	10	-		-		-		116.8	118.9	32
10	M4pCoQ	351.1	144.7	119.0	18	-		-		-		116.8	-	
11	M5pCoQ	351.0	162.7	118.7	22	-		-		-		118.8	-	

Figure 9. Proposed fragmentation pathway for methyl 1-feruloylquinate 5 and methyl 5-caffeoylquinate 8.

1 and methyl 5-caffeoylquinate **4**, Table 3). Therefore, these isomers were identified as methyl 1-feruloylquinate **5** and methyl 5-feruloylquinate **8**, respectively.

Characterization of methyl *p*-coumaroylquinates (*M_r* 351)

Three isomers were detected at *m/z* 351 and they were assigned as methyl *p*-coumaroylquinates. The first and second eluting isomers

(**9** and **10**, respectively) produced the MS^2 base peak at m/z 145 ([p-coumaric acid-H₂O-H⁺]⁻) and identical secondary peaks (Fig. 10 and Table 3). They produced the MS^3 base peak at m/z 117 ([p-coumaric acid-H₂O-CO-H⁺]⁻) but the MS^3 secondary peak at m/z 119 ([p-coumaric acid-CO₂-H⁺]⁻) which was absent in the second eluting isomer **10** (Fig. 10 and Table 3). Based on the order of the elution and fragmentation analogy with methyl caffeoylquinates and methyl feruloylquinates, the first and second eluting isomers

Figure 10. MS³ spectra of methyl *p*-coumaroylquinates (9–11) (parent ion at *m/z* 351 in negative ion mode).

Figure 11. MS⁴ spectra of methyl dicaffeoylquinates (12-14) (parent ion at *m/z* 529 in negative ion mode).

were assigned as methyl 3-*p*-coumaroylquinate (9) and methyl 4-*p*-coumaroylquinate (10), respectively.

The third eluting isomer **11** produced the MS^2 base peak at m/z 163 ([p-coumaric acid-H⁺]⁻) by the loss of the quinate part and the secondary peak at m/z 119 ([p-coumaric acid-CO₂-H⁺]⁻) (Fig. 10 and Table 3). This isomer also gives the MS^2 base peak at m/z 163 due to the p-coumaric acid part which is consistent with the methyl 5-cinnamoylquinates; therefore, it was assigned as methyl 5-p-coumaroylquinate.

Characterization of methyl dicaffeoylquinates (Mr 529)

Methyl 3,4-dicaffeoylquinate **12** eluted first and produced the MS² base peak at m/z 367 ([methyl caffeoylquinate-H⁺]⁻) by the loss of the caffeoyl residue and the secondary peak at m/z 161 ([caffeic acid-H₂O-H⁺]⁻) (Fig. 11 and Table 4). It produced the MS³ base peak at m/z 161 ([caffeic acid-H₂O-H⁺]⁻), MS³ secondary peaks at m/z 135 ([caffeic acid-CO₂-H⁺]⁻) and m/z 193 and the MS⁴ base peak at m/z 133 ([caffeic acid-H₂O-CO-H⁺]⁻) (Fig. 11 and Table 4).

