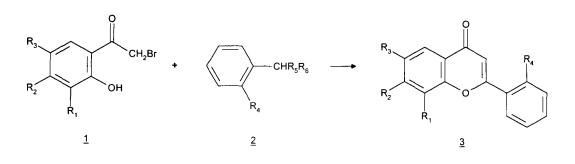


PII: S0040-4020(97)00628-5

New Flavones by a Novel Synthetic Route

Angela Sandulache,^a Alexandru Cascaval,^b Nicoletta Toniutti^c and Angelo G. Giumanini^{* c}

^aDepartment of Chemistry, University of Galati, RO-6200 Galati, Romania ^bDepartment of Organic Chemistry Al. I. Cuza, University of Iassy, RO-6600 Iasi, Romania ^cDepartment of Chemical Sciences and Technologies, University of Udine, I-33100 Udine, Italy


Abstract: Twelve new flavones (3) were prepared by the reaction of 2-hydroxy- α -bromoacetophenones (1) with piperidine or morpholine aminals of benzaldeydes (2) in refluxing methanol. The products (3) were fully characterised by ¹H NMR and IR spectroscopy and MS spectrometry. © 1997 Elsevier Science Ltd.

In view of the natural,^{1,2} pharmacological^{3,4} and chemical^{5,6} widespread importance of compounds having the flavone framework, we deemed it of interest to make an addition to the synthetic methods of preparation of flavones, which is the subject of the present report.

RESULTS AND DISCUSSION

The availability of 2-hydroxy- α -bromoacetophenones (<u>1</u>)⁷ and benzaldehyde aminals (<u>2</u>)⁸ prompted us to attempt to introduce a novel flavone synthesis⁹ (Fig. 1). The results of the interaction of these substances in refluxing methanol with very short contact times are collected in Table 1 together with some properties of the new flavones (<u>3</u>) obtained according to this method, which appears of quite general application. The likely mechanism of the process is outlined in Fig. 2. Of course, the S_N*i* reaction of the ring closure to <u>4</u> may follow a carbenium ion instead of the indicated displacement mechanism.

All of the new flavones were fully characterised by elemental analysis, mass spectrometry, ¹H NMR and IR spectroscopy. Continuous monitoring of the mass spectrum pattern of the material evaporated into the ion source from the solid phase allowed us to ascertain the homogeneity of the individual products.

	R ₁	R ₂	R ₃
<u>1a</u>	I	Ĥ	CH ₃
<u>1b</u>	Ι	Н	I
<u>1c</u>	Н	CH3	Br
<u>1d</u>	Br	Н	CH ₃
<u>1e</u>	CH ₃	Н	Br
<u>1f</u>	Br	Н	Br

	R ₄	$R_5 = R_6$
<u>2a</u>	Н	piperidino
<u>2b</u>	Н	morpholino
<u>2c</u>	OH	morpholino
<u>2d</u>	Cl	piperidino
<u>2e</u>	NO_2	morpholino

	R	R ₂	R ₃	R ₄			Elemental	analysis		
						Calcd.			Found	
					С	Н	Ν	С	Н	Ν
<u>3a</u>	I	H	CH ₃	H	53.06	3.06		53.10	3.07	
<u>3b</u>	I	Н	CH_3	ОН	50.82	2.93		50.84	3.05	
<u>3c</u>	I	Н	CH ₃	Cl	48.45	2.54		48.51	2.48	
<u>3d</u>	I	Н	CH ₃	NO_2	47.18	2.48	3.44	47.24	2.49	3.48
<u>3e</u>	I	Н	Ι	OH	36.75	1.65		36.82	1.68	
<u>3f</u>	I	Н	I	Cl	35.45	1.39		35.51	1.40	
<u>3g</u>	Н	CH ₃	Br	OH	58.18	3.36		58.12	3.35	
<u>3h</u>	Br	Н	CH ₃	Н	61.15	3.35		60.98	3.42	
<u>3i</u>	Br	Н	CH ₃	ОН	58.18	3.36		57.95	3.37	
<u>3j</u>	CH_3	Н	Br	ОН	58.18	3.36		57.90	3.36	
<u>3k</u>	Br	Н	Br	Н	47.63	2.13		47.44	2.16	
<u>31</u>	Br	Н	Br	ОН	45.49	2.04		45.42	2.09	

