Monosubstituted Malononitriles: Efficient One-Pot Reductive Alkylations of Malononitrile with Aromatic Aldehydes

Fariba Tayyari,^a Dwight E. Wood,^a Phillip E. Fanwick,^b Robert E. Sammelson*^a

^a Department of Chemistry, Ball State University, Muncie, IN 47306-0445, USA Fax +1(765)2856505; E-mail: resammelson@bsu.edu

^b Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA

Received 13 September 2007

Abstract: A powerful new one-pot method has been developed for the reductive alkylation of malononitrile with aromatic aldehydes. This new procedure has vastly improved the yield and efficiency of the process, and increased the scope of the aromatic aldehydes. Incorporating water as the catalyst in ethanol for the condensation step allows stoichiometric amounts of malononitrile and aldehyde to be employed. The reduction step takes place quickly and efficiently with sodium borohydride to give monosubstituted malononitriles via filtration or extraction. The product from 2quinolinecarboxaldehyde quickly rearranges to a novel indolizine, while alkylation of the monosubstituted derivative provides an unsymmetrically disubstituted malononitrile that does not rearrange.

Key words: malononitrile, aldehydes, condensation, reduction, heterocycles

Carbon-carbon bond forming reactions are extremely important and often a difficult task in organic synthesis for the production of complex targets from simpler building blocks.¹ Synthesis of monosubstituted malononitriles via C-C bond formation has been a challenging problem for organic chemists.² The most direct route to monosubstituted malononitriles is the alkylation of malononitrile, but this method generally produces various amounts of disubstituted malononitriles from overalkylation. Moreover, unreacted malononitrile is mostly present in the product mixture. More selective methods for the synthesis of monosubstituted malononitriles have generally followed a two reaction sequence. The first step is a Knoevenagel condensation between malononitrile and an aldehyde or ketone. The intermediate dicyanoalkene is reduced in a second step to afford the desired monosubstituted malononitrile. Recently, there has been a good deal of research on the Knoevenagel condensation³ as well as the reduction of the electron-deficient olefins.⁴ Work from this laboratory has found that sodium borohydride in isopropyl alcohol can produce monosubstituted malononitriles in good to excellent yields in a single reductive alkylation step (Scheme 1).⁵

The Hantzsch (1,4-dihydropyridine) ester has recently been utilized in the one-pot reductive benzylation of malononitrile under solvent-free mechanical milling conditions to give excellent yields on a small scale for

SYNTHESIS 2008, No. 2, pp 0279–0285 Advanced online publication: 07.12.2007 DOI: 10.1055/s-2007-990945; Art ID: M06607SS © Georg Thieme Verlag Stuttgart · New York

benzaldehyde and substituted benzaldehydes with electron-withdrawing groups.⁶ Two independent reports have recently shown that the Knoevenagel condensation step between malononitrile and aromatic aldehydes can simply occur in ethanol^{3c} or water^{3d} with no added catalysts. Indeed, water can be an excellent reaction accelerant for a variety of organic reactions⁷ and the green chemistry implications of utilizing aqueous media for C–C bond formations has been fruitful.⁸ Our continued work, reported here, utilized this discovery to vastly improve the yield, efficiency, and scope of aromatic aldehydes for the reductive alkylation.

Our research began with exploring the use of water or ethanol for the condensation of malononitriles with benzaldehyde. In water at room temperature the reaction oiled out and it was anticipated that this problem would become even worse with our intended scope of hydrophobic aldehydes. In absolute ethanol the condensation reaction was extremely sluggish. We found that the reaction was most efficient with a mixture of water and ethanol. In most cases we used 95% ethanol with a concentration of 1.0 M for aldehyde and malononitrile. Table 1 shows the variety of aldehydes employed and the times required for the condensation to be completed. The condensation reactions could be stirred several days without any complication. Dilution of the resultant mixture with additional ethanol and cooling the reaction in an ice-water bath preceded sodium borohydride reduction. We have also adopted a simple aqueous filtration workup for many of the derivatives (see experimental). This has allowed us to scale reactions vanillin (Table 1, entry 13) was performed on a 100 mmol scale. Another advantage of the one-pot synthesis particularly on larger scales - is avoiding transfers and handling of hazardous intermediates.9

Although product **16** contained a heterocyclic system, we next moved our research to test the reductive alkylation reaction with heterocyclic carboxaldehdyes (Table 2). First, furan and thiophene were selected as examples of five-membered heterocycles. 2-Thiophenecarboxaldehyde and furfural both performed very well with the latter

 Table 1
 Reductive Alkylation of Malononitrile with Aromatic Aldehydes

NCCN + OH		1. EtOH-H ₂ O 2. NaBH ₄ , 0 °C		NC CN Ar	
1	Ph	1	1	98	85
2	4-MeOC ₆ H ₄	2	1	94	88
3	$4-\text{MeC}_6\text{H}_4$	3	3.5	92	76
4	$4-BrC_6H_4$	4	2	94	94
5	4-ClC ₆ H ₄	5	2	96	91
6	3-ClC ₆ H ₄	6	4	88	_d
7	2-ClC ₆ H ₄	7	24	94	_d
8	$4-NO_2C_6H_4$	8	2	96	90
9	$3-NO_2C_6H_4$	9	1.5	97	88
10	$2-NO_2C_6H_4$	10	0.5	97	84
11	$4-HOC_6H_4$	11	18	80	85
12	$3-HOC_6H_4$	12	18	76	_d
13	4-HO-3-MeOC ₆ H ₃	13	24	84	74
14	$2-(4-ClBnO)C_6H_4$	14	3	75	_d
15	$4-Me_2NC_6H_4$	15	2.5	98	90
16	4-(2-pyridyl)C ₆ H ₄	16	24	98	_ ^e
17	2,6-Cl ₂ C ₆ H ₃	17	4	92	86
18	2,4,6-Cl ₃ C ₆ H ₂	18	24	97	_ ^e
19	2-fluorenyl	19	3	62	_ ^e
20	(E)-PhCH=CH	20	16	81	53

^a Time refers to the condensation step.

