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ABSTRACT
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Rf = CF3, CF2H
R = ester or amide

72-96% ee

An enantioselective palladium-catalyzed hydrogenation of β-fluoroalkyl-β-amino acrylic acid derivatives 

has been successfully developed, providing the corresponding chiral β-fluoroalky β-amino acid derivatives 

in good yields with excellent enantioselectivities. In addition, chiral γ-fluoroalkyl-γ-amino alcohol could be 

synthesized by simple reduction of the corresponding hydrogenated product. The mechanism of the reaction 

was explored by deuterium labeling experiments.

Introduction

Fluorine substituted organic compounds had received increasing attention due to the fact that fluorine’s 

electronegativity, small steric size, lipophilicity and electrostatic interactions can dramatically influence the 

chemical reactivity and biological activity of the parent molecules.1 Thus, numerous of research have been 

devoted to this field and a large number of fluorinated molecules have been synthesized.2 Among them, 

chiral β-fluoroalkyl β-amino acids and their derivatives are a prominent class of building blocks for the 

construction of various useful compounds including pharmaceuticals, agrochemicals and biologically active 

natural products.3 For example, CF3-Ac docetaxel is used against human cancer cell lines (Figure 1, I),4a-c 

and  [CH(CF3)NH]-retro-thionphane is used as neutral endopeptidase inhibitor (Figure 1, II).4d Thus, the 
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enantioselective syntheses of β-fluoroalkyl β-amino acid derivatives have attracted a great deal of interests,5 

and many efficient methods have been developed including chiral auxiliaries strategies6 and catalytic 

methods,7-10 such as isomerization of fluorinated imines,7 catalytic asymmetric Mannich reaction of 

fluorinated imines8 and aza-Michael addition of fluorinated imines.9 Although some progress has been made 

in synthesis of β-fluoroalkyl β-amino acid derivatives, these existing routes have several drawbacks 

involving poor enantioselectivities or stoichiometric amount of chiral auxiliaries needed and so on, thus 

prohibiting their further application. Therefore, developing an efficient and atom-economic method for the 

synthesis of chiral β-fluoroalkyl β-amino acid derivatives is of great significance in both organic synthesis 

and drug research.

HO2C
CF3

N
H

SH

Ph

II, [CH(CF3)NH]-retro-thionphane
Neutral endopeptidase inhibitor

F3C

NH

O

O
Boc

OH

OAcO OH

O
H

OBzHO OAc

I, CF3-Ac Docetaxel
Cancer chemotherapeutic agents

Figure 1. Selected bioactive chiral β‑fluoroalkyl β‑amino acid derivatives.

In the past decades, catalytic asymmetric hydrogenation as an efficient and economic approach has drawn 

a lot of attention and has been successfully introduced to synthesis of chiral β-amino acid derivatives.11 

However, the synthesis of chiral β-fluoroalkyl β-amino acid derivatives through hydrogenation is still a 

challenging area which has been rarely explored to date, probably due to the strong electron withdrawing 

property of CF3 group in the olefinic substrates.10,12 In 2005, the Rh-catalyzed asymmetric hydrogenation for 

synthesis of β-amino acid derivatives was reported by Zhang and co-workers, in which only one example of 

chiral β-fluoroalkyl β-amino acid ester with 79% ee and moderate 48% conversion was observed (Scheme 1, 

Eq. 1).10 We speculated that the major obstacles to advancement in this research area are as follows: the 

fluorinated enamino ester is easily hydrolyzed even with trace amount of water in solvent,13 leading to the 

low chemoselectivity; the enamine and imine tautomerization impeded the stereoselectivity and the former 

disclosed C-F bond cleavage of the fluorinated compounds14 in the presence of transition metal-catalyzed 

systems which is a challenge for the hydrogenation of fluorinated enamino derivatives (Scheme 1, Eq 2). 

Considering asymmetric synthesis of chiral trifluoromethyl amines has made great progress in Pd,15 Ir,16 

Rh,14 Ru17 and organocatalysts18 catalyzed reduction of corresponding trifluoromethyl imines,  we envisioned 

that the asymmetric hydrogenation of β-fluoroalkyl-β-amino acrylic acid derivatives could be realized 

through the reduction of imine-tautomer of the substrates via enamine-imine tautomerization, providing the 

chiral β-fluoroalkyl β-amino acid derivatives. Herein, we reported the palladium-catalyzed asymmetric 

hydrogenation of fluorinated enamino derivatives, giving the chiral β-fluoroalkyl β-amino acid derivatives 
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with up to 95% ee.

Scheme 1. Asymmetric Hydrogenation of β-Fluoroalkyl-β-Amino Acrylic Acid Derivatives

Zhang's Work: Rh-catalyzed Asymmetric Hydrogenation of Fluorinated Enamino Esters

(Eq. 2)

(Eq. 1)

This Work: Pd-catalyzed Asymmetric Hydrogenation of -Fluoroalkyl--Amino Acrylic Esters

(Eq. 3)
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Results and Discussion

To test the viability of our proposed protocol, the (Z)-ethyl 4,4,4-trifluoro-3-(phenylamino)but-2-enoate 

(1a) was chosen as the model substrate, and the hydrogenation was performed in the presence of 

Pd(OCOCF3)2/(S,S’,R,R’-DuanPhos) in trifluroethanol (TFE) at 40 oC. Pleasingly, the reaction was 

conducted with full conversion and furnished 2a in 51% yield with 77% ee (Table 1, entry 1). The main 

problem of the low yield is ascribed to the hydrolysis of the substrate 1a to amine and ethyl 4,4,4-

trifluoroacetoacetate during the reaction, and then the ethyl 4,4,4-trifluoroacetoacetate could be 

hydrogenated to deliver ethyl 4,4,4-trifluoro-3-hydroxybutanoate19 (detected by GC-MS) and other low 

boiling point substances. Consequently, a series of solvents were screened (entries 2-5), and HFIP 

(1,1,1,3,3,3-hexafluoro-2-propanol) was proved to be the optimal solvent in terms of good yield and ee value 

(entry 5). Furthermore, some commercially available chiral diphosphine ligands were examined (entries 5-

10). The results revealed that chiral ferrocenyl phosphine L4 offered moderated yield and enantioselectivity 