Fig. 1

			איזא אווא (ד) באווטואוולמאאסט	$c_{11} = c_{11} c_{12} c_{13} c_{14} c_{15} c_{15$	
Product $\underline{3}$					
(yield %)	$K_5 = K_6$ of aminals <u>2</u>	mp (°C) ^a	IR (KBr) v (cm ⁻¹) ^b	.H NMR 8, <i>J</i> (Hz)	MS (70 eV) m/z (%) ^b
⁶⁴ , ⁶⁰	piperidino	164	1717vs, 1653vs, 1609vs, 1479vs, 1297s, 1236s, 1142vs, 920s, 783vs, 670s, 559s	2.38 (s, 3H, CH ₃), 6.92 (s, 1H, H ₃), 7.38-7.55 (m, 4H, H ₅ + H ₁₄ + H ₁₅ + H ₁₃), 7.78-7.84 (m, 1H, H ₇), 7.95 (<i>app</i> dd, 2H, J_{J} =8.2, J_{2} =1.8, H ₁₆ + H ₁₂) ^d	362 (M^+ , 80), 361 (100), 316 (11), 315 (20), 313 (20), 260 (10), 235 (27), 234 (10), 181 (M^{2+} , 4)
3b (58)	morpholino	244	1682vs, 1634vs, 1597vs, 1482s, 1462vs, 1387s, 1268vs, 1240vs, 1147vs, 781s, 755s	2.35 (s, 3H, CH ₃), 6.93-7.04 (m, 2H, H ₁₃ + H ₁₅ or H ₁₄), 7.25-7.38 (m, 2H, H ₃ + H ₁₄ or H ₁₅), 7.55-7.65 (m, 1H, H ₅), 8.00-8.05 (m, 1H, H ₇), 8.22 (<i>app</i> d, 1H, $J=7.7$, H ₁₆) ^e	378 (M ⁺ , 34), 260 (100), 214 (24), 212 (23), 189 (M ²⁺ , 4), 118 (16)
^{CH} ,	piperidino	203	1714vs, 1652vs, 1610s, 1482vs, 1147vs, 1121vs, 1100s, 781vs	2.40 (s, 3H, CH ₃), 7.28-7.67 (m, 5H, H ₃ + H ₁₃ + H ₁ + H ₁₄ + H ₁₅), 7.80-7.86 (m, 1H, H ₇), 8.46 (<i>app</i> dd, 1H, $J_{j=7.3}$, $J_{2}=1.5$, H ₁₆) ^d	398 (M ⁺ , 4), 396 (M ⁺ , 12), 361 (100), 315 (19), 313 (19), 234 (13)
2 d (34)	morpholino	218	1712vs, 1659vs, 1607vs, 1525vs, 1476vs, 1354vs, 1140vs, 922s, 790s	2.40 (s, 3H, CH ₃), 7.33 (s, 1H, H ₃), 7.48-7.64 (m, 2H, H ₅ + H ₁₄ or H ₁₅), 7.75 (app t, 1H, $J=7.7$, H ₁₄ or H ₁₅), 7.82-7.88 (m, 1H, H ₇), 8.03 (app dd, 1H, $J_1=7.8$, $J_2=1.2$, H ₁₅), 8.39 (app dd, 1H, $J_1=7.8$, $J_2=1.2$, H ₁₆) ^d	407 (M ⁺ , 0.28), 377 (3), 361 (2), 260 (100), 232 (5), 214 (23), 212 (24), 133 (16)

u-14.

Table 1. Results of reaction between 2-hydroxy- α -bromoacetophenones (<u>1</u>) and benzaldehydes aminals (<u>2</u>) to give flavones (<u>3</u>).

