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Abstract A ruthenium-catalyzed functionalization of benzaldehyde
substrate with organic azides promoted by various transient directing
groups has been developed. In this approach, C-H amination is
achieved via a transient aldimine intermediate in good to excellent
yields.
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Catalytic C-H bond functionalization with formation of
a C-C bond is attracting tremendous interest in synthesis,
as it can maximize atom and step economy.! This method
simplifies chemical synthesis and it has the potential to re-
place classical catalytic cross-coupling reactions and free-
radical reactions.?? A variety of metal catalysts have been
reported to promote C-H bond activation and functional-
ization;* initially, catalysts based on palladium or rhodium
were used, but more recently, catalysts based on iridium
(which is significantly less expensive than ruthenium) or
other metals have been used. In the past decade, a transi-
tion-metal-catalyzed ortho C(sp?)-H amidation of benzal-
dehydes has emerged as a powerful tool for the synthesis of
ortho-aminobenzaldehydes, which are important building
blocks for the synthesis of natural products, pharmaceuti-
cals, and organic materials.’

The groups of Chang,® Jio,” Bolm,® and others® have used
organic azides as amidating reagents in transition-metal-
catalyzed C-H amidation reactions. In this respect, many
directing groups and metal catalysts have been examined
for use in this amidation [Scheme 1(A)].!° However, the di-
rect ortho C-H amination of benzaldehydes remains chal-
lenging because of the weak coordinating ability and insta-
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bility of the directing groups.!’ Recently, Shi and co-work-
ers'? and others'>4 have reported an iridium-catalyzed
ortho C(sp?)-H amidation reaction of benzaldehydes with
various anilines by using a stoichiometric or catalytic di-
recting-group strategy [Scheme 1(B)]. Here, we report an
efficient method for the synthesis of 2-(sulfonyl-
amino)benzaldehydes by using an inexpensive ruthenium
complex to catalyze the ortho C(sp?)-H amidation of benz-
aldehydes with organic azides in the presence of catalytic
amount of 3-(trifluoromethyl)aniline (T3) and 2-amino-4-
(trifluoromethyl)benzoic acid (T10) as a transient directing
group (TDG) (Scheme 1).
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A) Directing group strategy for amidation reaction
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TDG 8 (10 mol%)
DCE, 80°C, 24 h
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2-fluoro-5-trifluoromethylaniine 10 mol%

B) Transient directing group strategy for amidation reaction
[Ru(p-cymene)Cls], (3 mol%)
H AgSbFg (5 mol%) NHSO-R
+ RSO2N3

TDG (10 mol%)
DCE, 80°C, 12 h

TDG = 3-trifluoromethylaniline (T3) or
2-amino-4-(trifluoromethyl)benzoic acid (T10) (10 mol%)

C) This work

Scheme 1 Metal-catalyzed ortho C(sp?)-H amination with organic
azides
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On the basis of previous observations,'?131> we com-
menced our studies by treating 2-methylbenzaldehyde
with tosyl azide under reported amidation conditions by
using 5 mol% of [Ru(p-cymene)Cl,],, 16 mol% of AgNTf,, 30
mol% of AgTFA, and 10 mol% of the aniline derivative in 1,2-
dichloroethane (DCE) as solvent at 80 °C. We were pleased
to note that in a trial experiment, the desired C-H amidated
product was obtained in 30% NMR yield. Analysis of the 'H
NMR spectrum of the crude reaction mixture provided a
baseline value for the catalytic activity of ruthenium cata-
lyst in ortho C(sp?)-H amidation of benzaldehydes with or-
ganic azides. In an exploratory investigation, after extensive
screening, and from our previous studies on C-H activation
of benzaldehydes by the TDG strategy,'> we established that
anilines can serve as effective TDGs for Ru-catalyzed amida-
tion reactions with tosyl azide.

After extensive ligand screening (Scheme 2), T3 and T10
proved to be the most efficient TDGs, giving 95% and 96%
isolated yields, respectively, of the amidated product.

[Ru(p-cymene)Cly], (3 mol%) CHO
H AgSbFs (5 mol%) NHTSs
+ TsN3
TDG (10 mol%)

DCE, 80°C,12h
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T6 T7 T8 To
NH, NH> NHz
F. F i :Br Cl
F F CFs
CF3 NO,
96%2°
20% 10% 20%
T10 T11 T12 T13

Scheme 2 Screening of TDGs for ortho C-H amidation of 2-methyl-
benzaldehyde with tosyl azide. Yields are based on 'H NMR analysis ex-
cept where otherwise stated.

3 |solated yield

b EtOH was used instead of DCE.

Next, we decided to optimize the reaction conditions to
improve the yield of the amidated product by using 3 mol%
of [Ru(p-cymene)Cl,], and 5 mol% of AgSbFs with 10 mol%
of the aniline derivative as a TDG in DCE as solvent at 80 °C.

Control experiments showed that none of the desired
product was obtained in the absence of a TDG. For example,
when 2-methylbenzaldehyde was treated with tosyl azide
under the reported conditions {[Ru(p-cymene)Cl,],, (2
mol%), AgSbFs (0.3 equiv.), DCE, 80 °C, 12 h}®® in the ab-
sence of a TDG, none of the desired product was obtained.
Solvent screening was also an important step in optimizing
the reaction conditions; DCE, ethanol, and, in some cases,
isopropyl alcohol proved to be the best solvents; other sol-
vents tested gave significantly lower yields (see Supple-
mentary Information).

Next, we examined the role of additives in this type of
reaction. Interestingly, by addition of AgSbF; instead of
AgNTTf,, the yield of the C-H amidation reactions was sig-
nificantly improved and, in this reaction, AgSbFg proved to
be the best chloride scavenger for generating active ruthe-
nium species. Ag,CO; and AgTFA showed little reactivity in
the amidation reaction (see Supplementary Information).

With these optimized reaction conditions in hand, we
next explored the generality of this ruthenium-catalyzed
system by studying the substrate scope of various benz-
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Scheme 3 Substrate scope of the Ru-catalyzed ortho C-H amination of
benzaldehydes with organic azides under the optimized reaction condi-
tions
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Scheme 4 Proposed reaction pathway

aldehydes with tosyl azide (Scheme 3). The amidation of
benzaldehydes with electron-donating or electron-with-
drawing substituents proceeded well to provide the corre-
sponding products in good to excellent yields (40-95%)
with either TDG under the optimized reaction condition.!®
Furthermore, the reaction of 2-methylbenzaldehyde with
various arylsulfonyl azides or alkylsulfonyl azides under the
optimized reaction conditions gave the desired amidation
products in good to excellent yields.

On the basis of the above experimental results and re-
ports in the literature,'”'® we propose the plausible reac-
tion mechanism shown in Scheme 4. First, treatment of
[Ru(p-cymene)Cl,], with AgSbFg generates a cationic Ru
species that subsequently coordinates to substrate 14 to
form complex A. Chelation-assisted C-H metalation then
generates the ruthenacycle B. The azide coordinates to B to
form complex D with release of nitrogen gas, and complex
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D then rearranges to afford the six-membered ruthenium
intermediate E. Finally, E undergoes reductive elimination
to form the final product.

In summary, we have developed a new protocol for the
Ru-catalyzed ortho C-H amidation of benzaldehydes with
organic azides by using a catalytic amount of TDG T3 or
T10. The reaction can be applied to a broad range of both
benzaldehydes and sulfonyl azides and it offers a conve-
nient method for the synthesis of various 2-(sulfonylami-
no)benzaldehydes in an economical manner without the
use of iridium.
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