^b Isolated yield of purified compound using extraction method workup.

^c Isolated yield of purified compound using filtration method workup.
 ^d No precipitate formed and extraction method workup must be used.
 ^e Filtration method workup was not attempted.

i intation method workup was not attempted.

example requiring 50% aqueous ethanol in order for the precipitate to form in the condensation step. Both 3- and 4-pyridinecarboxaldehydes, afforded the alkylated products **23** and **24** in good yields (Table 2). 2-Pyridinecarboxaldehyde (Table 2, entry 5) did not produce any desired

product nor could any intermediate olefin be detected before the reduction step.

When this new and improved reductive alkylation procedure was attempted with 2-quinolinecarboxaldehyde (Table 2, entry 6), the crude product 25 was observed but it 'decomposed' upon attempted purification via recrystallization or column chromatography. Fortunately when the reaction and entire workup was carried out at 0 °C, essentially pure 25 was obtained. Later, it was found that 25 rearranged on TLC and created a single fluorescent spot with an R_f value greater than expected for the quinoline substituted malononitrile. Nucleophilic attack of the quinoline nitrogen on the carbon of the nitrile followed by a proton transfer and a tautomerization explain how indolizine 26 is created (Scheme 2). Single crystal X-ray analysis was applied to confirm the structure of this novel rearranged product.¹⁰ The importance of these aromatic heterocycles can be appreciated by the new methods that have been developed for the synthesis of indolizine derivatives.¹¹ A recent report from another group shows a similar reaction as one possible outcome from a 2-formyl-1,4dihydropyridine reaction.¹² Monosubstituted malononitrile 25 could be carefully alkylated with iodomethane prior to purification.^{2a,5} Only C-alkylation - formation of another C-C bond - was observed and disubstituted malononitrile 27 was obtained in good yield and the structure confirmed by single crystal X-ray analysis.¹⁰ The importance of efficient syntheses of unsymmetrically disubstituted malononitriles can be realized by the latest patents declaring their applications for controlling various pests.¹³

Attempts were made to further broaden the scope of our optimized reaction to other aldehydes and ketones. Aliphatic aldehydes (propanal and 2,2-dimethylpropanal) did not successfully condense in ethanol or water, and when the reduction step took place little product was obtained.¹⁴ Although reaction with trans-cinnamaldehyde was successful (20), trans-crotonaldehyde would not undergo noticeable condensation in aqueous ethanol. Acetophenone, an aryl ketone, also afforded the product, but it was contaminated with ~20% of 1-phenylethanol from direct reduction of the ketone and was determined to be less satisfying than our previously reported method.⁵ Lastly, we examined other activated methylene moieties. Ethyl cyanoacetate and ethyl nitroacetate were both allowed to react with 4-nitrobenzaldehyde (the most reactive aldehyde toward malononitrile) and we found that the product was obtained in good yield from the cyano ester, but no product was detected from the nitro ester (Scheme 3). Ethyl cyanoacetate was allowed to react with 4-chlorobenzaldehyde but no precipitate was detected for the

Scheme 2

Synthesis 2008, No. 2, 279-285 © Thieme Stuttgart · New York

X = 0, S	1. NCCH ₂ CN, EtOH−H ₂ O 2. NaBH ₄ , 0 °C		1. NCCH₂CN, EtOH−H₂O 2. NaBH₄, 0 °C	
Entry	Heteroaryl	Product	Time (h) ^a	Yield (%) ^b
1	2-thienyl	21	3	93
2	2-furyl	22	24	95
3	4-pyridyl	23	3	71
4	3-pyridyl	24	3	79
5	2-pyridyl	-	2	0
6	2-quinolinyl	25	4	91

Table 2 Reductive Alkylation of Malononitrile with Heteroaromatic Aldehydes

^a Time refers to the condensation step.

^b Isolated yield of purified compound using extraction method workup.

Knoevenagel condensation and after treatment with sodium borohydride, only a minor amount of C–C bond formation was detected.

In summary, a wide range of aromatic and heteroaromatic aldehydes can be coupled together efficiently with malononitrile in a C-C bond forming reductive alkylation. In this one-pot synthesis, aqueous ethanol is the only requirement for complete condensation prior to addition of sodium borohydride for the selective reduction. For reaction workup, it is recommended that one should attempt to follow the filtration method and only if a precipitate fails to form would extraction with organic solvent be required. We also have found that 2-quinolinecarboxaldehyde does not produce an exceptionally stable product with malononitrile and the product rearranges to efficiently yield a substituted indolizine. Monosubstituted malononitriles can be further utilized as reactants in alkylation reactions to form unsymmetrically disubstituted malononitriles as we have illustrated by the isolation of a stable 2-quinoline derivative. Finally, it has been determined that ethyl cyanoacetate works with only very reactive aromatic aldehydes and that methylene acidity is not limiting reactivity since ethyl nitroacetate does give the desired product.

Analytical TLC was performed using Baker-Flex silica gel IB-F plates and visualized using a UV lamp and/or stained with basic KMnO₄ [2.3 g KMnO₄, 15 g K₂CO₃, 1.9 mL 2.5 M NaOH in 300 mL distilled (DI) H₂O]. Flash chromatography was performed using silica gel (35–70 μ m, ~6 nm pore) from Acros or pre-packed silica column (32–63 μ m, 60 Å pore) from Analogix. ¹H NMR spectra and ¹³C NMR with ¹H decoupled spectra were recorded on a JEOL Eclipse spectrometer at 400 MHz or 300 MHz and 100 MHz or 75 MHz, respectively. ¹H chemical shifts are reported in ppm downfield from internal tetramethylsilane and ¹³C chemical shifts are reported in ppm relative to CDCl₃ (77.00 ppm) or acetone-*d*₆ (29.84 ppm). All chemicals were used as received without further purification. Elemental analyses were determined at MidWest Microlab, Indianapolis, IN.