(entry 8). High reaction activity was obtained using the electron-rich ligands such as Me-Duphos in this 

hydrogenation system, which avoid the fluorinated enamino ester hydrolyzed in solvent and no byproduct 

was obtained (entry 9). While electron-donating phosphine ligand L6 gave excellent ee value and moderate 

yield (entry 10). Dehydrating agents such as 5 Å MS were added in order to improve the yield, but did not 

give better results (entry 11). Gratifyingly, the yield can be improved to 74% with the 90% of 

enantioselectivity using the 4 mol % of catalyst loading amount (entry 12).
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Table 1. Optimization for Pd-catalyzed Asymmetric Hydrogenation of (Z)-Ethyl 4,4,4-trifluoro-3-

(phenylamino) but-2-enoate (1a) a

1a 2a
F3C

NH

OEt

O
Ph Pd(OCOCF3)2/L

solvent, 70 oC, H2 (600 psi)
F3C


NH

OEt

O
Ph

entry solvent L conv. (%)b yield (%)b ee (%)c

1 TFE L1 >95 51 77
2 DCM L1 38 12 48
3 THF L1 37 6 64
4 MeOH L1 >95 74 18
5 HFIP L1 >95 74 73
6 HFIP L2 >95 57 77
7 HFIP L3 >95 65 84
8 HFIP L4 >95 56 44
9 HFIP L5 >95 97 44
10 HFIP L6 >95 64 89
11d HFIP L6 >95 47 88
12e HFIP L6 >95 74 90

L1: (S,S',R,R')-DuanPhos

P

P

L5: (S,S)-Me-Duphos

N

N P

P

tBu

tBu

L3: (R,R)-QuinoxP*

P

P

Ph

Ph

Ph

Ph

L6: (S,S)-Ph-BPEL4: (R,Sp)-Cy-Josiphos

PP

H

H
tBu tBu

O

O

O

O

PPh2

PPh2

L2: (R)-SegPhos

Fe
PCy2

PCy2

 a Conditions: 1a (0.125 mmol), Pd(OCOCF3)2 (2.0 mol%), L (2.4 
mol% ), solvent (3.0 mL), 48 h, 70 oC. b Determined by 1H NMR, using 
1,3,5-trimethoxybenzeneas an internal standard. c Determined by chiral 
HPLC analysis. d 40 mg 5 Å MS was added. e Pd(OCOCF3)2 (4.0 mol%), 
L (4.8 mol% ).

Considering the acid can promote the tautomeric transformation between imines and enamines, and also 

promote the in situ formation of iminium salts, leading to enhancement of the activity.20 Therefore, a series 

of acidic additives were screened systematically. The results were depicted in Table 2. To our delight, both 

selectivity and enantioselectivity of the reaction were increased with the addition of a catalytic amount of 

benzoic acid (entries 1-2). After evaluation of various acids, the p-anisic acid was verified as the best choice 

in terms of yield and enantioslectivity. The effects of temperature and hydrogen pressure on reactivity and 

enantioselectivity were also investigated in the next steps (entries 8-10). Finally, the optimal reaction 

condition was established as: Pd(OCOCF3)2/(S,S)-Ph-BPE, p-anisic acid, H2 (800 psi), in HFIP and at 60 oC. 

Table 2. Optimization of Reaction Conditions a
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1a 2a
F3C

NH

OEt

O
Ph Pd(OCOCF3)2/(S,S)-Ph-BPE

HFIP, 70 oC, acid, 48 h
H2 (600 psi)

F3C


NH

OEt

O
Ph

entry acid conv. (%)b yield (%)b ee (%)c

1d PhCO2H >95 80 93

2 PhCO2H >95 84 93

3e PhCO2H >95 72 93

4 TsOH.H2O >95 59 93

5 (D)-camphoric acid >95 63 93

6 p-anisic acid >95 84 94

7 p-nitrobenzoic acid >95 82 92

8f p-anisic acid >95 79 92

9g p-anisic acid >95 86 95

10h p-anisic acid >95 77 96

11i p-anisic acid >95 88 95
a Conditions: 1a (0.125 mmol), Pd(OCOCF3)2 (4.0 mol%), (S,S)-Ph-BPE (4.8 mol%), acid 
(20 mol%), HFIP (3.0 mL), H2 (600 psi), 48 h, 70 oC. b Determined by 1H NMR, using 
1,3,5-trimethoxybenzene as internal standard. c Determined by chiral HPLC analysis. d 10 
mol% of PhCO2H. e 30 mol% of PhCO2H. f 80 oC. g 60 oC. h 50 oC. i 60 oC, H2 (800 psi), 
24 h.

After establishing the optimal condition, we next examined the substrate scope, and the results were 

summarized in Table 3. Esters with different alkoxy groups were firstly examined in this reaction, the target 

products were obtained in good yields with excellent enantioselectivities (entries 1-3). The moderate yield 

and enantioselectivity was obtained, when the amide was introduced as the substrate (entry 4). Notably, 

different electronic properties and positions of substituents on the aromatic ring had marginal effect on the 

reactivity and enantioselectivity (entries 5-11). What’s more, the difluoroalkyl-substituted substrate was also 

tolerated, giving the desirable product in 77% yield and 72% ee (entry 12).

Table 3. Substrate Scope of Chiral β‑Fluoroalkyl β‑Amino Derivatives a 

1 2
Rf

NH

R

O
Ar Pd(OCOCF3)2/(S,S)-Ph-BPE

HFIP, 60 oC, H2 (800 psi),
p-anisic acid (20 mol%), 24 h Rf

NH

R

O
Ar

entry Rf R Ar yield (%)b ee (%)c

1 CF3 OEt C6H5 74 (2a) 95

2 CF3 OMe C6H5 79 (2b) 95

3d CF3 OBn C6H5 58 (2c) 92

4d CF3 NHPh C6H5 33 (2d) 76

5 CF3 OEt 4-MeOC6H4 66 (2e) 94
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6d CF3 OEt 3-MeOC6H4 70 (2f) 95

7d CF3 OEt 2-MeOC6H4 50 (2g) 93

8 CF3 OEt 4-MeC6H4 71 (2h) 93

9 CF3 OEt 4-ClC6H4 73 (2i) 95

10d CF3 OEt 4-FC6H4 54 (2j) 91

11 CF3 OEt 1-naphthyl 84 (2k) 96

12 CF2H OEt C6H5 77 (2l) 72
a Conditions: 1 (0.25 mmol), Pd(OCOCF3)2 (4.0 mol%), (S,S)-Ph-BPE (4.8 mol%), p-
anisic acid (20 mol%), HFIP (3.0 mL), H2 (800 psi), 24 h, 60 oC. b Isolated yields. c 
Determined by chiral HPLC analysis. d 48 h.

