

DESIGN, SYNTHESIS, AND ANTI-TUMOR ACTIVITY OF 4'-THIONUCLEOSIDES AS POTENT AND SELECTIVE AGONISTS AT THE HUMAN A_3 ADENOSINE RECEPTOR

Lak Shin Jeong 🛛 College of Pharmacy, Ewha Womans University, Seoul, Korea

Hyuk Woo Lee D College of Pharmacy, Seoul National University, Seoul, Korea

Hea Ok Kim, Ji Young Jung, Prashantha Gunaga, Sang Kook Lee, Eun-Jin Lee, and Moon Woo Chun Diversity, Seoul, Korea

Zhan-Guo Gao and Kenneth A. Jacobson Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Disease, NIH, Bethesda, Maryland, USA

Hyung Ryong Moon \Box College of Pharmacy, Pusan National University, Busan, Korea

□ On the basis of potent and selective binding affinity of Cl-IB-MECA to the human A_3 adenosine receptor, its 4 -thioadenosine derivatives were efficiently synthesized starting from D-gulonic γ -lactone. Among compounds tested, 2-chloro-N⁶-(3-iodobenzyl)- and 2-chloro-N⁶-methyl-4 -thioadenosine-5'-methyluronamides (**7a** and **7b**) exhibited nanomolar range of binding affinity ($K_i = 0.38$ nM and 0.28 nM, respectively) at the human A_3AR . These compounds showed antigrowth effects on HL-60 leukemia cell, which resulted from the inhibition of Wnt signaling pathway.

Keywords Bioisosteric; 4'-thionucleosides; A3 adenosine receptor agonist; antiproliferative effect

INTRODUCTION

Adenosine is endogenous material and regulates many physiological functions in the body through adenosine receptors.^[1] Thus, adenosine receptors have been good therapeutic targets for the development of clinically useful drugs.^[2] On the basis of the structure of a natural ligand, adenosine, many nucleoside derivatives largely modified on N^6 - and/or

This research was supported by the Grant of the Seoul R&BD Program (10541), Korea.

Address correspondence to Lak Shin Jeong, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea. E-mail: lakjeong@ewha.ac.kr

FIGURE 1 Design of the 4'-thionucleosides 2 based on bioisosteric rationale.

4'-position of adenosine have been synthesized as potent adenosine receptor ligands.^[3] Among these, 2-chloro- N^6 -(3-iodobenzyl)-adenosine-5'-methyluronamide (1, Cl-IB-MECA)^[4] was discovered as potent and selective agonist ($K_i = 1.0$ nM) at the human A₃ adenosine receptor (AR) and is being developed as anticancer agent. Therefore, on the basis of potent and selective binding affinity to the human A₃AR, we designed and synthesized 4'-thioadenosine derivatives which are in biosiosteric relationships with compound **1** (Figure 1).

Herein, we report the synthesis, binding affinity at the A_3AR , and *in vitro* anti-proliferative effects in human cancer cell lines of 4'-thioadenosine derivatives.

RESULTS AND DISCUSSION

Synthesis of the target nucleosides 8 started from the known intermediate 3 which was derived from D-gulonic γ -lactone (3), as shown in Scheme 1.^[5]

Treatment of **4** with various alkyl- and arylalkyl amines in EtOH produced N^6 -alkyl- or arylalkylamino-4'-thioadenosine derivatives **5**. Because removal of the isopropylidene group under acidic conditions at the final step resulted in deglycosylation, the isopropylidene group in **5** was changed to di-*O*-TBS ether **6**. Deprotection of the benzoyl group of **6** followed by oxidation of the primary alcohol to the acid with PDC gave the acid derivative **7**. Conversion of the acid **7** to the various amides **8** was accomplished by coupling with various amines in the presence of EDC and HOBT.