One-Pot Reductive Alkylation of Malononitrile with Aromatic Aldehydes; General Procedure

Malononitrile (661 mg, 10 mmol) was dissolved in 95% EtOH (10 mL) and to this solution was added the appropriate aromatic aldehyde (10 mmol). The solution was stirred at r.t. until precipitation was complete or overnight.⁹ Additional EtOH (20 mL) was added and the mixture cooled to 0 °C in an ice bath. NaBH₄ (169 mg, 5 mmol) was introduced to the vigorously stirred mixture and the reduction was complete in about 10 min.

Extraction method workup: To the reaction mixture was added DI H_2O (50 mL) and CH_2Cl_2 (25 mL), followed by aq 1.0 M HCl until all hydride was quenched.¹⁵ The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (2 × 25 mL). The combined organic layers were dried (Na₂SO₄), filtered, concentrated via rotoevaporation and then under high vacuum, and purified via recrystallization or column chromatography.

Filtration method workup: The reaction mixture was poured into a large beaker containing DI H_2O (40 mL) and aq 1.0 M HCl was added until all hydride was quenched. The reaction flask was washed with DI H_2O (20 mL), combined with the quenched mixture in the beaker and the solution/mixture was then cooled in an ice bath. Additional cold H_2O was added until precipitation was complete. If crystallization/precipitation did not occur, then the mixture was extracted (see Extraction Method Workup above). The cold precipi

tate was collected by vacuum filtration and washed with cold DI $\rm H_2O$ (20 mL).

Benzylmalononitrile (1)⁵

The general procedure, followed to scale using malononitrile (0.667 g, 10.09 mmol), benzaldehyde (1.071 g, 10.09 mmol), and NaBH₄ (0.196 g, 5.18 mmol), afforded a solid; yield: 1.538 g (98%); mp 88–89 °C.

¹H NMR (400 MHz, CDCl₃): δ = 7.42–7.30 (m, 5 H), 3.90 (t, *J* = 7.0 Hz, 1 H), 3.29 (d, *J* = 7.0 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 132.9, 129.2, 129.1, 128.7, 112.2, 36.5, 24.8.

4-Methoxybenzylmalononitrile (2)⁵

The general procedure, followed to scale using malononitrile (0.682 g, 10.3 mmol), 4-methoxybenzaldehyde (1.388 g, 10.2 mmol), and NaBH₄ (0.193 g, 5.10 mmol), afforded a solid; yield: 1.799 g (94%); mp 89.5–91 °C.

¹H NMR (400 MHz, CDCl₃): δ = 7.25 (d, *J* = 8.8 Hz, 2 H), 6.93 (d, *J* = 8.8 Hz, 2 H), 3.86 (t, *J* = 7.0 Hz, 1 H), 3.82 (s, 3 H), 3.24 (d, *J* = 7.0 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 130.3, 124.9, 114.7, 112.2, 55.3, 36.1, 25.3.

4-Methylbenzylmalononitrile (3)⁵

The general procedure, followed to scale using malononitrile (0.672 g, 10.2 mmol), 4-methylbenzaldehyde (1.22 g, 10.2 mmol), and NaBH₄ (0.192 g, 5.09 mmol), afforded a solid; yield: 1.601 g (92%); mp 78.5–80 °C.

¹H NMR (400 MHz, CDCl₃): δ = 7.21 (s, 4 H), 3.87 (t, *J* = 7.0 Hz, 1 H), 3.26 (d, *J* = 7.0 Hz, 2 H), 2.36 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 138.5, 129.9, 129.8, 128.9, 112.3, 36.1, 24.9, 21.0.

4-Bromobenzylmalononitrile (4)⁶

The general procedure, followed to scale using malononitrile (1.321 g, 20 mmol), 4-bromobenzaldehyde (3.700 g, 20 mmol), and NaBH₄ (0.3785 g, 10 mmol), afforded a solid; yield: 4.432 g (94%); mp 94–94.5 °C.

¹H NMR (400 MHz, CDCl₃): δ = 7.53 (d, *J* = 8.4 Hz, 2 H), 7.20 (d, *J* = 8.4 Hz, 2 H), 3.94 (t, *J* = 6.6 Hz, 1 H), 3.23 (d, *J* = 6.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ = 132.4, 131.8, 130.8, 123.0, 112.0, 35.8, 24.6.

4-Chlorobenzylmalononitrile (5)⁶

The general procedure, followed to scale using malononitrile (0.660 g, 10 mmol), 4-chlorobenzaldehyde (1.411 g, 10 mmol), and NaBH₄ (0.189 g, 5 mmol), afforded a solid; yield: 1.831 g (96%); mp 90–90.5 °C.

¹H NMR (300 MHz, CDCl₃): δ = 7.40 (d, *J* = 8.1 Hz, 2 H), 7.25 (d, *J* = 8.1 Hz, 2 H), 3.92 (t, *J* = 6.7 Hz, 1 H), 3.27 (d, *J* = 6.7 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ = 135.0, 131.2, 130.5, 129.5, 111.9, 35.9, 24.6.

3-Chlorobenzylmalononitrile (6)4e

The general procedure followed to scale using malononitrile (1.321 g, 20 mmol), 3-chlorobenzaldehyde (2.814 g, 20 mmol), and $NaBH_4$ (0.377 g, 10 mmol) afforded an oil; yield: 3.322 g (87%).

¹H NMR (400 MHz, CDCl₃): δ = 7.39–7.18 (m, 4 H), 3.95 (t, *J* = 7.6 Hz, 1 H), 3.23 (d, *J* = 7.6 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 134.9, 134.7, 130.5, 129.2, 129.0, 127.3, 112.0, 35.9, 24.6.