Moreover, α-methyl β-fluoroalkyl β-enamino ester could also be hydrogenated successfully under the 

standard conditions, giving the α-methyl β-fluoroalkyl β-amino ester with 84% yield & 90% ee, and poor 

selectivity of 1.3:1 dr (Scheme 2, Eq. 4). Subsequently, the direct catalytic asymmetric reductive amination 

was explored in this study. At the beginning, only 9% NMR yield of desired product 2e was observed with 

ethyl 4,4,4-trifluoroacetoacetate and p-anisidine under the optimal conditions. When TsOH.H2O in place of 

p-anisic acid was introduced, the desirable product was obtained in 25% yield and 93% ee (Scheme 2, Eq. 5).

Scheme 2. Asymmetric Synthesis of α-Methyl β-Fluoroalkyl β-Amino Acrylic Ester and Reductive 

Amination.

Pd(OCOCF3)2/(S,S)-Ph-BPE

HFIP, 60 oC, H2 (800 psi)
TsOH.H2O

F3C

PMPNH

OEt

O
F3C

O

OEt

O
+

2e
93% ee, 25% yield

(Eq. 5)

F3C

PMPNH

OEt

O Pd(OCOCF3)2/(S,S)-Ph-BPE

HFIP, 60 oC, H2 (800 psi)
p-anisic acid (20 mol%)

F3C

PMPNH

OEt

O

1m

F3C

PMPNH

OEt

O
+

2m1
84% ee, 43% yield

2m2
90% ee, 34% yield

(Eq. 4)

PMP-NH2

To further demonstrate the utility of this method, product 2a (recrystallize from n-hexane to upgrade ee to 

99%) was reduced by lithium aluminum hydride (LiAlH4), giving the chiral γ-fluoroalkyl-γ-amino alcohol 5a 

without loss of optical purity.21 Moreover, the 2.0 mmol scale (579 mg) experiment was carried out, and the 

desired chiral enamino ester 2e was obtained without the loss of activity and enantioselectivity (70% yield, 

94% ee). Meanwhile, chiral primary amine 5e could be obtained by removing the p-methoxyphenyl group 

through oxidative cleavage of the hydrogenated product 2e, and the optical purity still remained.15c,18g In 

addition, this method provides a concise and effective way to synthesize 4-CF3-ezetimibe.3f The absolute 

configuration of hydrogenation product 2a was determined by X-ray diffraction analysis by recrystallization 

from n-hexane (Scheme 3).
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Scheme 3. Transformations of Chiral β ‑Fluoroalkyl β ‑Amino Ester 2a, Deprotection of 2e and X-ray 

Crystal Structure of 2a

F3C

NH

OEt

O LiAlH4, THF, -50 oC

F3C

NH OH

2a (99% ee)
5a

99% ee, 89% yield

F3C

NH

OEt

O

2a

1e
(579 mg, 2.0 mmol)

2e
(70% yield, 94% ee)

F3C

NH

OEt

O
PMP Pd(OCOCF3)2/(S,S)-Ph-BPE

HFIP, 60 oC, H2 (800 psi),
p-anisic acid (20 mol%), 24 h F3C

NH

OEt

O
PMP

2e (94% ee)

F3C

NH

OEt

O
PMP Ce(NH4)2(NO3)6

CH3CN/ H2O (2:1), 0 oC

5e (93% ee)

F3C

NH2

OEt

O

In order to investigate the reaction mechanism, two isotopic labeling experiments were carried out 

(Scheme 4). When the hydrogenation was carried out in D2-HFIP, 1H NMR analysis of the hydrogenation 

product showed that the deuterium atom was taken up to the α-position with >95% of deuterium isotopic 

content (Eq. 6). When 1a was subjected to hydrogenation under D2, the deuterium atoms was incorporated to 

the β-position exclusively with >95% of deuterium isotopic content (Eq. 8). As well as, enamine (1ab) and 

imine (1ac) can be obtained in the presence of D2-HFIP and D-p-anisic acid at 60 oC (Eq. 7), at the same 

time 1ab and 1ac can be rapidly isomerized under acidic conditions, the ratio of 1ac to 1ab was increased 

with prolonged time (See Figure S1). Considering that in general palladium-catalyzed hydrogenation of 

imines is easier than enamines,20a,e so we speculate that the asymmetric hydrogenation of β-fluoroalkyl-β-

amino acrylic esters proceeds through asymmetric reductive of the iminium form other than enamine form of 

the substrate in the presence of Brønsted acid, but the direct hydrogenation of enamine cannot be ruled out.

Scheme 4. Deuterium-Labeling Experiment
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F3C

NH

OEt

O
Ph Pd(OCOCF3)2/(S,S)-Ph-BPE

D2-HFIP, 60 oC, p-anisic acid, H2 (800 psi)
F3C

NH

OEt

O
Ph

D D (>95%)

F3C

NH

OEt

O
Ph Pd(OCOCF3)2/(S,S)-Ph-BPE

HFIP, 60 oC, p-anisic acid, D2 (450 psi) F3C

NH

OEt

O
Ph

D (>95%)

1a

1a

1aa, 55% yield, 94% ee

1ad, 57% yield, 97% ee

(Eq. 6)

(Eq. 8)

F3C

NH

OEt

O
Ph

1a

D2-HFIP, 60 oC

MeO CO2D F3C

NH

OEt

O
Ph

F3C

N

OEt

O
Ph

(Eq. 7)

D D D

+

1ab 1ac

In summary, we have successfully developed an efficient method for synthesis of chiral β-fluoroalkyl β-

amino derivatives through palladium-catalyzed asymmetric hydrogenation of β-fluoroalkyl-β-amino acrylic 

acid derivatives with up to 96% ee. A reductive amination between 4,4,4-trifluoroacetoacetate and p-

anisidine was also achieved. Moreover, the synthetic utility of hydrogenation products was performed to 

construct chiral γ-fluoroalkyl-γ-amino alcohol. Further investigations on asymmetric hydrogenation of 

fluorinate compounds are currently on going in our laboratory.

EXPERIMENTAL SECTION

Commercially All reactions were carried out under an atmosphere of nitrogen using the standard Schlenk 

techniques, unless otherwise noted. Commercially available reagents were used without further purification. 