490 (M ⁺ , 35), 473 (4), 372 (100), 245 (21), 118 (43)	510 (M ⁺ , 7), 508 (M ⁺ , 21), 473 (100), 346 (11), 254 (M ²⁺ , 0.7), 245 (9), 237 (18), 219 (37)	332 (M^+ , 55), 330 (M^+ , 59), 315 (19), 313 (18), 214 (86), 212 (89), 165 (M^{2+} , 19), 118 (100)	316 (M ⁺ , 54), 315 (100), 314 (M ⁺ , 52), 313 (100), 214 (10), 212 (11), 133 (14)
6.90-7.05 (m, 2H, $H_{13} + H_{14}$ or H_{15}), 7.26-7.38 (m, 2H, $H_3 + H_{14}$ or H_{15}), 8.04 (d, 1H, $J=1.6$, H_3), 8.18 (<i>app</i> d, 1H, $J=7.6$, H_{16}), 8.44 (d, 1H, $J=1.6$, H_7) ⁶	7.32-7.55 (m, 4H, H ₃ + H ₁₃ + H ₁₄ + H ₁₅), 8.08 (d, 1H, $J=1.8$, H ₅), 8.30 (d, 1H, $J=1.5$, H ₇), 8.43 (app dd, 1H, $J_{j}=7.6$, $J_{j}=0.8$, H ₁₆) ^d	2.50 (s, 3H, CH ₃), 6.90-7.00 (m, 2H, $H_{13} + H_{14}$ or H_{15}), 7.20-7.35 (m, 2H, $H_3 + H_{14}$ or H_{15}), 7.61 (s, 1H, H ₈), 7.93 (s, 1H, H ₅), 8.08 (<i>app</i> d, 1H, H ₁₆ , <i>J</i> =7.3), 10.31 (broad s, 1H, O-H) ^e	2.40 (s, 3H, CH ₃), 6.93 (s, 1H, H ₃), 7.39-7.55 (m, 4H, H ₁₄ + H ₁₃ + H ₁₅ + H ₅), 7.61-7.65 (m, 1H, H ₇), 7.92-8.00 (m, 2H, H ₁₆ + H ₁₂) ^d
1672s, 1620vs, 1578vs, 1459vs, 1442vs, 1259s, 1170s, 1156vs, 781s	1718vs, 1651vs, 1594vs, 1441vs, 1288s, 1152vs, 1116s, 779vs	1679vs, 1643vs, 1588vs, 1460vs, 1413s, 1267vs, 1202s, 1177vs, 1142vs, 755s	1712vs, 1655vs, 1480s, 1241s, 1146vs, 779s
272	203	251°	180
morpholino	piperidino	morpholino	piperidino
(61) €	3 <i>t</i> (39)	Br O H 3 O H	^{CH} ³ Br (59)

