

Tetrahedron Letters 42 (2001) 7751-7754

TETRAHEDRON LETTERS

Benzaldehyde-derived chloroformates and their application towards the synthesis of methoxyfenozide-N-[(acyloxy)benzyloxy]carbonyl derivatives

Mark J. Mulvihill,* Duyan V. Nguyen, Brian MacDougall, Blanca Martinez-Teipel, Rhoda Joseph, James Gallagher, Damian Weaver, Arkady Gusev, KiHo Chung and William Mathis

Rohm and Haas Company, 727 Norristown Road, Spring House, PA 19477, USA

Received 6 June 2001; accepted 29 August 2001

Abstract—The synthesis of a series of substituted benzaldehyde-derived chloroformates and their application towards the synthesis of a diverse series of novel insecticidally active carboxylic acid [N'-tert-butyl-N'-(3,5-dimethylbenzoyl)-N-(3-methoxy-2-methylbenzoyl)hydrazinocarbonyloxy]phenylmethyl esters, prepared in a parallel synthesis fashion, is reported. © 2001 Elsevier Science Ltd. All rights reserved.

N-tert-Butyl diacyl hydrazines are an important class of environmentally safe, selective insecticidal compounds.¹ One such example, methoxyfenozide (3a),² is commercially used as an ecdysone agonist to selectively

control *Lepidopterous* larvae on cotton, vegetables, apples, and pome fruit (Scheme 1).³ Methoxyfenozide, due to its highly crystalline nature and low water solubility (3.0 ppm), tends to have a non-optimal use

Scheme 1.

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01644-6

Keywords: carboxylic acids and derivatives; diacyl hydrazines; chloroformates; parallel synthesis. * Corresponding author. Fax: (914) 345-3565; e-mail: Mark.Mulvihill@osip.com

rate and formulation difficulties.³ As described in a previous publication,⁴ our group has incorporated [(acyloxy)alkoxy]carbonyl and (acyloxy)alkyl moieties into diacyl hydrazines which has resulted in drastic changes in the physical properties associated with this insecticidal class of compounds while simultaneously increasing biological efficacy. The use of chloroalkyl chloroformates in the synthesis of N-[(acyloxy)alkoxy]carbonyl derivatives is quite prevalent in the literature.^{5,6} However, chlorobenzyl chloroformates, despite reports to their synthesis,⁷ have not received the same attention in the synthesis of N-[(acyloxy)benzyloxy]carbonyl derivatives. One reason could be the use of undesirable reagents such as phosgene gas or solvents such as carbon tetrachloride in their syntheses. In this paper, we will describe the synthesis of benzaldehyde-derived chloroformates via treatment of substituted benzaldehydes with triphosgene in diethyl ether and the application of these chloroformates to the synthesis of various methoxyfenozide-N-[(acyloxy)benzyloxy]carbonyl derivatives (5-7, Scheme 1).

We began our efforts by first assembling the benzaldehyde-derived chloroformates 2a-c. Chloroformate 2a(X=H) was smoothly synthesized following the procedures of Coghlan and Caley in which benzaldehyde 1a (X = H) was treated with triphosgene in the presence of a catalytic amount of pyridine in carbon tetrachloride.⁷ However, with the restrictions associated with carbon tetrachloride, we were compelled to explore alternate solvent systems. Diethyl ether proved to be a viable solvent system for the synthesis of chloroformates 2b,c.⁸ However, due to their instability,⁸ chloroformates 2a-c were synthesized and then directly allowed to react with the potassium salt of methoxyfenozide (3b) to afford stable, isolable compounds 4a-c, which were fully characterized.⁹ Intermediates **4a–c** were treated with various carboxylic acids (R¹CO₂H) in the presence of cesium carbonate in DMF in a parallel synthesis fashion to afford various methoxyfenozide-N-[(acyloxy)benzyloxy]carbonyl derivatives (5-7) (Scheme 1, Table $1).^{10}$

In conclusion, various substituted benzaldehyde-derived chloroformates (2) were synthesized through the reaction of substituted benzaldehydes with triphosgene in the presence of pyridine in diethyl ether. The chloroformates proved to be thermally unstable but were reacted first with the potassium salt of methoxyfenozide (3b) to