Solvents were treated prior to use according to the standard methods. 1H NMR, 13C NMR spectra were 

recorded at 400 MHz and 100 MHz with the Brucker spectrometer. 19F was recorded at 376 MHz with 

Brucker spectrometer. Chemical shifts are reported in ppm using tetramethylsilane as internal standard when 

using CDCl3 as solvent for 1H NMR spectra. The following abbreviations were used to symbolize the 

multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Flash column 

chromatography was performed on silica gel (200-300 mesh). All reactions were monitored by TLC analysis. 

Optical rotations were measured by the polarimeter. Enantiomeric excess was determined by HPLC analysis 

using chiral column described below in detail. High-resolution mass spectrometry (HRMS) was measured on 

an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry.

Procedures for Synthesis of β-Fluoroalkyl-β-Amino Acrylic Esters 1. A mixture of the 3 (10.0 mmol), 

4 (10.0 mmol) and p-toluenesulfonic acid monohydrate (0.192 g, 1.0 mmol) were didsolved in ehanol or 

toluene (10 mL) and refluxed overnight. After the reaction mixture was cooled to room temperature, the 

solution was dried with Na2SO4 and concentrated under reduced pressure. The residue was purified by 
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passing through a silica gel column to give the final product.22 The compounds 1a, 22a 1b, 22b 1d-1h & 1j,22c 

1i22d and 1l22e were the known compounds.

Benzyl (Z)-4,4,4-trifluoro-3-(phenylamino)but-2-enoate (1c): 0.918g, 29% yield, yellow oil, Rf = 0.40 

(hexanes/ethyl acetate = 30/1), 1H NMR (400 MHz, CD3OD) δ 7.41 – 7.36 (m, 5H), 7.36 – 7.32 (m, 2H), 

7.30 – 7.24 (m, 1H), 7.20 (d, J = 7.8 Hz, 2H), 5.41 (s, 1H), 5.19 (s, 2H); 13C{1H} NMR (100 MHz, CD3OD) 

δ 168.7, 146.6 (q, J = 30.0 Hz), 138.5, 136.2, 128.7, 128.2, 127.9, 127.8, 126.3, 125.4, 120.4 (q, J = 273.0 

Hz), 88.2 (q, J = 5.0 Hz), 65.6; 19F{1H} NMR (376 MHz, CD3OD) δ -65.2; HRMS (ESI-TOF) m/z 

Calculated for C17H15F3NO2 [M+H]+ 322.1049, found 322.1053.

Ethyl (Z)-4,4,4-trifluoro-3-(naphthalen-1-ylamino)but-2-enoate (1k) : 0.590 g, 19% yield, pale yellow 

oil, Rf = 0.51 (hexanes/ethyl acetate = 30/1), 1H NMR (400 MHz, CD3OD) δ 8.02 – 7.94 (m, 1H), 7.91 (t, J = 

5.4 Hz, 1H), 7.84 (t, J = 7.6 Hz, 1H), 7.60 – 7.49 (m, 2H), 7.49 – 7.34 (m, 2H), 5.43 (d, J = 1.5 Hz, 1H), 4.32 

– 4.09 (m, 2H), 1.29 (t, J = 4.4 Hz, 3H); 13C{1H} NMR (100 MHz, CD3OD) δ 169.5, 147.8 (q, J = 30.0 Hz), 

134.3 (d), 131.0, 127.9, 127.6, 126.5, 126.1, 124.6, 124.5, 122.0, 120.4 (q, J = 275.0 Hz), 88.2 (q, J = 5.0 

Hz), 59.9, 13.2; 19F{1H} NMR (376 MHz, CD3OD) δ -65.7; HRMS (ESI-TOF) m/z Calculated for 

C16H15F3NO2 [M+H]+ 310.1049, found 310.1044.

Typical Procedure for Palladium-catalyzed Asymmetric Hydrogenation of β-Fluoroalkyl-β-Amino 

Acrylic Esters. 

(S,S)-Ph-BPE (6.2 mg, 0.012 mmol) and Pd(OCOCF3)2 (3.3 mg, 0.010 mmol) were placed in a dried 

Schlenk tube under nitrogen atmosphere, and degassed anhydrous acetone was added. The mixture was 

stirred at room temperature for 1 h. The solvent was removed under vacuum to give the catalyst. This 

catalyst was taken into a glovebox filled with nitrogen and dissolved in dry HFIP (3 mL). To a mixture of 

substrates 1 (0.25 mmol) and p-anisic acid (7.6 mg, 0.05 mmol), the catalyst solution was added, and then 

the mixture was transferred to an autoclave. The hydrogenation was performed at 60 oC under 800 psi of 

hydrogen. The autoclave was stirred under directed conditions for 24 h, then the hydrogen was carefully 

released, the autoclave was opened, and saturated aqueous sodium bicarbonate (5 mL) was added to the 

mixture and stirred for 10-15 min. The mixture was extracted with dichloromethane twice and the combined 

organic extracts dried over sodium sulfate. The resulting mixture was concentrated in vacuo and further 

purification was performed by a silica gel column eluted with hexanes/ethyl acetate to give the desired 

product 2. The enantiomeric excesses were determined by chiral HPLC after the purification by column 

chromatography on silica gel (ethyl acetate/hexanes).

Racemates of 2 were prepared by the reduction of the corresponding substrates 1 using 1,2-

bis(dicyclohexylphosphanyl)ethane and Pd(OCOCF3)2 as catalyst. 
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(R)-Ethyl-4,4,4-trifluoro-3-(phenylamino)butanoate (2a): 48 mg, 74% yield, pail yellow soild: 50-51 

oC, Rf = 0.31 (hexanes/ethyl acetate = 20/1), 95% ee, [α]20
D = -12.50 (c 0.48, CHCl3) [lit.10: [α]20

D = 1.4 (c 

1.0, CHCl3) for 79% ee]; 1H NMR (400 MHz, CDCl3) δ 7.24 – 7.17 (m, 2H), 6.81 (t, J = 7.4 Hz, 1H), 6.73 (d, 

J = 7.8 Hz, 2H), 4.56 – 4.42 (m, 1H), 4.19 – 4.05 (m, 2H), 3.90 (d, J = 9.9 Hz, 1H), 2.83 (dd, J = 15.6, 4.5 

Hz, 1H), 2.62 (dd, J = 15.6, 8.8 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 169.4, 

145.7, 129.4, 125.6 (q, J = 282.0 Hz), 119.5, 114.0, 61.4, 53.4 (q, J = 30 Hz), 35.1 (q, J = 1.0 Hz), 14.0; 

19F{1H} NMR (376 MHz, CDCl3) δ -76.1; HPLC (OJ-H, elute: Hexanes/i-PrOH = 90/10, detector: 230 nm, 

flow rate: 1.0 mL/min), 30 oC, t1 = 8.8 min, t2 = 10.0 min (maj).