9816

0-H), 332 (M^+ , 20), 330 (M^+ , H ₁₅), 21), 315 (6), 313 (5), 215 H_{14}), (12), 214 (97), 213 (14), H_{7}), 212 (100), 166 (M^{2+} , 7), 165 (M^{2+} , 16), 133 (20), 118 (32)	n, 2H, 332 (M^+ , 34), 330 (M^+ , n, 2H, 35), 315 (10), 313 (10), n, 1H, 215 (12), 214 (100), 213 H ₅ or (12), 212 (98), 186 (37), $T_2=1.6$, 184 (39), 166 (M^{2+} , 8), 165 (M^{2+} , 17), 118 (61)	n, 3H, 382 (M^+ , 30), 381 (58), d, 1H, 380 (M^+ , 57), 379 (100), H, + 377 (45), 300 (2), 278 (7), 102 (5)	r H ₁₄), 398 (M ⁺ , 5), 396 (M ⁺ , 9), r H ₁₄), 394 (M ⁺ , 5), 280 (8), 278 app d, (17), 276 (8), 199 (M ²⁺ , 2), J=2.0, 197 (M2+, 2), 118 (100)	0-d ₆
2.47 (s, 3H, CH ₃), 2.61 (s, 1H, O-H), 7.00-7.15 (m, 2H, H ₁₃ + H ₁₄ or H ₁₅), 7.33-7.48 (m, 2H, H ₃ + H ₁₅ or H ₁₄), 7.66 (s, 1H, H ₃), 7.94 (s, 1H, H ₇), 8.25 (<i>app</i> d, 1H, $J=6.7$, H ₁₆) ⁶	2.42 (s, 3H, CH ₃), 6.90-7.03 (m, 2H, H ₁₃ + H ₁₄ or H ₁₅), 7.22-7.35 (m, 2H, H ₃ + H ₁₄ or H ₁₅), 7.70-7.75 (m, 1H, H ₅ or H ₇), 7.79-7.83 (m, 1H, H ₅ or H ₇), 8.10 (<i>app</i> dd, 1H, J_{1}^{r} =9.5, J_{2}^{s} =1.6, H ₁₆), 10.42 (broad s, 1H, O-H) ⁶	6.89 (s, 1H, H ₃), 7.35-7.49 (m, 3H, H ₁₃ + H ₁₄ + H ₁₅), 7.76 (<i>app</i> d, 1H, J=2.1, H ₅), 7.81-7.90 (m, 3H, H ₇ + H ₁₆ + H ₁₂) ^d	6.90-7.03 (m, 2H, H ₁₃ + H ₁₅ or H ₁₄), 7.25-7.40 (m, 2H, H ₃ + H ₁₅ or H ₁₄), 7.95 (d, 1H, $J=1.9$, H ₅), 8.13 (app d, 1H, $J=7.6$, H ₁₆), 8.26 (d, 1H, $J=2.0$, H ₇), 10.61 (broad s, 1H, O-H) ⁶	re reported together with other peaks of significance. ^c Decomposed. ^d Solvent CDCl ₃ , ^c Solvent DMSO- d_6
1681s, 1635vs, 1597vs, 1460vs, 1270s, 1247vs, 1153vs, 752m	1686vs, 1642vs, 1588vs, 1457vs, 1236vs,1140vs, 766s	1707vs, 1651vs, 1591s, 1454vs, 1168s, 782vs	1678s, 1623vs, 1584vs, 1458vs, 1265vs, 1236vs, 1158vs, 1143vs, 779s, 745s	1 other peaks of significance. ^c Dec
244	o 272 ^c	o 170	o 255°	together with
morpholino	morpholino	morpholino	morpholino	s are reported
G ⁴ , B ¹ (63) B ¹ (63)	Br CH ₃ (61)	Br O O		^a Uncorrected. ^b The more intense peaks an

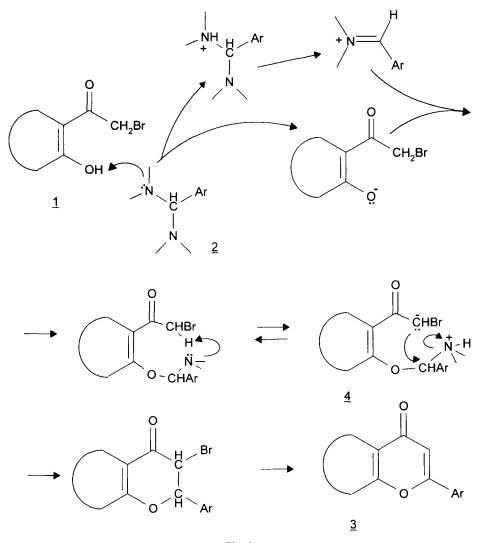
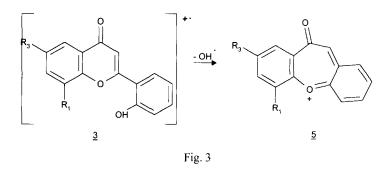
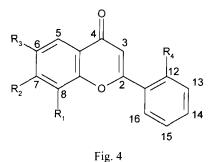



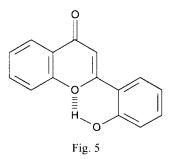
Fig. 2


The parent ion in the mass spectra of these flavones was hardly discernible only for <u>3d</u>, which underwent a powerful retro-Diels Alder type fragmentation¹⁰ in order to loose the electronegative fragment $O_2NPhC=CH$, to yield the base peak for <u>3g</u> and <u>3l</u>. The expected retro Diels Alder fragmentation was very frequently a dominant process, even when it was preceded by a more favourable cleavage, like in <u>3f</u>. Furthermore, many compounds showed the doubly charged parent ion. Interestingly, the halogen present in the condensed aromatic ring appeared firmly held, whereas the *ortho*-chlorine in the side phenyl ring was the trigger point of the observed

fragmentations in <u>3c</u> and <u>3f</u>. The presence of an *ortho*-hydroxyl group in the phenyl substituent (<u>3b</u>, <u>3e</u>, <u>3g</u>, <u>3i</u>, <u>3j</u> and <u>3l</u>) induced the loss of an OH group from the parent ion, likely to yield a ring expanded charged structures <u>5</u> (Fig. 3).