Binding affinities of all synthesized 4'-thioadenosine derivatives at the A₃ AR were measured using a radioligand binding assay.^[5] From this study, 2-chloro- N^6 -methyl- and 2-chloro- N^6 -(3-iodobenzyl)-4'thioadenosine-5'-methyluronamides ($K_i = 0.28 \pm 0.09$ nM and $K_i = 0.38 \pm$ 0.07 nM, respectively) were discovered as highly potent and selective agonists at the human A₃AR. It was also found that 5'-monoalkyl amide

SCHEME 1 Reagents and conditions: a) R₁NH₂, Et₃N; b) 80% AcOH; c) TBSOTf, pyridine; d) NaOMe, MeOH; e) PDC, DMF; f) amines, EDC, HOBT, DIPEA, CH₂Cl₂; g) TBAF, THF.

showed better binding affinity than the corresponding 5'-dialkyl amide, indicating that at least one hydrogen forms a hydrogen bond within the binding site.^[6] The 4'-thionucleosides generally showed higher binding affinity to the A_3AR than the corresponding 4'-oxonucleosides.

2-Chloro- N^6 -(3-iodobenzyl)-4'-thioadenosine-5'-methyluronamide showing high binding affinity to the A₃AR was tested for anti-proliferative effects in human cancer cell lines such as A549, Col2, HL-60 cells. This compound exhibited concentration-dependent anti-proliferative effects. A further study indicated that anti-growth effect of this agonist resulted from the inhibition of Wnt signalling pathway by lowering the levels of β -catenine, phosphorylated-Akt, and phosphorylated-GSK 3β .^[7]

In summary, we carried out the systematic structure-activity relationships of 4'-thioadenosine derivatives, among which 2-chloro- N^6 -(3-iodobenzyl)-4'thioadenosine-5'-methyluronamide emerged as potent and selective A₃AR agonist. In vitro anti-growth effects and novel mechanism of action of this agonist guarantees it has a high potential to be a good anticancer agent.

REFERENCES

- 1. Olah, M.E.; Stiles, G.L. The role of receptor structure in determining adenosine receptor activity. *Pharmacol. Ther.* **2000**, 85, 55–75.
- 2. Jacobson, K.A.; Gao. Z.-G. Adenosine receptors as therapeutic targets. *Nature Rev. Drug Dis.* **2006**, 5, 247–264.

L. S. Jeong et al.

- Baraldi, P.G.; Cacciari, B.; Romagnoli, R.; Merighi, S.; Varani, K.; Borea, P.A.; Spalluto, G. A₃ Adenosine receptor ligands: History and perspectives. *Med. Res. Rev.* 2000, 20, 103–128.
- Kim, H.O.; Ji, X.-d.; Siddiqi, S.M.; Olah, M.E.; Stiles, G.L.; Jacobson, K.A. 2-Substitution of N⁶benzyladenosine-5'-uronamides enhances selectivity for A₃-adenosine receptors. *J. Med. Chem.* 1994, 37, 3614–3621.
- Jeong, L.S.; Lee, H.W.; Jacobson, K.A.; Kim, H.O.; Shin, D.H.; Lee, J.A.; Gao, Z.-G.; Lu, C.; Duong, H.T.; Gunaga, P.; Lee, S.K.; Jin, D.Z.; Chun, M.W.; Moon, H.R. Structure-activity relationship of 2chloro-N⁶-substituted-4'-thioadenosine-5'-uronamides as highly potent and selective agonists at the human A₃ adenosine receptor. *J. Med. Chem.* **2006**, 49, 273–281.
- Gao, Z.-G.; Joshi, B.V.; Klutz, A.M.; Kim, S.K.; Lee, H.W.; Kim, H.O.; Jeong, L.S.; Jacobson, K.A. Conversion of A₃ adenosine receptor agonists into selective antagonists by modification of the 5'ribofuran-uronamide moiety. *Bioorg. Med. Chem. Lett.* **2006**, 16, 596–601.
- Lee, E.J.; Min, H.Y.; Chung, H.J.; Park, E.J.; Shin, D.H.; Jeong, L.S.; Lee, S.K. A novel adenosine analog, thio-Cl-IB-MECA, induces G₀/G₁ cell cycle arrest and apoptosis in human promyelocytic leukemia HL-60 cells. *Biochem. Pharmacol.* 2005, 70, 918–924.

Copyright of Nucleosides, Nucleotides & Nucleic Acids is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.