(R)-Methyl-4,4,4-trifluoro-3-(phenylamino)butanoate (2b) :22a 49 mg, 79% yield, pale yellow oil, Rf = 

0.23 (hexanes/ethyl acetate = 30/1), 95% ee, [α]20
D = -8.37 (c 0.49, CHCl3); 1H NMR (400 MHz, CDCl3) δ 

7.21 (dd, J = 8.6, 7.4 Hz, 2H), 6.81 (t, J = 7.4 Hz, 1H), 6.73 (d, J = 7.7 Hz, 2H), 4.56 – 4.44 (m, 1H), 3.68 (s, 

3H), 2.84 (dd, J = 15.7, 4.6 Hz, 1H), 2.64 (dd, J = 15.7, 8.6 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 

1670, 145.6, 129.8, 125.5 (q, J = 282.0 Hz), 119.6, 114.1, 53.4 (q, J = 30 Hz) , 52.3, 34.7 (q, J = 1.0 Hz); 

19F{1H} NMR (376 MHz, CDCl3) δ -76.1; HPLC (OD-H, elute: Hexanes/i-PrOH = 90/10, detector: 230 nm, 

flow rate: 1.0 mL/min), 30 oC, t1 = 7.0 min, t2 = 8.8 min (maj).

(R)-Benzyl-4,4,4-trifluoro-3-(phenylamino)butanoate (2c) : 47 mg, 58% yield, pale yellow oil, Rf = 

0.35 (hexanes/ethyl acetate = 20/1), 92% ee, [α]20
D = -9.79 (c 0.47, CHCl3); 1H NMR (400 MHz, CDCl3) δ 

7.34 – 7.28 (m, 3H), 7.27 – 7.22 (m, 2H), 7.22 – 7.16 (m, 2H), 6.85 – 6.75 (m, 1H), 6.69 (d, J = 7.7 Hz, 2H), 

5.09 (d, J = 0.9 Hz, 2H), 4.50 (tdd, J = 9.2, 6.8, 4.4 Hz, 1H), 3.85 (d, J = 10.1 Hz, 1H), 2.88 (dd, J = 15.6, 

4.4 Hz, 1H), 2.66 (dd, J = 15.6, 9.0 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 169.3, 145.6, 135.1, 129.4, 

128.6, 128.5, 128.4, 125.5 (q, J = 282.0 Hz), 119.5, 114.0, 67.2, 53.4 (q, J = 30.0 Hz), 35.1 (q, J = 1.0 Hz); 

19F{1H} NMR (376 MHz, CDCl3) δ -76.1; HPLC (OD-H, elute: Hexanes/i-PrOH = 90/10, detector: 230 nm, 

flow rate: 1.0 mL/min), 30 oC, t1 = 9.8 min (maj), t2 = 12.3 min; HRMS (ESI-TOF) m/z Calculated for 

C17H17F3NO2 [M+H]+ 324.1206, found 324.1206.

(R)-4,4,4-trifluoro-N-phenyl-3-(phenylamino)butanamide (2d) : 25 mg, 33% yield, pale yellow oil, Rf 

= 0.19 (hexanes/ethyl acetate = 5/1), 76% ee, [α]20
D = -11.2 (c 0.25, CHCl3); 1H NMR (400 MHz, CDCl3) δ 

7.75 (brs, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.32 (t, J = 7.9 Hz, 2H), 7.24 (dd, J = 8.4, 7.5 Hz, 2H), 7.14 (t, J = 

7.4 Hz, 1H), 6.86 (t, J = 7.4 Hz, 1H), 6.80 (d, J = 8.1 Hz, 2H), 4.58 (s, 1H), 4.14 (s, 1H), 2.87 (dd, J = 15.2, 

3.9 Hz, 1H), 2.63 (dd, J = 15.2, 8.5 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 166.8, 145.6, 137.2, 129.5, 

129.1, 125.7 (q, J = 283.0 Hz), 125.0, 120.4, 119.9, 114.5, 53.9 (q, J = 30.0 Hz), 37.1; 19F{1H} NMR (376 

MHz, CDCl3) δ -75.6; HPLC (OJ-H, elute: Hexanes/i-PrOH = 90/10, detector: 230 nm, flow rate: 1.0 
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mL/min), 30 oC, t1 = 25.6 min, t2 = 32.9 min (maj); HRMS (ESI-TOF) m/z Calculated for C16H16F3N2O 

[M+H]+ 309.1209, found 309.1214.

(R)-Ethyl-4,4,4-trifluoro-3-((4-methoxyphenyl)amino)butanoate (2e): 23a 48 mg, 66% yield, pale 

yellow oil, Rf = 0.22 (hexanes/ethyl acetate = 20/1), 94% ee, [α]20
D = -23.12 (c 0.48, CHCl3); 1H NMR (400 

MHz, CDCl3) δ 6.79 (d, J = 8.9 Hz, 2H), 6.70 (d, J = 8.9 Hz, 2H), 4.35 (s, 1H), 4.13 (q, J = 7.1 Hz, 2H), 

3.75 (s, 3H), 3.61 (d, J = 8.6 Hz, 1H), 2.80 (dd, J = 15.6, 4.5 Hz, 1H), 2.59 (dd, J = 15.6, 8.9 Hz, 1H), 1.21 (t, 

J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 169.6, 153.5, 139.7, 125.7 (q, J = 282.0 Hz), 115.9, 

114.8, 62.3, 55.7, 54.9 (q, J = 30 Hz), 35.1 (q, J = 2.0 Hz), 14.0; 19F{1H} NMR (376 MHz, CDCl3) δ -76.0; 

HPLC (OJ-H, elute: Hexanes/i-PrOH = 90/10, detector: 230 nm, flow rate: 1.0 mL/min), 30 oC, t1 = 12.7 min, 

t2 = 15.0 min (maj).