2-Chlorobenzylmalononitrile (7)^{13d}

The general procedure, followed to scale using malononitrile (0.660 g, 10 mmol), 2-chlorobenzaldehyde (1.405 g, 10 mmol), and NaBH₄ (0.189 g, 5 mmol), afforded an oil; yield: 1.792 g (94%).

¹H NMR (400 MHz, CDCl₃): δ = 7.46–7.32 (m, 4 H), 4.11 (t, *J* = 8.0 Hz, 1 H), 3.46 (d, *J* = 8.0 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 133.8, 131.7, 130.6, 130.3, 130.0, 127.6, 112.0, 34.6, 22.5.

4-Nitrobenzylmalononitrile (8)⁶

The general procedure, followed to scale using malononitrile (0.660 g, 10 mmol), 4-nitrobenzaldehyde (1.51 g, 10 mmol), and NaBH₄ (0.189 g, 5 mmol), afforded a solid; yield: 1.94 g (96%); mp 151–152 °C.

¹H NMR (400 MHz, CDCl₃): δ = 8.30 (d, *J* = 8.8 Hz, 2 H), 7.56 (d, *J* = 8.8 Hz, 2 H), 4.05 (t, *J* = 6.8 Hz, 1 H), 3.43 (d, *J* = 6.8 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 148.3, 139.7, 130.4, 124.4, 111.5, 36.0, 24.4.

3-Nitrobenzylmalononitrile (9)⁶

The general procedure, followed to scale using malononitrile (1.321 g, 20 mmol), 3-nitrobenzaldehyde (2.302 g, 15 mmol), and NaBH₄ (0.378 g, 10 mmol), afforded a solid; yield: 2.69 g (88%); mp 137.5–138 °C.

¹H NMR (400 MHz, CDCl₃): δ = 8.64 (d, *J* = 4.8 Hz, 1 H), 8.60 (s, 1 H), 7.72 (d, *J* = 7.9 Hz, 1 H), 7.37 (dd, *J* = 7.9, 4.8 Hz, 1 H), 4.14 (t, *J* = 7.0 Hz, 1 H), 3.32 (d, *J* = 7.0 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 148.6, 135.4, 134.6, 130.5, 124.2, 124.0, 111.5, 36.0, 24.5.

2-Nitrobenzylmalononitrile (10)⁶

The general procedure, followed to scale using malononitrile (1.982 g, 30 mmol), 2-nitrobenzaldehyde (4.534 g, 30 mmol), and NaBH₄ (0.568 g, 15 mmol), afforded a solid; 5.10 g (84%); mp 82–83 °C.

¹H NMR (400 MHz, CDCl₃): $\delta = 8.17$ (d, J = 8.1 Hz, 1 H), 7.75 (dd, J = 7.7, 7.3 Hz, 1 H), 7.62 (dd, J = 8.1, 7.3 Hz, 1 H), 7.57 (d, J = 7.7 Hz, 1 H), 4.45 (t, J = 7.7 Hz, 1 H), 3.60 (d, J = 7.7 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 148.6, 134.5, 133.4, 130.4, 128.2, 126.0, 111.9, 35.1, 23.6.

4-Hydroxybenzylmalononitrile (11)^{13d}

The general procedure, followed to scale using malononitrile (1.982 g, 30 mmol), 4-hydroxybenzaldehyde (3.668 g, 30 mmol), and NaBH₄ (0.566 g, 15 mmol), afforded a solid; yield: 4.40 g (85%); mp 173–175 °C.

¹H NMR (400 MHz, CDCl₃): δ = 7.21 (d, *J* = 8.8 Hz, 2 H), 6.86 (d, *J* = 8.8 Hz, 2 H), 4.92 (br s, 1 H), 3.86 (t, *J* = 7.0 Hz, 1 H), 3.23 (d, *J* = 7.0 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 156.0, 130.6, 125.1, 116.1, 112.2, 36.1, 25.3.

3-Hydroxybenzylmalononitrile (12)¹⁶

The general procedure, followed to scale using malononitrile (1.978 g, 30 mmol), 3-hydroxybenzaldehyde (3.667 g, 30 mmol), and NaBH₄ (0.567 g, 15 mmol), afforded a solid; yield: 3.94 g (76%); mp 49–51 °C.

¹H NMR (400 MHz, acetone- d_6): δ = 7.22 (t, J = 7.7 Hz, 1 H), 6.94– 6.88 (m, 2 H), 6.86–6.82 (m, 1 H), 4.73 (t, J = 7.0 Hz, 1 H), 3.34 (d, J = 7.0 Hz, 2 H).

¹³C NMR (100 MHz, acetone- d_6): δ = 158.5, 136.8, 130.7, 121.2, 117.1, 116.0, 114.3, 36.4, 25.2.

4-Hydroxy-3-methoxybenzylmalononitrile (13)4f

The general procedure, followed to scale using malononitrile (6.615 g, 100 mmol), vanillin (15.21 g, 100 mmol), and NaBH₄ (1.893 g, 50 mmol), afforded a solid; yield: 14.88 g, 74%); mp 86–88 °C.

¹H NMR (300 MHz, CDCl₃): δ = 6.93 (d, *J* = 8.4 Hz, 1 H), 6.85– 6.79 (m, 2 H), 5.68 (br s, 1 H), 3.91 (s, 3 H), 3.87 (t, *J* = 7.0 Hz, 1 H), 3.23 (d, *J* = 7.0 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 146.8, 146.1, 124.7, 122.2, 115.0, 112.3, 111.5, 56.0, 36.6, 25.3.