Compound no.	Х	R ¹	Mass found	% Purity by UV
5a	Н	1-Methyl-1 <i>H</i> -pyrrol-2-yl	625	96
5b	Н	Cyclopropyl	586	93
5c	Н	2-(2-Thienyl)ethenyl	654	94
5d	Н	2-Hexyl	630	100
5e	Н	3-Thienyl	628	100
5f	Н	3-Pyridyl	623	100
5g	Н	Methyl	560	100
5h	Н	Phenyl	622	96
5i	Н	2-Pyridyl	623	92
5j	Н	3-Hydroxy-4-methoxyphenyl	668	89
5k	Н	Tetrahydrofur-3-yl	616	100
51	Н	C(CH ₃) ₃	602	97
6a	2-Me	Methyl	574	95
6b	2-Me	Ethenyl	586	94
6c	2-Me	Phenyl	636	100
6d	2-Me	2-(2-Thienyl)ethenyl	668	92
6e	2-Me	2-Methylcyclopropyl	614	100
6f	2-Me	Phenoxymethyl	666	95
6g	2-Me	2-Pyridyl	637	100
6h	2-Me	Cyclopropyl	600	100
7a	4-Me	Methyl	574	95
7b	4-Me	Tetrahydrofur-2-yl	630	91
7c	4-Me	Ethyl	588	100
7d	4-Me	Phenyl	636	100
7e	4-Me	2-Pyridyl	637	100
7f	4-Me	1-(tert-Butoxycarbonylamino)propyl	717	100
7g	4-Me	Methoxymethyl	604	92
7h	4-Me	3-(2-Thienyl)propyl	684	95
7i	4-Me	2-(2-Thienyl)ethenyl	668	100
7i	4-Me	2-Hexyl	644	100
7k	4-Me	Tetrahydrofur-3-yl	630	100
71	4-Me	2-(2-Fluorophenyl)ethenyl	680	100
7m	4-Me	3-Methyl-2-thienyl	656	93

Table 1. Compounds 5-7 prepared via parallel synthesis¹¹ and analyzed by LC/UV/MS¹²

afford stable, isolable intermediates 4a-c which then were reacted with various carboxylic acids to afford novel methoxyfenozide-N-[(acyloxy)benzyloxy]carbonyl derivatives 5–7.

Acknowledgements

We thank Drs. Dennis Patterson and Harvey Scribner for many fruitful discussions and support of the project and Kristen M. Mulvihill for her help in preparation of the manuscript.

References

- Thomson, W. T. Agricultural Chemicals, Book 1, Insecticides, 14th ed.; Thomson Publications: Fresno, CA, 1998; pp. 142–144.
- Lidert, Z.; Le, D. P.; Hormann, R. E.; Opie, T. R. US 5530028, *Chem. Abstr.* 1996, 125, 161132.
- Tomlin, C. D. S. *The Pesticide Manual*, 11th ed.; British Crop Protection Council: Farnham, Surrey GU9 7PH, UK, 1997; pp. 388–389.
- Mulvihill, M. J.; MacDougall, B. S.; Ajello, C.; Martinez-Teipel, B.; Joseph, R.; Weaver, D. G.; Nguyen, D. V.; Gusev, A.; Weirenga, J. M.; Mathis, W. D. Synthesis 2001, submitted for publication.
- Silverman, R. B. *The Organic Chemistry of Drug Design* and Drug Action; Academic Press: San Diego, CA, 1992; pp. 361–363.
- 6. Folkmann, M.; Lund, F. J. Synthesis 1990, 1159-1166.
- Coghlan, M. J.; Caley, B. A. *Tetrahedron Lett.* 1989, 30, 2033–2036 and references cited therein.
- 8. Compounds 2a-c: Chloroformate 2a was synthesized via the carbon tetrachloride route while chloroformates 2b,c were synthesized via the diethyl ether route. All chloroformates 2a-c were directly carried on to the next reaction (due to thermal stability issues) with the potassium salt of methoxyfenozide to afford stable, isolable compounds 4a-c which were fully characterized as described below in Ref. 9.
- 9. Compounds 4a-c: Compound 4a: mp = $103-105^{\circ}$ C; IR v (cm⁻¹): 1766, 1712, 1676; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.62 (s, 9H), 1.95 (bs, 3H), 2.20 (s, 6H), 3.77 (s, 3H), 6.70–7.30 (m, 12H); ¹³C NMR (75 MHz, CDCl₃): δ (ppm): 14.5, 23.3, 29.8, 57.6, 65.1, 88.0, 113.7, 118.9, 125.0, 126.5, 128.3, 130.7, 132.4, 133.0, 137.8, 138.5, 139.4, 140.3, 153.7, 159.9, 171.6, 174.9; Anal. calcd for C₃₀H₃₃ClN₂O₅: C, 67.09; H, 6.19; N, 5.22. Found: C, 66.88; H, 6.09; N, 5.15. Compound **4b**: $mp = 111-113^{\circ}C$; IR v (cm⁻¹): 2949, 1765, 1712, 1677; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.61 (s, 9H), 1.95 (bs, 3H), 2.16 (bs, 6H), 2.24 (s, 3H), 3.72 (s, 3H), 6.62–7.27 (m, 11H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 12.4, 18.6, 21.0, 27.6, 55.3, 62.9, 83.5, 111.5, 116.8, 122.8, 124.2, 126.1, 126.2, 126.3, 129.9, 130.6, 130.7, 133.6, 134.4, 136.2, 137.2, 138.1, 151.7, 157.6, 169.3, 172.6; Anal. calcd for C₃₁H₃₅ClN₂O₅: C, 67.57; H, 6.40; N, 5.08. Found: C, 67.69; H, 6.15; N, 5.05. Compound 4c: mp=123-125°C; IR v (cm⁻¹): 1766, 1713, 1676; ¹H NMR (300 MHz, $CDCl_3$) δ (ppm): 1.58 (s, 9H), 1.95 (bs, 3H), 2.18 (s, 6H),

2.34 (s, 3H), 3.74 (s, 3H), 6.70–7.10 (m, 11H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 13.2, 21.9, 22.2, 28.5, 56.3, 63.8, 86.8, 112.4, 117.6, 123.7, 125.2, 126.9, 130.0, 131.7, 133.7, 137.3, 138.1, 139.0, 141.2, 152.4, 158.6, 170.3, 173.5; Anal. calcd for C₃₁H₃₅ClN₂O₅: C, 67.57; H, 6.40; N, 5.08. Found: C, 67.65; H, 6.11; N, 5.36.