(R)-Ethyl-4,4,4-trifluoro-3-((3-methoxyphenyl)amino)butanoate (2f) : 51 mg, 70% yield, pale yellow 

oil, Rf = 0.16 (hexanes/ethyl acetate = 20/1), 95% ee, [α]20
D = -12.35 (c 0.51, CHCl3); 1H NMR (400 MHz, 

CDCl3) δ 7.03 (t, J = 8.1 Hz, 1H), 6.30-6.20 (m, 2H), 6.21 (t, J = 2.1 Hz, 1H), 4.42-4.36 (m, 1H), 4.06 (q, J 

= 7.1 Hz, 2H), 3.69 (s, 3H), 2.75 (dd, J = 15.6, 4.6 Hz, 1H), 2.54 (dd, J = 15.6, 8.6 Hz, 1H), 1.13 (t, J = 7.1 

Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 169.4, 160.8, 147.1, 130.2, 125.5 (q, J = 282.0 Hz), 106.7, 

104.6, 100.2, 61.4, 55.2, 53.3 (q, J = 30.0 Hz), 35.2 (q, J = 2.0 Hz), 14.0; 19F{1H} NMR (376 MHz, CDCl3) 

δ -76.1; HPLC (OD-H, elute: Hexanes/i-PrOH = 95/5, detector: 230 nm, flow rate: 0.8 mL/min), 30 oC, t1 = 

16.9 min (maj), t2 = 23.7 min; HRMS (ESI-TOF) m/z Calculated for C13H16F3NNaO3 [M+H]+ 314.0974, 

found 314.0975.

(R)-Ethyl-4,4,4-trifluoro-3-((2-methoxyphenyl)amino)butanoate (2g) : 36 mg, 50% yield, pale yellow 

solid, Rf = 0.27 (hexanes/ethyl acetate = 20/1), 93% ee, [α]20
D = + 3.33 (c 0.36, CHCl3); 1H NMR (400 MHz, 

CDCl3) δ 6.90 – 6.86 (m, 1H), 6.83 – 6.72 (m, 3H), 4.57 – 4.45 (m, 1H), 4.18 – 4.08 (m, 2H), 3.85 (s, 3H), 

2.85 (dd, J = 15.7, 4.6 Hz, 1H), 2.66 (dd, J = 15.7, 8.8 Hz, 1H), 1.19 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 

MHz, CDCl3) δ 169.4, 147.0, 135.6, 125.6 (q, J = 281.0 Hz),121.2, 118.5, 111.3, 110.1, 61.3, 55.6, 53.0 (q, J 

= 30.0 Hz), 35.3 (q, J = 1.0 Hz), 14.0; 19F{1H} NMR (376 MHz, CDCl3) δ -76.3; HPLC (OD-H, elute: 

Hexanes/i-PrOH = 95/5, detector: 230 nm, flow rate: 0.7 mL/min), 30 oC, t1 = 9.1 min, t2 = 10.3 min (maj); 

HRMS (ESI-TOF) m/z Calculated for C13H16F3NNaO3 [M+H]+ 314.0974, found 314.0957.

(R)-Ethyl-4,4,4-trifluoro-3-(p-tolylamino)butanoate (2h) : 49 mg, 71% yield, pale yellow oil, Rf = 0.26 

(hexanes/ethyl acetate = 20/1), 93% ee, [α]20
D = -23.26 (c 0.49, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.02 

(d, J = 8.0 Hz, 2H), 6.65 (d, J = 8.4 Hz, 2H), 4.51 – 4.33 (m, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.43 (s, 1H), 2.81 

(dd, J = 15.6, 4.6 Hz, 1H), 2.61 (dd, J = 15.6, 8.8 Hz, 1H), 2.25 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H); 13C{1H} 
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NMR (100 MHz, CDCl3) δ 169.5, 143.4, 129.9, 128.8, 125.6 (q, J = 282.0 Hz), 114.3, 61.3, 53.9 (q, J = 30 

Hz), 35.1(q, J = 1.0 Hz), 20.4, 14.0; 19F{1H} NMR (376 MHz, CDCl3) δ -76.1; HPLC (OD-H, elute: 

Hexanes/i-PrOH = 90/10, detector: 230 nm, flow rate: 1.0 mL/min), 30 oC, t1 = 5.2 min (maj), t2 = 5.5 min; 

HRMS (ESI-TOF) m/z Calculated for C13H17F3NO2 [M+H]+ 276.1206, found 276.1173.

(R)-Ethyl-3-((4-chlorophenyl)amino)-4,4,4-trifluorobutanoate (2i) : 54 mg, 73% yield, pale soild: 116-

118 oC, Rf = 0.20 (hexanes/ethyl acetate = 20/1), 95% ee, [α]20
D = -28.70 (c 0.54, CHCl3); 1H NMR (400 

MHz, CDCl3) 1H NMR (400 MHz, CDCl3) δ 7.15 (d, J = 8.8 Hz, 2H), 6.66 (d, J = 8.8 Hz, 2H), 4.51 – 4.35 

(m, 1H), 4.26 – 4.07 (m, 2H), 4.03 – 3.82 (m, 1H), 2.83 (dd, J = 15.8, 4.3 Hz, 1H), 2.60 (dd, J = 15.8, 9.0 Hz, 

1H), 1.20 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 169.3, 144.4, 129.3, 125.4 (q, J = 282.0 

Hz), 124.2, 115.1, 61.5, 53.5 (t, J = 30.0 Hz), 34.9 (q, J = 2.0 Hz), 14.0; 19F{1H} NMR (376 MHz, CDCl3) δ 

-76.1; HPLC (OD-H, elute: Hexanes/i-PrOH = 97/3, detector: 230 nm, flow rate: 0.5 mL/min), 30 oC, t1 = 

17.8 min (maj), t2 = 21.1 min; HRMS (ESI-TOF) m/z Calculated for C12H14ClF3NO2 [M+H]+ 296.0660, 

found 296.0655.

(R)-Ethyl-4,4,4-trifluoro-3-((4-fluorophenyl)amino)butanoate (2j) : 38 mg, 54% yield, pale yellow oil, 

Rf = 0.23 (hexanes/ethyl acetate = 30/1), 91% ee, [α]20
D = -8.68 (c 0.38, CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 6.96 – 6.85 (m, 2H), 6.75 – 6.62 (m, 2H), 4.45 – 4.29 (m, 1H), 4.14 (qd, J = 7.1, 1.0 Hz, 2H), 3.77 (d, J = 

9.7 Hz, 1H), 2.82 (dd, J = 15.7, 4.3 Hz, 1H), 2.60 (dd, J = 15.7, 9.1 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H); 13C{1H} 

NMR (100 MHz, CDCl3) δ 169.5, 156.9 (d, J = 236.0 Hz), 142.1(d, J = 3.0 Hz), 125.5 (q, J = 282.0 Hz), 

115.8 (d, J = 24.0 Hz), 115.3 (d, J = 8.0 Hz), 61.4, 54.5 (q, J = 30.0 Hz), 35.0 (q, J = 1.0 Hz), 14.0; 19F{1H} 

NMR (376 MHz, CDCl3) δ -76.1, -125.4; HPLC (OD-H, elute: Hexanes/i-PrOH = 95/5, detector: 230 nm, 

flow rate: 0.8 mL/min), 30 oC, t1 = 7.9 min (maj), t2 = 9.0 min; HRMS (ESI-TOF) m/z Calculated for 

C12H14F4NO2 [M+H]+ 280.0955, found 280.0956.