2-(4-Chlorobenzyloxy)benzylmalononitrile (14) 2-(4-Chlorobenzyloxy)benzaldehyde

2-(4-Chlorobenzyloxy)benzaldehyde¹⁷ was prepared following modified literature conditions for alkylation of salicylaldehyde.¹⁸ Salicylaldehyde (0.61 g, 5 mmol) and 4-chlorobenzyl chloride (0.64 g, 4 mmol) were stirred in DMF (10 mL). Na₂CO₃ (1.06 g, 10 mmol) and a catalytic amount of NaI were added, and the mixture was heated to 100 °C. The heating mantel was removed after 8 h and the mixture was allowed to cool to r.t. before the addition of Et₂O (50 mL) and H₂O (50 mL). The layers were separated, and the aqueous portion was extracted with Et₂O (40 mL). The combined organics were then washed with H₂O (4× 30 mL) and brine (30 mL). The organic layer was dried (Na₂SO₄), filtered, and rotoevaporated to give 0.55 g (56%), after recrystallization from EtOH.

¹H NMR (400 MHz, CDCl₃): δ = 10.50 (s, 1 H), 7.82 (dd, *J* = 7.7, 1.8 Hz, 1 H), 7.53–7.46 (m, 1 H), 7.34 (s, 4 H), 7.03–6.97 (m, 2 H), 5.11 (s, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 189.4, 160.6, 135.8, 134.5, 133.9, 128.8, 128.50, 128.46, 125.0, 121.1, 112.8, 69.5.

Compound 14

The general procedure, followed to scale using malononitrile (0.143 g, 2.17 mmol), 2-(4-chlorobenzyloxy)benzaldehyde (0.530 g, 2.17 mmol), and NaBH₄ (0.041 g, 1.08 mmol), afforded an oil; yield: 0.483 g (75%); mp 67–68 °C.

IR (ATR): 3061, 3035, 3014, 2914, 2876, 2256, 1603, 1590, 1496, 1454, 1246, 807, 759 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.39 (d, *J* = 8.4 Hz, 2 H), 7.38–7.30 (m, 3 H) 7.27 (dd, *J* = 7.3, 1.5 Hz, 1 H), 7.01 (td, *J* = 7.5, 0.9 Hz, 1 H), 6.95 (d, *J* = 8.0 Hz, 1 H), 5.08 (s, 2 H), 4.10 (t, *J* = 7.7 Hz, 1 H), 3.33 (d, *J* = 7.7 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 156.2, 134.6, 134.3, 131.5, 130.3, 129.1, 128.8, 121.6, 121.5, 112.5, 111.9, 69.5, 32.6, 22.6.

Anal. Calcd for C₁₇H₁₃ClN₂O: C, 68.81; H, 4.42; N, 9.44. Found: C, 68.81; H, 4.82; N, 9.54.

4-Dimethylaminobenzylmalononitrile (15)¹⁶

The general procedure, followed to scale using malononitrile (0.660 g, 10 mmol), 4-dimethylaminobenzaldehyde (1.491 g, 10 mmol), and NaBH₄ (0.189 g, 5 mmol), afforded a solid; yield: 1.958 g (98%); mp 59.5–61 °C.

¹H NMR (400 MHz, CDCl₃): δ = 7.18 (d, *J* = 8.6 Hz, 2 H), 6.71 (d, *J* = 8.6 Hz, 2 H), 3.81 (t, *J* = 7.0 Hz, 1 H), 3.21 (d, *J* = 7.0 Hz, 2 H), 2.96 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 150.5, 129.9, 120.1, 112.6, 112.5, 40.3, 36.1, 25.4.

4-(2-Pyridyl)benzylmalononitrile (16)

The general procedure, followed to scale using malononitrile (0.132 g, 2 mmol), 4-(2-pyridyl)benzaldehyde (0.366 g, 2 mmol), and NaBH₄ (0.037 g, 1 mmol), afforded a solid; yield: 0.460 g (98%); mp 128–129 °C.

IR (ATR): 3090, 3060, 3015, 2922, 2256, 1587, 1565, 1467, 1434, 1019, 853, 767, 737 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 8.69 (d, *J* = 4.8 Hz, 1 H), 8.03 (d, *J* = 8.0 Hz, 2 H), 7.78–7.71 (m, 2 H), 7.43 (d, *J* = 8.0 Hz, 2 H), 7.28–7.24 (m, 1 H), 3.95 (t, *J* = 7.0 Hz, 1 H), 3.34 (d, *J* = 7.0 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 156.3, 149.7, 139.8, 136.8, 133.5, 129.5, 127.6, 122.4, 120.1, 36.3, 24.7.

Anal. Calcd for $C_{15}H_{11}N_3$: C, 77.23; H, 4.75; N, 18.01. Found: C, 76.88; H, 4.95; N, 17.87.

2,6-Dichlorobenzylmalononitrile (17)^{13d}

The general procedure, followed to scale using malononitrile (0.667 g, 10 mmol), 2,6-dichlorobenzaldehyde (1.76 g, 10 mmol), and NaBH₄ (0.190 g, 5.0 mmol), afforded a solid; yield: 2.08 g (92%); mp 82–84 °C.

¹H NMR (400 MHz, CDCl₃): δ = 7.41 (d, *J* = 8.4 Hz, 2 H), 7.28 (t, *J* = 8.4 Hz, 1 H), 4.24 (t, *J* = 8.4 Hz, 1 H), 3.74 (d, *J* = 8.4 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 135.9, 130.6, 129.2, 128.8, 111.6, 31.8, 20.9.

2,4,6-Trichlorobenzylmalononitrile (18) 2,4,6-Trichlorobenzaldehyde

2,4,6-Trichlorobenzaldehyde¹⁹ was prepared following a modified directed ortho-metalation procedure.²⁰ 1,3,5-Trichlorobenzene (1.84 g, 10.1 mmol) was dissolved in THF (40 mL) under argon. The solution was cooled to -78 °C via a dry ice and acetone bath. After the stirred solution was cooled completely (~30 min), *n*-BuLi (4 mL, 10.00 mmol) was added dropwise via a syringe over 20 min. The solution was kept at -78 °C and stirred for 30 min before DMF (1.2 mL, 17.4 mmol) was added via a syringe. After the addition was complete, the solution was stirred at -78 °C for 1.5 h. The reaction was then quenched with aq 3 N HCl (40 mL) and then allowed to warm to r.t. The mixture was extracted with EtOAc (60 mL). The organic layer was then washed with aq NaHCO₃ (40 mL) and brine (40 mL), dried (Na₂SO₄), and concentrated via rotary evaporation to afford 1.93 g (92%) of product.