Table 4. Negative ion MS ² , MS ³ and MS ⁴ fragmentation data for the diacyl methyl quinates of chlorogenic acids																			
	MS ¹ MS ²							MS ³								MS ⁴			
			Base peak	e k Secondary peak				Base peak	Secondary peak						Base peak	Second	lary peak		
No.	Compd.	Parent ion	m/z	m/z	Int	m/z	Int	m/z	Int	m/z	m/z	Int	m/z	Int	m/z	Int	m/z	m/z	Int
12	M3,4-diCQ	529.1	367.0	160.7	15	-		-		160.7	134.9	16	192.7	10	335.0	7	132.8	-	
13	M3,5-diCQ	529.1	367.0	178.7	7	-		-		178.7	134.8	60	160.7	70	-		134.7	-	
14	M4,5-diCQ	529.1	367.0	178.7	10	-		-		178.7	134.8	70	160.7	60	-		134.7	-	
15	M3C-4FQ	543.0	367.0	160.7	30	-		-		160.7	134.9	10	-		-		132.8	-	
16	M3C-5FQ	543.0	349.0	160.7	25	192.7	10	367.0	40	192.8	133.9	20	160.7	90	228.8	16	133.8	-	
17	43C-5FQ	543.1	349.0	160.7	10	192.7	13	367.0	25	160.7	132.9	10	192.7	12	228.8	40	132.7	-	
18	M3C-4pCoQ	513.1	349.0	-		-		363.0	18	160.7	132.8	8	-		304.9	5	132.7	-	
19	M3C-5 <i>p</i> CoQ	513.1	349.0	-		-		-		160.7	132.8	20	-		304.9	10	132.8	118.8	20
20	M4pCo-5CQ	513.1	363.1	174.7	15	192.8	30	348.0	40	348.0	174.7	30	-		-		176.7	132.7	80
21	M3,4-diFQ	557.1	367.0	160.7	7	-		-		160.7	134.8	30	-		-		132.7	-	
22	M3,5-diFQ	557.1	349.1	162.8	10	-		367.1	88	160.7	132.8	11	228.8	5	304.9	5	132.8	-	
23	M4,5-diFQ	557.1	349.1	162.8	6	-		367.1	40	160.7	132.8	10	-		-		132.8	89.0	93
24	M3C-5SiQ	573.2	349.1	222.8	25	379.0	20	367.1	40	160.7	132.8	12	-		304.9	5	132.8	-	

The second eluting isomer is methyl 3,5-dicaffeoylquinate **13** which produced the MS² base peak at *m/z* 367 ([caffeoylquinic acid methyl ester-H⁺]⁻) (Fig. 11 and Table 4). It produced the MS³ base peak at *m/z* 179 ([caffeic acid-H⁺]⁻) and the secondary peaks at *m/z* 161 ([caffeic acid-H₂O-H⁺]⁻), *m/z* 135 ([caffeic acid-CO₂-H⁺]⁻) and *m/z* 191 ([quinic acid-H⁺]⁻) (Fig. 11 and Table 4). The MS³ spectrum of methyl 3,5-dicaffeoylquinate is similar to MS² spectrum of methyl 5-caffeoylquinate. From this it is clear that methyl 3,5-dicaffeoylquinate loses its C3 caffeoyl residue preferentially to the C5 caffeoyl residue in the MS² spectrum.

The third eluting isomer is methyl 4,5-dicaffeoylquinate **14** which produced the MS² base peak at m/z 367 ([methyl 5-caffeoylquinate-H⁺]⁻) by the loss of the C4 caffeoyl residue (Fig. 11). It produced the MS³ base peak at m/z 179 ([caffeic acid-H⁺]⁻) and secondary peaks at m/z 161 ([caffeic acid-H₂O-H⁺]⁻), m/z 135 ([caffeic acid-CO₂-H⁺]⁻) and m/z 191 ([quinic acid-H⁺]⁻) (Fig. 11 and Table 4). It produced the MS⁴ base peak at m/z 135 ([caffeic acid-CO₂-H⁺]⁻). The MS³ secondary peak at m/z 161 is less intense if compared with the second eluting isomer.

It is interesting to notice that the secondary peak at m/z 161 in the MS³ spectrum of methyl 3,5-dicaffeoylquinate is more intense than in the MS³ spectrum of methyl 4,5-dicaffeoylquinate (Fig. 11 and Table 4). From the above arguments, it becomes clear that the loss of the C4 residue takes place easier than the C3 residue.

Characterization of methyl caffeoyl-feruloylquinates (M_r 543)

Three isomers produced their parent ion at m/z 543 and they were assigned as caffeoyl-feruloylquinic acid methyl esters. The most hydrophilic isomer **15** produced the MS² base peak at m/z 367 ([methyl 3-caffeoylquinate-H⁺]⁻) by the loss of a feruloyl residue and the secondary peak at m/z 161 (Fig. 12 and Table 4). It produced the MS³ base peak at m/z 161 ([caffeic acid-H₂O-H⁺]⁻) and the secondary peak at 135 ([caffeic acid-CO₂-H⁺]⁻). This isomer has MS², MS³ and MS⁴ spectra identical to methyl 3,4-dicaffeoylquinate **12** which suggest either methyl 3-caffeoyl-4-feruloylquinate. In the green coffee extract only 3-caffeoyl-4-feruloylquinic acid was present (Table 2) which confirmed the presence of methyl 3-caffeoyl-4-feruloylquinate (**15**). From this, it is also clear that

methyl 3,4-diacylquinate loses its C4 acyl residue preferentially to the C3 acyl residue.