(R)-Ethyl-4,4,4-trifluoro-3-(naphthalen-1-ylamino)butanoate (2k) : 65 mg, 84% yield, pale yellow oil, 

Rf = 0.32 (hexanes/ethyl acetate = 20/1), 96% ee, [α]20
D = +59.23 (c 0.65, CHCl3); 1H NMR (400 MHz, 

CDCl3) δ 7.94 – 7.76 (m, 2H), 7.56 – 7.45 (m, 2H), 7.42 – 7.33 (m, 2H), 6.87 (dd, J = 6.3, 2.1 Hz, 1H), 4.89 

(d, J = 9.3 Hz, 1H), 4.72 (dt, J = 9.2, 7.1 Hz, 1H), 4.14 (d, J = 7.1 Hz, 2H), 2.93 (dd, J = 15.7, 5.0 Hz, 1H), 

2.82 (dd, J = 15.7, 7.5 Hz, 1H), 1.19 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 169.7, 141.0, 

134.5, 128.8, 126.3, 126.0, 125.7 (q, J = 282.0 Hz), 125.3, 123.8, 119.8, 119.6, 106.7, 61.5, 53.5 (q, J = 30.0 

Hz), 34.8 (q, J = 2.0 Hz), 14.0; 19F{1H} NMR (376 MHz, CDCl3) δ -75.6; HPLC (OD-H, elute: Hexanes/i-

PrOH = 95/5, detector: 230 nm, flow rate: 0.8 mL/min), 30 oC, t1 = 23.3min (maj), t2 = 26.2 min; HRMS 

(ESI-TOF) m/z Calculated for C16H17F3NO2 [M+H]+ 312.1206, found 312.1207.
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(R)-Ethyl-4,4-difluoro-3-(phenylamino)butanoate (2l) :23b 47mg, 77% yield, pale yellow oil, Rf = 0.31 

(hexanes/ethyl acetate = 20/1), 72% ee, [α]20
D = -11.7 (c 0.47, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.21 (t, 

J = 7.8 Hz, 2H), 6.80 (t, J = 7.3 Hz, 1H), 6.72 (d, J = 8.0 Hz, 2H), 5.94 (td, J = 56.1, 2.5 Hz, 1H), 4.33 – 

4.19 (m, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.97 (s, 1H), 2.77 (dd, J = 15.9, 5.3 Hz, 1H), 2.61 (dd, J = 15.9, 7.3 

Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 170.7, 145.8, 129.5, 119.1, 115.1 (t, J 

= 245.0 Hz), 113.9, 61.1, 52.6 (q, J = 22.0 Hz), 33.3 (q, J = 2.0 Hz), 14.1; 19F{1H} NMR (376 MHz, CDCl3) 

δ -125.4 (d, J = 282.7, 1F), 130.2 (d, J = 282.7, 1F); HPLC (OD-H, elute: Hexanes/i-PrOH = 90/10, detector: 

230 nm, flow rate: 1.0 mL/min), 30 oC, t1 = 7.4 min, t2 = 8.2 min (maj).

(2R,3R)-Ethyl-4,4,4-trifluoro-3-((4-methoxyphenyl)amino)-2-methylbutanoate (2m1) :3c 33mg, 43% 

yield, pale yellow oil, Rf = 0.53 (hexanes/ethyl acetate = 30/1), 84% ee, [α]20
D = -17.57 (c 0.33, CHCl3); 1H 

NMR (400 MHz, CDCl3) δ 6.78 (d, J = 8.9 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 4.48 (d, J = 9.5 Hz, 1H), 4.25 – 

4.08 (m, 2H), 4.03 – 3.86 (m, 1H), 3.74 (s, 3H), 3.05 – 2.88 (m, 1H), 1.30 (d, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 

Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 173.8, 153.0, 140.8, 125.7 (t, J = 281.0 Hz), 114.9 (d), 61.2, 

59.7 (q, J = 28.0 Hz), 55.7, 39.1, 14.9, 14.0; 19F{1H} NMR (376 MHz, CDCl3) δ -73.5; HPLC (OD-H, elute: 

Hexanes/i-PrOH = 90/10, detector: 230 nm, flow rate: 0.8 mL/min), 30 oC, t1 = 5.5 min (maj), t2 = 6.0 min.

(2R,3S)-Ethyl-4,4,4-trifluoro-3-((4-methoxyphenyl)amino)-2-methylbutanoate (2m2) :3c 26mg, 34% 

yield, pale yellow oil, Rf = 0.52 (hexanes/ethyl acetate = 30/1), 90% ee, [α]20
D = -0.77 (c 0.26, CHCl3); 1H 

NMR (400 MHz, CDCl3) δ 6.77 (d, J = 8.9 Hz, 2H), 6.69 (d, J = 8.9 Hz, 2H), 4.44 (ddd, J = 11.0, 7.5, 5.5 

Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.74 (s, 3H), 3.55 (d, J = 10.7 Hz, 1H), 2.93 (dd, J = 7.0, 5.5 Hz, 1H), 1.30 

(d, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.8, 153.4, 140.1, 125.8 

(t, J = 283.0 Hz), 115.8, 114.8, 61.3, 58.4 (q, J = 30.0 Hz), 55.7, 39.8, 14.0, 11.5; 19F{1H} NMR (376 MHz, 

CDCl3) δ -73.1; HPLC (OD-H, elute: Hexanes/i-PrOH = 90/10, detector: 230 nm, flow rate: 0.8 mL/min), 30 

oC, t1 = 6.1 min (maj), t2 = 6.9 min.