¹H NMR (400 MHz, CDCl₃): δ = 10.44 (s, 1 H), 7.42 (s, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 187.6, 139.3, 137.6, 129.8, 128.8.

Compound 18

The general procedure, followed to scale using malononitrile (0.473 g, 7.16 mmol), 2,4,6-trichlorobenzaldehyde (1.50 g, 7.16 mmol), and NaBH₄ (0.135 g, 3.58 mmol), afforded a solid; yield: 1.80 g (97%); mp 91.5–92.5 °C.

IR (ATR): 3086, 2906, 2259, 1724, 1580, 1547, 1436, 1376, 1214, 1138, 1075, 1016, 877, 861, 817, 672 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.84 (s, 2 H), 4.60 (t, *J* = 8.4 Hz, 1 H), 4.10 (d, *J* = 8.4 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 136.4, 135.7, 128.9, 127.9, 111.4, 31.4, 20.9.

Anal. Calcd for $C_{10}H_5Cl_3N_2$: C, 46.28; H, 1.94; N, 10.79. Found: C, 46.57; H, 2.08; N, 10.52.

2-Fluorenylmethylmalononitrile (19)

The general procedure, followed to scale using malononitrile (0.138 g, 2.08 mmol), 2-fluorenecarboxaldehyde (0.405 g, 2.07 mmol), and NaBH₄ (0.037 g, 1 mmol), afforded a solid; yield: 0.3133 g (62%); mp 163.5–164 °C.

IR (ATR): 3044, 2922, 2259, 1450, 1428, 1402, 1032, 1005, 954, 887, 848, 837, 800, 762, 725 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.79 (t, *J* = 4.8 Hz, 2 H), 7.56 (d, *J* = 7.7 Hz, 1 H), 7.50 (s, 1 H), 7.41–7.37 (m, 1 H), 7.35–7.31 (m, 2 H), 3.94 (t, *J* = 7.0 Hz, 1 H), 3.92 (s, 2 H), 3.36 (d, *J* = 7.0 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 144.2, 143.3, 142.3, 140.7, 131.2, 127.7, 127.2, 126.9, 125.7, 125.1, 120.4, 120.1, 112.3, 36.82, 36.77, 25.1.

Anal. Calcd for $C_{17}H_{12}N_2$: C, 83.58; H, 4.95; N, 11.47. Found: C, 83.36; H, 4.91; N, 11.40.

trans-Cinnamylmalononitrile (20)^{4c}

The general procedure, followed to scale using malononitrile (0.661 g, 10 mmol), *trans*-cinnamaldehyde (1.33 g, 10 mmol), and NaBH₄ (0.189 g, 5 mmol), afforded a solid; yield: 0.959 g (53%); mp 65–66.5 °C.

¹H NMR (400 MHz, CDCl₃): δ = 7.46–7.25 (m, 5 H), 6.70 (d, J = 15.8 Hz, 1 H), 6.17 (dt, J = 15.8, 7.7 Hz, 1 H), 3.82 (t, J = 6.6 Hz, 1 H), 2.91 (dd, J = 7.7, 6.6 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 137.0, 135.5, 128.6, 128.4, 126.6, 119.7, 112.2, 34.0, 23.2.

2-Thienylmethylmalononitrile (21)^{13c}

The general procedure, followed to scale using malononitrile (0.681 g, 10.3 mmol), 2-thiophenecarboxaldehyde (1.142 g, 10.18 mmol), and NaBH₄ (0.194 g, 5.1 mmol), afforded a solid; yield: 1.0593 g (96%); mp 46.5–47 °C.

¹H NMR (400 MHz, CDCl₃): δ = 7.33 (d, *J* = 5.1 Hz, 1 H), 7.12 (d, *J* = 3.3 Hz, 1 H), 7.03 (dd, *J* = 5.1, 3.3 Hz, 1 H), 3.94 (t, *J* = 6.6 Hz, 1 H), 3.54 (d, *J* = 6.6 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 133.9, 128.4, 127.7, 126.5, 111.9, 31.1, 25.5.

2-Furfurylmalononitrile (22)⁵

The general procedure, followed to scale using malononitrile (0.681 g, 10.3 mmol), furfural (1.142 g, 10.18 mmol), and NaBH₄ (0.194 g, 5.1 mmol) in 50% aq EtOH, afforded an oil; yield: 1.0593 g (96%).

¹H NMR (400 MHz, CDCl₃): δ = 7.43 (s, 1 H), 6.41–6.36 (m, 2 H), 4.05 (t, *J* = 7.0 Hz, 1 H), 3.37 (d, *J* = 7.0 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 146.4, 143.2, 112.0, 110.6, 109.6, 29.1, 22.4.

4-Pyridinemethylmalononitrile (23)

The general procedure, followed to scale using malononitrile (0.330 g, 5 mmol), 4-pyridinecarboxaldehyde (0.535 g, 5 mmol), and NaBH₄ (0.094 g, 2.5 mmol), afforded a solid; yield: 0.56 g (72%); mp 92.5–93 °C.

IR (ATR): 3045, 2921, 2261, 1959, 1604, 1563, 1445, 1421, 1350, 1223, 1194, 1184, 994, 883, 825, 753 $\rm cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 8.67 (d, *J* = 4.8 Hz, 2 H), 7.28 (d, *J* = 4.8 Hz, 2 H), 4.14 (t, *J* = 7.0 Hz, 1 H), 3.29 (d, *J* = 7.0 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 150.6, 141.4, 124.0, 111.7, 35.4, 23.8.