Occasionally, e.g. for <u>**3a**</u>, <u>**3b**</u>, <u>**3c**</u> and <u>**3d**</u>, somewhere along the fragmentation pathway we observed a loss of 46 u (CO + H₂O) followed by the sequentially rapid loss of two hydrogen atoms.

Accurate analysis of ¹H NMR spectra confirmed the purity of compounds $\underline{3}$. In the assignment of NMR signals, protons were identified by a subscript, which is the number identifying the carbon center to which they are attached (Fig. 4).


A proton on the 5th-position with respect to the hydroxy group (H₁₆) of the non condensed aromatic ring (<u>3b</u>, <u>3e</u>, <u>3g</u>, <u>3i</u>, <u>3i</u> and <u>3l</u>) appeared constantly as a more or less resolved doublet in the range 8.08-8.25 ppm, showing some further finer splittings. When the OH group was not present in the ring, the two *ortho* protons (H₁₂ and H₁₆) showed up in the close range 7.85-7.96 ppm (<u>3a</u>, <u>3h</u> and <u>3k</u>). Finally when a chlorine atom

replaced the OH group (<u>3c</u> and <u>3f</u>), a doublet of doublets appeared at *ca.* 8.4 ppm for H₁₆. In the nitro derivative <u>3d</u> a similar doublet appeared at 8.39 ppm for the same proton. Since the resonances of the proton *ortho* to the hydroxy group (H₁₃) of compounds <u>3b</u>, <u>3e</u>, <u>3g</u>, <u>3i</u>, <u>3j</u> and <u>3l</u> was located in the range *ca.* 6.90-7.15

ppm and in the chloro derivatives <u>3c</u> and <u>3f</u> somewhere near 7.50 ppm, we believe that it is this resonance which moved downfield to 8.03 ppm for <u>3d</u>. The location of the isolated proton singlet of the heterocyclic ring (H₃) ranged from *ca*. 6.9 and 7.5 ppm. The two vicinal protons H₁₄ and H₁₅ far away from the two substituents in the non condensed aromatic ring consistently appeared well separated as pseudo-triplets centred at about 6.97 and 7.30 ppm when the heteroatomic substituent was the hydroxyl oxygen (<u>3b</u>, <u>3e</u>, <u>3g</u>, <u>3i</u>, <u>3j</u> and <u>3l</u>). When chlorine was this substituent (<u>3c</u> and <u>3f</u>) the two resonances merged inextricably at a slightly lower field downfield of the chloroform proton resonance. The nitro group exhibited a similar effect to a larger degree (<u>3d</u>). In the compounds <u>3a</u>, <u>3h</u> and <u>3k</u> the two *ortho* protons (H₁₂ and H₁₆) quite consistently were found as doublets of doublets at *ca*. 7.9 ppm.

Finally the two protons of the benzo moiety (H_5 and H_7 or H_5 and H_8) of the flavone rings were sometimes conspicuous for exhibiting doublets ($J \cong 1.8$ Hz) which fell in the range 7.28-8.44 ppm with locations and variations of chemical shifts well in agreements with expectations.