For 2.0 mmol Experiment

(S,S)-Ph-BPE (49.6 mg, 0.096 mmol) and Pd(OCOCF3)2 (26.6 mg, 0.08 mmol) were placed in a dried 

Schlenk tube under nitrogen atmosphere, and degassed anhydrous acetone was added. The mixture was 

stirred at room temperature for 1 h. The solvent was removed under vacuum to give the catalyst. This 

catalyst was taken into a glovebox filled with nitrogen and dissolved in dry HFIP (15 mL). To a mixture of 

substrates 1e (2.0 mmol) and p-anisic acid (60.8 mg, 0.4 mmol), the catalyst solution was added, and then 

the mixture was transferred to an autoclave. The hydrogenation was performed at 60 oC under 800 psi of 

hydrogen. The autoclave was stirred under directed conditions for 24 h, then the hydrogen was carefully 

released, the autoclave was opened, and saturated aqueous sodium bicarbonate (15 mL) was added to the 
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mixture and stirred for 10-15 min. The mixture was extracted with dichloromethane twice and the combined 

organic extracts dried over sodium sulfate. The resulting mixture was concentrated in vacuo and further 

purification was performed by a silica gel column eluted with hexanes/ethyl acetate to give the desired 

product 2e. The enantiomeric excesses were determined by chiral HPLC after the purification by column 

chromatography on silica gel (ethyl acetate/hexanes), 0.409 g, 70% yield, 94% ee.

Synthesis of (R)-4,4,4-trifluoro-3-(phenylamino)butan-1-ol.

LiAlH4 (23 mg, 0.6 mmol) was added to a solution of 1a (52.0 mg, 0.2 mmol) in THF (4.0 mL) at -50 oC. 

The resulting mixture was stirred for 2h at -50 oC under argon atmosphere. The reaction was quenchesd with 

saturated ammonium chloride solution and the aqueous layer was exacted with 3 x 10 mL of EtOAc. The 

organic layer was dried over Na2SO4 and filtered. The solvent was evaporated under reduced pressure to get 

the crude product. The crude product was chromatographed on a silica gel column using 2:1 hexanes /EtOAc 

as eluent to afford the analytically pure product 5a in 38 mg (99% ee, 89% yield). 3c. 

(R)-4,4,4-trifluoro-3-(phenylamino)butan-1-ol (5a) : 38 mg, 89% yield, pale yellow oil, Rf = 0.35 

(hexanes/ethyl acetate = 2/1), 99% ee, [α]20
D = +56.84 (c 0.38, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.25 – 

7.16 (m, 2H), 6.84 – 6.77 (m, 1H), 6.72 (d, J = 7.7 Hz, 2H), 4.18 (s, 1H), 3.81 (dd, J = 6.7, 4.6 Hz, 2H), 3.73 

(s, 1H), 2.20 – 2.08 (m, 1H), 1.75 (ddt, J = 14.7, 10.4, 4.4 Hz, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ 

146.6, 129.5, 126.3 (q, J = 282.0 Hz), 119.1, 113.6, 58.6, 53.2 (q, J = 30.0 Hz), 31.9 (q, J = 2.0 Hz); 19F{1H} 

NMR (376 MHz, CDCl3) δ -76.0; HPLC (OD-H, elute: Hexanes/i-PrOH = 85/15, detector: 230 nm, flow rate: 

1.0 mL/min), 30 oC, t1 = 10.1 min (maj), t2 = 12.1 min. 

Synthesis of (R)-ethyl-3-amino-4,4,4-trifluorobutanoate.

To a solution of cerium ammonium nitrate (CAN, 5.0 eq) in acetonitrile/water (10 mL, 1:1) at 0 oC was 

added a solution of (R)-2e (158.0 mg, 0.54 mmol) in acetonitrile (5 mL). The reaction mixture was stirred at 

0 oC for 1 h and quenched with saturated aqueous sodium hydrogen sulfite (4 mL). The reaction mixture was 

exacted with ethyl acetate and concentrated under vacuum. The resulting phase was redissolved in 10 mL 

H2O and CH2Cl2 (15 mL), 1N HCl aq. was added to the mixture until the solution became pH 2. The mixture 

was washed with CH2Cl2 (15 mL × 2). The aqueous layer was made alkaline by adding 1N NaOH, and then 

extracted CH2Cl2 (15 mL × 2). The combined organic solution was washed with brine and dried over Na2SO4. 

The solvent was removed under vacuum to afford pure chiral primary amine (R)-(+)-5e.15c, 18g, 24

(R)-Ethyl-3-amino-4,4,4-trifluorobutanoate (5e) : 48 mg, 48% yield, colourless oil, 93% ee, [α]20
D = 

+10.62 (c 0.48, CHCl3); 1H NMR (400 MHz, CDCl3) δδ 4.21 (q, J = 7.1 Hz, 2H), 3.76 – 3,73(m, 1H), 2.73 

(dd, J = 16.1, 3.5 Hz, 1H), 2.46 (dd, J = 16.1, 10.1 Hz, 1H), 1.73 (brs, 2H), 1.29 (t, J = 7.2 Hz, 3H); 13C{1H} 

NMR (100 MHz, CDCl3) δ 170.2, 126.0 (q, J = 279.0 Hz), 61.2, 51.1 (q, J = 30.0 Hz), 35.6, 14.1; 19F{1H} 
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NMR (376 MHz, CDCl3) δ -78.9; Enantiomeric excess was determined by HPLC for the corresponding 

benzamide, Rf = 0.16 (hexanes/ethyl acetate = 5/1), HPLC (OJ-H, elute: Hexanes/i-PrOH = 90/10, detector: 

230 nm, flow rate: 1.0 mL/min), 30 oC, t1 = 8.3 min (maj), t2 = 9.1 min.

For Deuterium-Labeling Experiment of Eq. 7

p-Anisic acid (7.6 mg, 0.05 mmol) was placed in a dried Schlenk tube under nitrogen atmosphere, and 

degassed anhydrous CD3OD (1.0 mL) was added. The mixture was stirred at room temperature for 0.5 h. 

The solvent was removed under vacuum to give the catalyst. The substrates 1a (64.8 mg, 0.25 mmol) and D-

HFIP (1.0 mL) were added. The ratio of imine (1ac) to enamine (1ab) is 1:5 under room temperature for 10 

minute. When the reaction was performed at 60 oC for 10 minute, the atio of 1ac to 1ab is 1:2. Under 60 oC 

for 1 h, the 1a is almost completely converted into 1ac and 1ab, and the ratio of 1ac to 1ab is 2.6:1. 

Subsequently, the ratio of 1ac to 1ab was increased with time prolonged (see Figure S1).
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