The second and third eluting isomers (**16** and **17**, respectively) produced the MS² base peak at m/z 349 [feruloylquinic acid-H₂O-H⁺]⁻) and a secondary peak at m/z 367 ([methyl caffeoylquinate-H⁺]⁻) (Fig. 12 and Table 4). The second eluting isomer **16** produced the MS³ base peak at m/z 193 ([ferulic acid-H₂O-H⁺]⁻) and the secondary peak at m/z 161 ([ferulic acid-CH₃OH-H⁺]⁻) while the third eluting isomer produced the MS³ base peak at m/z 161 ([ferulic acid-CH₃OH-H⁺]⁻) while the third eluting isomer produced the MS³ base peak at m/z 161 ([ferulic acid-CH₃OH-H⁺]⁻). These both isomers show fragmentation similarity to methyl 3,5- and 4,5-caffeoylquinate. They lose their C3 and C4 acyl residues preferentially to the C5 residue.

The second eluting isomer 16 loses its C3 caffeoyl residue first and produces a dehydrated base peak in the MS² spectrum. Similarly, the third eluting isomer 17 loses its C4 caffeoyl residue first and produces a dehydrated base peak in the MS² spectrum (Fig. 12 and Table 4). The second eluting isomer 16 produced the MS^2 secondary peak at m/z 367, which is more intense than in the case of the third eluting isomer 17 (Fig. 12). Therefore, it is clear that the loss of the caffeoyl residue takes place easier for the third isomer (Fig. 12 and Table 2). For further evidence MS^3 experiments of m/z 543 + 367 for isomers **16** and **17** were performed and these probed the MS³ spectra similarity to methyl 3caffeoylquinate and methyl 4-caffeoylquinate. Based on the above arguments, relative hydrophobicity and fragmentation analogy with the methyl dicaffeoylguinates, the second and third eluting isomers were assigned as methyl 3-caffeoyl-5-feruloylquinate (16) and methyl 4-caffeoyl-5-feruloylquinate (17).

Characterization of methyl diferuloylquinates (Mr 557)

Three isomers were detected at *m/z* 557 and they were assigned as methyl diferuloylquinates (**18–20**). From the previous discussion of methyl quinates, it is generalized that the most hydrophilic isomer is methyl 3,4-diferuloylquinate **18** which produced the MS² base peak at *m/z* 349 ([feruloylquinic acid methyl ester-CH₃-H₂O-H⁺]⁻) and the secondary peak at *m/z* 363 ([feruloylquinic acid methyl ester-H₂O-H⁺]⁻) (Fig. 13 and Table 4). It produced the MS³ base peak at *m/z* 161 ([ferulic acid-CH₃OH-H⁺]⁻) and

Figure 12. MS³ spectra of methyl caffeoyl-feruloylquinates (15–17) (parent ion at *m*/*z* 543 in negative ion mode).

Figure 13. MS³ spectra of methyl diferuloylquinates (18–20) (parent ion at *m/z* 557 in negative ion mode).

secondary peaks at m/z 133 ([ferulic acid-CO-CH₃OH-H⁺]⁻) and m/z 305 ([feruloylquinic acid methyl ester-CO₂-H₂O-H⁺]⁻) and MS⁴ base peak at m/z 133 ([ferulic acid-CO-CH₃OH-H⁺]⁻) (Fig. 13 and Table 4). The second eluting isomer **19** was assigned as methyl 3,5-diferuloylquinate based on the order of elution and it produced the MSⁿ spectra similar to methyl 3,4-diferuloylquinate. In the case of the second eluting isomer **(19)**, no secondary peak was observed in the MS² spectrum and it produced the MS⁴ secondary peak at m/z 119 which is completely absent in the first eluting isomer **(18)** (Fig. 13 and Table 4).