Anal. Calcd for $C_9H_7N_3$: C, 68.78; H, 4.49; N, 26.74. Found: C, 68.62; H, 4.55; N, 26.56.

3-Pyridinemethylmalononitrile (24)

The general procedure, followed to scale using malononitrile (0.330 g, 5 mmol), 3-pyridinecarboxaldehyde (0.535 g, 5 mmol), and NaBH₄ (0.094 g, 2.5 mmol), afforded a solid; yield: 0.62 g (79%); mp 70–71 °C.

IR (ATR): 3038, 2997, 2881, 2618, 2552, 2248, 1595, 1575, 1479, 1446, 1424, 1024, 789 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 8.71-8.62$ (m, 2 H), 7.72 (d, J = 7.0 Hz, 1 H), 7.38 (dd, J = 7.0, 4.8 Hz, 1 H), 3.98 (t, J = 6.8 Hz, 1 H), 3.33 (d, J = 6.8 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 150.1, 150.0, 136.8, 128.7, 123.8, 111.9, 33.6, 24.5.

Anal. Calcd for $C_9H_7N_3$: C, 68.78; H, 4.49; N, 26.74. Found: C, 68.58; H, 4.45; N, 26.56.

2-Quinolinemethylmalononitrile (25)

The general procedure, followed to scale using malononitrile (0.336 g, 5.1 mmol), 2-quinolinecarboxaldehyde (0.80 g, 5.1 mmol), and NaBH₄ (0.094 g, 2.5 mmol), afforded a crude solid; yield: 0.949 g (91%).

¹H NMR (400 MHz, CDCl₃): $\delta = 8.19$ (d, J = 8.4 Hz, 1 H), 8.06 (d, J = 8.8 Hz, 1 H), 7.84 (d, J = 8.4 Hz, 1 H), 7.78–7.73 (m, 1 H), 7.60–7.55 (m, 1 H), 7.34 (d, J = 8.4 Hz, 1 H), 4.95 (t, J = 7.4 Hz, 1 H), 3.71 (d, J = 7.4 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.3, 147.5, 137.3, 130.1, 129.0, 127.6, 127.3, 127.0, 120.6, 113.1, 38.1, 20.5.

1-Aminopyrrolo[1,2-*a*]quinoline-2-carbonitrile (26)

The general procedure, followed to scale using malononitrile (0.330 g, 5 mmol), 2-quinolinecarboxaldehyde (0.786 g, 5 mmol), and NaBH₄ (0.094 g, 2.5 mmol), afforded a solid after column chromatography on silica gel; yield: 0.865 g (83%); mp 148–148.5 °C.

IR (ATR): 3352, 3308, 3235, 3135, 3051, 2212, 1625, 1643, 1559, 1524, 1474, 1430, 1402 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.77 (d, *J* = 8.4 Hz, 1 H), 7.57 (d, *J* = 7.7 Hz, 1 H), 7.48–7.43 (m, 1 H), 7.38–7.34 (m, 1 H), 7.07 (d, *J* = 9.5 Hz, 1 H), 6.87 (d, *J* = 9.5 Hz, 1 H), 6.50 (s, 1 H), 4.30 (br s, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 141.1, 134.1, 128.4, 127.1, 126.9, 125.8, 124.9, 119.6, 118.9, 116.6, 116.3, 101.5, 83.9.

Anal. Calcd for $C_{13}H_9N_3$: C, 75.35; H, 4.38; N, 20.28. Found: C, 75.37; H, 4.53; N, 20.01.

2-Methyl-2-(2-quinolinemethyl)malononitrile (27)

The crude monosubstituted malononitrile **25** was alkylated with MeI (0.724 g, 5.1 mmol) in the presence of K_2CO_3 (0.705 g, 5.1 mmol) in acetone (10 mL) to afford a solid after column chromatography on silica gel; yield: 0.949 g (86%); mp 148–148.5 °C.

IR (ATR): 3069, 3004, 2953, 2248, 1618, 1599, 1570, 1506, 1425, 1275, 1199, 1137, 816, 783, 751 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.19 (d, *J* = 8.4 Hz, 1 H), 8.13 (d, *J* = 8.4 Hz, 1 H), 7.83 (d, *J* = 8.1 Hz, 1 H), 7.77–7.72 (m, 1 H), 7.59–7.55 (m, 1 H), 7.40 (d, *J* = 8.4 Hz, 1 H), 3.59 (s, 2 H), 1.97 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.5, 147.7, 137.2, 130.0, 129.4, 127.5, 127.3, 127.0, 121.2, 116.2, 45.7, 30.9, 24.9.

Anal. Calcd for $C_{14}H_{11}N_3$: C, 76.00; H, 5.01; N, 18.99. Found: C, 75.88; H, 5.16; N, 18.98.

Ethyl 2-Cyano-3-(4-nitrophenyl)propanoate (28)4g

The general procedure for the one-pot reductive alkylation of malononitrile, followed to scale using ethyl cyanoacetate (1.131 g, 10 mmol), 4-nitrobenzaldehyde (1.51 g, 10 mmol), and NaBH₄ (0.189 g, 5 mmol), afforded a solid; yield: 1.76 g (71%); mp 56–58 °C.

¹H NMR (400 MHz, CDCl₃): δ = 8.23 (d, *J* = 8.4 Hz, 2 H), 7.48 (d, *J* = 8.4 Hz, 2 H), 4.27 (q, *J* = 7.1 Hz, 2 H), 3.79 (dd, *J* = 8.0, 5.8 Hz, 1 H), 3.39 (dd, *J* = 14, 5.8 Hz, 1 H), 3.33 (dd, *J* = 14, 8.0 Hz, 1 H), 1.30 (t, *J* = 7.1 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 164.8, 147.6, 142.5, 130.2, 124.1, 115.4, 63.4, 38.8, 35.0, 13.9.