The stretching frequency associated with the carbon double bond, which is likely conjugated in a permanent *trans* C=C-C=C and *cis* C=C-O fashion in the condensed ring and possibly cross conjugated with an aryl group, showed up at 1620-1643 cm⁻¹ for the *ortho*-hydroxyphenyl substituted flavones $\underline{3}$ (R₄= OH). but at higher frequency (1651-1659 cm⁻¹) for the phenyl substituted ($\underline{3a}$, $\underline{3h}$ and $\underline{3k}$) or when an electron withdrawing group was present in the *ortho*-position of the phenyl group ($\underline{3c}$, $\underline{3d}$ and $\underline{3f}$). These values are in good agreement with literature compilations for similar system.¹¹ The carbonyl stretching mode was found confined in the narrow range 1707-1718 cm⁻¹ which is in closer agreement with the locations expected¹¹ for aryl esters than aryl and α , β -unsaturated ketones. The presence of the phenolic hydroxyl group in $\underline{3}$ (R₄= OH) was made evident by a very broad and intense band peaking at 3150 cm⁻¹, well in agreement with reported values for the internally hydrogen bonded phenols (Fig. 5).¹¹

This is a valuable structural confirmation because not always the hydrogen connected to an oxygen atom can be detected in the ¹H NMR spectra.

EXPERIMENTAL SECTION

Materials. 2-Hydroxy- α -bromo-acetophenones $\underline{1}^7$ and aminals $\underline{2}^8$ were prepared according to described procedures. Other common reagents and solvents were purchased from commercial sources and used as received.

Equipment. MS analyses were performed with a Fisons Trio 2000 mass spectrometer, working in the positive ion 70 eV electron impact mode. Spectra were recorded in the range 18-600 u. The samples were fully evaporated into the ion source at the lowest possible temperature with continuous spectral recording. The spectra obtained were carefully inspected to monitor material homogeneity.

IR spectra were obtained with a Nicolet FT-IR Magna 550 spectrophotometer using KBr technique for solids and recorded in the range 4000-400 cm^{-1} .

¹H NMR spectra were recorded in CDCl₃ or DMSO- d_{δ} , depending on solubility, at room temperature on a Bruker AC-F 200 spectrometer at 200 MHz. NMR peak locations are reported as δ -values from TMS. Some ¹H multiplets are characterised by the term *app* (apparent): this refers only to their appearance and may be an oversimplification.

General procedure for the preparation of $\underline{3}$. A 1:1 mol/mol mixture of the appropriate 2-hydroxy- α -bromoacetophenone ($\underline{1}$) and aminal ($\underline{2}$) was refluxed in methanol during *ca*. 10 minutes. After solvent removal in vacuo, the reaction product was obtained by crystallisation from ethanol.

Acknowledgements. The authors are grateful to Prof. Giancarlo Verardo for accurate recording of MS spectra. Partial financial support came from Italy's CNR (to AGG 1996) and MURST (to AGG, 40% + 60%, 1996).

This work is dedicated to Prof. Hartmut Seliger on his 60th anniversary.

REFERENCES

- 1. Litkei, G.; Gulasci, K.; Antus, S.; Blasko, G. Liebigs. Ann., 1995, 1711-1715.
- 2. Kallay, F.; Janso, G. Flavonoids and Bioflavonoids, Akademiai Kiado Budapest, 1982, p. 133.
- 3. Elderfield, R. C. Heterocyclic Compounds, John Wiley and Sons, New York, 1951, pp 229-276.
- 4. Da Re, P.; Verlicchi, L.; Setnikar, J. J. Org. Chem., 1960, 25, 1097-1099.
- 5. Kinast, G.; Tietze, F. Angew. Chem., 1976, 88, 261-2625.
- 6. Tramontini, M.; Angiolini, L. in Mannich Bases-Chemistry and Uses, CRC Press Inc., 1994, p. 205.
- 7. Cascaval, A.; Sarbu, C.; Cilianu, B. St.; Carstea, A.; Bors, A. Romanian Patent Nr. 95546/24. 10. 1987.
- 8. Stewart, A. Th.; Hauser, Ch. R. J. Amer. Chem. Soc., 1955, 77, 1098.

- 9. Selinger, H.; Cascaval, A. Mem. Sect. Stiint. Acad. Rom., XIV, 1991, p. 21.
- 10. Porter, Q. N. Mass Spectrometry of Heterocyclic Compounds, John Wiley & Sons, 1985, p. 244.
- 11. Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G. *The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules*, Academic Press Inc., 1991, p. 85 and p. 130.

٩.

(Received in UK 14 April 1997; revised 28 May 1997; accepted 29 May 1997)