The most hydrophobic isomer **20** was assigned as methyl 4, 5-diferuloylquinate based on the order of elution. It produced the MS^2 base peak at m/z 363 ([feruloylquinic acid methyl ester-H₂O-H⁺]⁻) by the loss of a feruloyl residue and a water molecule and secondary peaks at m/z 349 ([feruloylquinic acid methyl ester-CH₃-H₂O-H⁺]⁻), 193 ([ferulic acid-H⁺]⁻) and 175 ([ferulic acid-H₂O-H⁺]⁻) (Fig. 13 and Table 4). It produced the MS³ base peak at m/z 349 and secondary peaks at m/z 193, 175 and 160. It showed the MS⁴ base peak at m/z 177 and secondary peaks at m/z 173 ([quinic acid-H₂O-H⁺]⁻), 161 ([ferulic

Figure 14. MS³ spectra of methyl p-coumaroyl-caffeoylquinates (21-23) (parent ion at m/z 513 in negative ion mode).

Figure 15. MS^3 spectra of methyl sinapoyl-caffeoylquinate (**24**) (parent ion at m/z 573 in negative ion mode).

acid-CH₃OH-H⁺]⁻) and 135 ([ferulic acid-CH₃COO-H⁺]⁻) (Fig. 13 and Table 4).

Characterization of methyl p-coumaroyl-caffeoylquinates (M_r 513)

Three isomers were detected at m/z 513 and assigned as methyl *p*-coumaroyl-caffeoylquinates (**21**–**23**). The first eluting isomer **21** produced the MS² base peak at m/z 367 ([methyl 4-caffeoylquinate-H⁺]⁻) by the loss of *p*-coumaroyl residue and secondary peaks at m/z 351 ([methyl 3-*p*-coumaroylquinate-H⁺]⁻) and 161 ([caffeic acid-H₂O-H⁺]⁻) (Fig. 14 and Table 4). It produced the MS³ base peak at m/z 161 ([caffeic acid-H₂O-H⁺]⁻), the MS³ secondary peak at m/z 135 ([caffeic acid-C₂-H⁺]⁻) and the MS⁴ base peak at m/z 133 ([caffeic acid-H₂O-CO-H⁺]⁻) (Fig. 14 and Table 4). This isomer showed MS^{*n*+1} spectra identical to MS^{*n*+1} spectra of methyl 3,4-dicaffeoylquinate and methyl 3-caffeoyl-4-feruloylquinate (Table 4). Based on the above arguments and the fragment analogy with 3,4-dicaffeoylquinate and methyl 3-caffeoyl-4-feruloylquinate, this isomer was assigned as 3-caffeoyl-4-*p*-coumaroylquinate **21**.

Similarly, the second and third eluting isomers showed fragmentation analogy with methyl caffeoyl-feruloylquinates (Fig. 14 and Table 2) and they were assigned as methyl 3-caffeoyl-5-*p*-coumaroylquinate (**22**) and methyl 4-*p*-coumaroyl-5-caffeoylquinate (**23**). For further evidence MS³ experiments of m/z 513 + 367 were performed for isomers **22** and **23** and the results were in agreement with the assignments.

Characterization of methyl sinapoyl-caffeoylquinates (Mr 513)

One methyl caffeoyl-sinapoylquinate was detected and it showed MS^{n+1} spectra similar to methyl 3-caffeoyl-5-feruloylquimate **17** (Fig. 15 and Table 4). Based on the fragmentation analogy with **17** this isomer was assigned as methyl 3-caffeoyl-5-sinapoylquinate **24**.

Conclusions

In conclusion, we have shown that methyl quinates of CGAs can be resolved chromatographically and readily distinguished by their tandem mass spectra. The fragmentation patterns and fragmentation mechanisms are distinctively different from those observed for CGAs. This observation can be readily explained by taking into account that fragmentation of the acyl moieties in CGAs are induced by intramolecular protonation of the acyl moieties.^[27,29,30] The acidic COOH group is absent in methylquinates and hence a different fragmentation pathway is followed.

The LC–MSⁿ methods introduced here can be applied for the rapid identification of alkyl quinates of CGA from natural sources, food materials, beverages and biological systems.

Acknowledgements

We acknowledge funding from Jacobs University Bremen GmbH and excellent technical support from Ms Anja Müller.