Acknowledgment

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. This work was also supported by funds from the Lilly Endowment and Ball State University. The authors would like to thank Mr. Ryan Miller, Mr. Kevin Vonderfecht, and Ms. Lauren Bailey of this department for helpful observations and suggestions in carrying out this research.

References

- (a) Li, C.-J. Chem. Rev. 2005, 105, 3095. (b) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169. (c) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234. (d) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.
 (e) Sammelson, R. E.; Kurth, M. J. Chem. Rev. 2001, 101, 137.
- (2) (a) Wu, Z.-L.; Li, Z.-Y. J. Org. Chem. 2003, 68, 2479.
 (b) Grossman, R. B.; Varner, M. A. J. Org. Chem. 1997, 62, 5235.
- (3) (a) Reddy, B. M.; Patil, M. K.; Rao, K. N.; Reddy, G. K. J. Mol. Catal. A: Chem. 2006, 258, 302.
 (b) Saravanamurugan, S.; Palanichamy, M.; Hartmann, M.; Murugesan, V. Appl. Catal. A 2006, 298, 8. (c) Wang, X.-S.; Zeng, Z.-S.; Li, Y.-L.; Shi, D.-Q.; Tu, S.-J.; Wei, X.-Y.; Zong, Z.-M. Synth. Commun. 2005, 35, 1915.
 (d) Deb, M. L.; Bhuyan, P. J. Tetrahedron Lett. 2005, 46, 6453. (e) Pande, A.; Ganesan, K.; Jain, A. K.; Gupta, P. K.; Malhotra, R. C. Org. Process Res. Dev. 2005, 9, 133.
- (4) (a) Xue, D.; Chen, Y.-C.; Cui, X.; Wang, Q.-W.; Zhu, J.; Deng, J.-G. J. Org. Chem. 2005, 70, 3584. (b) Sammelson, R. E.; Allen, M. J. Synthesis 2005, 543. (c) Ranu, B. C.; Samanta, S. J. Org. Chem. 2003, 68, 7130. (d) Ranu, B. C.; Samanta, S. Tetrahedron 2003, 59, 7901. (e) Zhang, B.; Zhu, X.-Q.; Lu, J.-Y.; He, J.; Wang, P. G.; Cheng, J.-P. J. Org. Chem. 2003, 68, 3295. (f) Garden, S. J.; Guimaraes, C. R. W.; Correa, M. B.; de Oliveira, C. A. F.; Pinto, A. C.; de Alencastro, R. B. J. Org. Chem. 2003, 68, 8815. (g) Xue, D.; Chen, Y.-C.; Cui, X.; Wang, Q.-W.; Zhu, J.; Deng, J.-G. J. Org. Chem. 2005, 70, 3584.
- (5) Dunham, J. C.; Richardson, A. D.; Sammelson, R. E. Synthesis 2006, 680.

- (6) Zhang, Z.; Gao, J.; Xia, J.-J.; Wang, G.-W. Org. Biomol. Chem. 2005, 3, 1617.
- (7) Jung, Y.; Marcus, R. A. J. Am. Chem. Soc. 2007, 129, 5492.
- (8) See reference 1a and references cited therein.
- (9) Extreme caution must be employed in handling benzylidenemalononitriles (intermediates before NaBH₄ reduction). The 2-chloro derivative, 2-chlorobenzalmalononitrile (Table 1, entry 7), is known as CS, which has been used as the active ingredient in riot control and antipersonnel devices. See: Jones, G. R. N. *Nature* **1972**, *235*, 257.
- (10) The X-ray data of 26 and 27 have been deposited at the Cambridge Crystallographic Database Centre under CCDC # 661126 and 661127, respectively. They can be retrieved from the web address http://www.ccdc.cam.ac.uk/products/ csd/request/.
- (11) (a) Smith, C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9, 1169. (b) Liu, Y.; Song, Z.; Yan, B. Org. Lett. 2007, 9, 409. (c) Kaloko, J.; Hayford, A. Org. Lett. 2005, 7, 4305.
- (12) Marchalin, S.; Baumlova, B.; Baran, P.; Oulyadi, H.; Daich, A. J. Org. Chem. 2006, 71, 9114.
- (13) (a) Hofmann, M.; Bastiaans, H. M. M.; Langewald, J.; Oloumi-Sadeghi, H.; Culbertson, D. L. PCT Int. Appl. WO 2007017414, **2007**; *Chem. Abstr.* **2007**, *146*, 229359.
 (b) Daihei, D. Jpn. Kokai Tokkyo Koho JP 2007031422, **2007**; *Chem. Abstr.* **2007**, *146*, 228960. (c) Otaka, T.; Ohira, D. Jpn. Kokai Tokkyo Koho JP 2004099597, **2004**; *Chem. Abstr.* **2004**, *140*, 303517. (d) Otaka, K.; Suzuki, M.; Oohira, D. PCT Int. Appl. WO 2002089579, **2002**; *Chem. Abstr.* **2002**, *137*, 369842.
- (14) The reaction outcome for this example has no advantages over our previously reported work⁵ where condensation was not performed as a separate step.
- (15) No acid was added to work up reactions containing nitrogen containing heterocycles.
- (16) Castedo, L.; Riguera, R. Anal. Quim. **1980**, C76, 24; Chem. Abstr. **1980**, 94, 191412.
- (17) Lin, C.-F.; Yang, J.-S.; Chang, C.-Y.; Kuo, S.-C.; Lee, M.-R.; Huang, L.-J. *Bioorg. Med. Chem.* 2005, *13*, 1537.
- (18) Sammelson, R. E.; Gurusinghe, C. D.; Kurth, J. M.; Olmstead, M. M.; Kurth, M. J. J. Org. Chem. 2002, 67, 876.
- (19) Chung, C. W. Y.; Toy, P. H. J. Comb. Chem. 2007, 9, 115.
- (20) Sammelson, R. E.; Casida, J. E. J. Org. Chem. **2003**, 68, 8075.