References

- [1] IUPAC Commission on the Nomenclature of Organic Chemistry (CNOC) and IUPAC-IUB Commission on Biochemical Nomenclature (CBN). Nomenclature of cyclitols. Recommendations, 1973. *Biochem. J.* **1976**, *153*, 23.
- [2] M. N. Clifford. Chlorogenic acids and other cinnamates nature, occurrence and dietary burden. J. Sci. Food Agric. 1999, 79, 362.
- [3] M. N. Clifford. Chlorogenic acids and other cinnamates nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food Agric. 2000, 80, 1033.
- [4] M. N. Clifford, S. Knight, B. Surucu, N. Kuhnert. Characterization by LC-MSⁿ of four new classes of chlorogenic acids in green coffee beans: dimethoxycinnamoylquinic acids, diferuloylquinic acids, caffeoyl-dimethoxycinnamoylquinic acids, and feruloyldimethoxycinnamoylquinic acids. J. Agric. Food Chem. 2006, 54, 1957.
- [5] R. Jaiswal, N. Kuhnert. Hierarchical scheme for liquid chromatography/multi-stage spectrometric identification of 3,4,5-triacyl chlorogenic acids in green Robusta coffee beans. *Rapid. Commun. Mass Spectrom.* 2010, 24, 2283.
- [6] R. Jaiswal, M. A. Patras, P. J. Eravuchira, N. Kuhnert. Profile and characterization of the chlorogenic acids in green Robusta coffee beans by LC–MSⁿ: identification of seven new classes of compounds. J. Agric. Food Chem. **2010**, 58, 8722.
- [7] R. Jaiswal, T. Sovdat, F. Vivan, N. Kuhnert. Profiling and characterization by LC-MSⁿ of the chlorogenic acids and hydroxycinnamoylshikimate esters in maté (*Ilex paraguariensis*). J. Agric. Food Chem. **2010**, 58, 5471.
- [8] E. L. Eliel, M. B. Ramirez. (-)-quinic acid: configurational (stereochemical) descriptors. *Tetrahedron* **1997**, 8(21), 3551.
- [9] S. Gorzalczany, V. Sulsen, F. Redko, C. Vescina, L. Muschietti, V. Martino, C. Acevedo. Choleretic and antispasmodic effects of *Lippia integrifolia* aqueous extract. *Rev. Bras. Farmacogn.* **2008**, *18*, 16.
- [10] H. Hemmerle, H. J. Burger, P. Below, G. Schubert, R. Rippel, P. W. Schindler, E. Paulus, A. W. Herling. Chlorogenic acid and synthetic chlorogenic acid derivatives: novel inhibitors of hepatic glucose-6phosphate translocase. J. Med. Chem. **1997**, 40, 137.
- [11] H. C. Kwon, C. M. Jung, C. G. Shin, J. K. Lee, S. U. Choi, S. Y. Kim, K. R. Lee. A new caffeoyl quinic acid from *Aster scaber* and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. *Chem. Pharm. Bull.* **2000**, *48*, 1796.
- [12] M. H. Kweon, H. J. Hwang, H. C. Sung. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (*Phyllostachys edulis*). J. Agric. Food Chem. **2001**, 49, 4646.
- [13] G. F. Wang, L. P. Shi, Y. D. Ren, Q. F. Liu, H. F. Liu, R. J. Zhang, Z. Li, F. H. Zhu, P. L. He, W. Tang, P. Z. Tao, C. Li, W. M. Zhao, J. P. Zuo. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid *in vivo* and *in vitro*. Antivir. Res. **2009**, 83, 186.
- [14] S. I. Kayano, H. Kikuzaki, N. F. Yamada, A. Aoki, K. Kasamatsu, Y. Yamasaki, T. Ikami, T. Suzuki, T. Mitani, N. Nakatani. Antioxidant

properties of prunes (*Prunus domestica* L.) and their constituents. *Biofactors* **2004**, *21*, 309.

- [15] P. Gupta, Akanksha, K. B. Siripurapu, A. Ahmad, G. Palit, A. Arora, R. Maurya. Anti-stress constituents of *Evolvulus alsinoides*: an ayurvedic crude drug. *Chem. Pharm. Bull.* **2007**, *55*, 771.
- [16] F. Teramachi, T. Koyano, T. Kowithayakorn, M. Hayashi, K. Komiyama, M. Ishibashi. Collagenase inhibitory quinic acid esters from *Ipomoea pescaprae*. J. Nat. Prod. **2005**, 68, 794.
- [17] C. W. Chang, M. T. Lin, S. S. Lee, K. Liu, F. L. Hsu, J. Y. Lin. Differential inhibition of reverse-transcriptase and cellular DNA polymerasealpha activities by lignans isolated from Chinese herbs, *Phyllanthus myrtifolius* moon, and tannins from *Lonicera japonica* thumb and *Castanopsis hystrix. Antivir. Res.* **1995**, *27*, 367.
- [18] S. Kayano, H. Kikuzaki, T. Ikami, T. Suzuki, T. Mitani, N. Nakatani. A new bipyrrole and some phenolic constituents in prunes (*Prunus domestica* L.) and their oxygen radical absorbance capacity (ORAC). *Biosci. Biotechnol. Biochem.* **2004**, *68*, 942.
- [19] R. M. Facino, M. Carini, G. Aldini, L. DeAngelis. A rapid screening by liquid chromatography mass spectrometry and fast-atom bombardment tandem mass spectrometry of phenolic constituents with radical scavenging activity, from *Krameria triandra* roots. *Rapid. Commun. Mass Spectrom.* **1997**, *11*, 1303.
- [20] I. M. Chung, M. Y. Kim, W. H. Park, H. I. Moon. Quinic acid derivatives from *Saussurea triangulata* attenuates glutamate-induced neurotoxicity in primary cultured rat cortical cells. *J. Enzyme Inhib. Med. Chem.* **2009**, *24*, 188.
- [21] T. Xiang, Q. B. Xiong, A. I. Ketut, Y. Tezuka, T. Nagaoka, L. J. Wu, S. Kadota. Studies on the hepatocyte protective activity and the structure–activity relationships of quinic acid and caffeic acid derivatives from the flower buds of *Lonicera bournei*. *Planta Med.* **2001**, *67*, 322.
- [22] A. Rumberosanchez, P. Vazquez. Quinic acid-esters from *Isertia* haenkeana. Phytochemistry **1991**, *30*, 311.
- [23] C. F. Lin, C. C. Shen, C. C. Chen, S. J. Sheu, Y. L. Huang. Phenolic derivatives from Aster indicus. Phytochemistry 2007, 68, 2450.
- [24] G. H. Xu, Y. H. Kim, S. J. Choo, I. J. Ryoo, J. K. Yoo, J. S. Ahn, I. D. Yoo. Chemical constituents from the leaves of *llex paraguariensis* inhibit human neutrophil elastase. *Arch. Pharm. Res.* 2009, *32*, 1215.
- [25] P. T. Thuong, N. D. Su, T. M. Ngoc, T. M. Hung, N. H. Dang, N. D. Thuan, K. Bae, W. K. Oh. Antioxidant activity and principles of Vietnam bitter tea *llex kudingcha. Food Chem.* **2009**, *113*, 139.
- [26] H. J. Kim, E. J. Kim, S. H. Seo, C. G. Shin, C. Jin, Y. S. Lee. Vanillic acid glycoside and quinic acid derivatives from Gardeniae Fructus. J. Nat. Prod. 2006, 69, 600.
- [27] M. N. Clifford, K. L. Johnston, S. Knight, N. Kuhnert. Hierarchical scheme for LC-MSⁿ identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900.
- [28] M. N. Clifford, S. Marks, S. Knight, N. Kuhnert. Characterization by LC–MSⁿ of four new classes of *p*-coumaric acid-containing diacyl chlorogenic acids in green coffee beans. J. Agric. Food Chem. 2006, 54, 4095.
- [29] M. N. Clifford, S. Stoupi, N. Kuhnert. Profiling and characterization of galloyl quinic acids by LC–MSⁿ of green tea, tara tannin and tannic acid. J. Agric. Food. Chem. 2007, 55, 2797.
- [30] M. N. Clifford, N. Kuhnert. The LC–MSⁿ analysis of *cis* isomers of chlorogenic acids. *Food Chem.* **2008**, *106*, 379.