- 10. A typical reaction sequence in the synthesis of chloroformates 2a-c, compounds 4a-c, and compounds 5-7 is represented by 2b, 4b, and 6a: Synthesis of compound 2b: A 1000 mL diethyl ether solution of 2-methylbenzaldehyde (75.0 g, 620.0 mmol), cooled to -20° C, was charged with triphosgene (205.0 g, 690.0 mmol) followed by pyridine (6.0 mL, 62.0 mmol). The reaction was allowed to warm to room temperature (rt) and stir for 2 h, after which time the reaction mixture was filtered through Celite[®]. The filtrate was concentrated in vacuo to afford 103 g of chloroformate 2b in 75% yield (95% purity by ¹H and ¹³C NMR). Chloroformate 2b (1.36 g, 6.20 mmol) then was added in one portion to a 0°C THF solution of the potassium salt of methoxyfenozide (3b), prepared by treating methoxyfenozide 3a (1.92 g, 5.20 mmol) with potassium tert-butoxide (0.58 g, 5.20 mmol) in 50 mL of THF at rt. The reaction was allowed to warm to rt and stir for 4 h, after which time the solvent was removed in vacuo and the crude mixture subjected to silica gel column chromatography (90:10 hexanes/EtOAc) to afford 2.0 g (70%) of the desired compound 4b. Preparation of compounds 5-7 via parallel synthesis: Synthesis of compound 6a: Cs₂CO₃ (70 mg, 0.22 mmol) in 500 µL DMF was delivered to a 96 well reaction block (496 MBS, Advanced Chemtech) followed by acetic acid (13 mg, 0.22 mmol). The block was stirred at rt for 30 min, at which time a solution of 4b (100 mg, 0.18 mmol in 500 µL DMF) was delivered. Stirring was continued at rt for up to 48 h. The reaction was filtered into the cleavage block, the solvent was removed in a Genevac HT-12 and the residue was taken up in CH2Cl2 and chromatographed on a preconditioned (hexanes) 2 g silica solid phase extraction cartridge (gradient of hexanes to 1:1 hexanes/EtOAc) yielding 65 mg (65%) of compound **6a** as a white solid; $mp = 70-72^{\circ}C$; IR v (cm⁻¹): 2945, 1767, 1711, 1675; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.64 (s, 9H), 1.95 (bs, 3H), 2.05 (s, 3H), 2.08 (s, 6H), 2.35 (s, 3H), 3.74 (s, 3H), 6.68–7.32 (m, 10H), 7.64 (bs, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 12.7, 18.9, 20.7, 21.0, 27.5, 55.4, 62.7, 91.0, 111.2, 116.7, 122.7, 124.1, 125.8, 126.2, 127.5, 130.2, 130.6, 131.0, 131.9, 136.3, 136.7, 137.3, 138.0, 151.3, 157.5, 168.3, 169.6, 172.6; Anal. calcd for C33H38N2O7: C, 68.97; H, 6.67; N, 4.87. Found: C, 69.08; H, 6.72; N, 4.90.
- Compound 6a was fully characterized as a representative example of this class of chemistry as described in Ref. 10. Compounds 5a–l, 6b–h, and 7a–m were prepared via parallel synthesis and analyzed by LC/UV/MS as presented in Table 1.
- 12. For liquid chromatography (LC)/ultraviolet (UV) mass spectrometry (MS) analysis, the samples were dissolved in CH₃CN:H₂O (1:1) at concentrations of 100 μ g/mL to 1000 μ g/mL. The LC/UV/MS analysis was performed using the HPLC 1100-VG Platform. The UV and MS instruments were connected in sequence, and the analysis was carried out in one injection where LC/UV afforded the purity (%) and MS confirmed the molecular weight.

UV analysis was carried out using a scanning diode array detector (200–300 nm). MS analysis was carried out in positive scanning mode (100–1000 daltons). A short C18 HPLC column (3 mm ID, 5 cm length) was used with a flow rate of 1 mL/min. The eluent was split 1:25 after UV detection and 1 part was sent to the MS. The typical HPLC gradient was 25:75 $H_2O:CH_3CN$

to 100% acetonitrile over 5 min (0.1% formic acid added). Injection volume varied between 1 and 25 μ L. In some cases, it was necessary to change certain parameters, e.g. ion mode (positive or negative), UV wavelength, or solvent buffer (no buffer, formic acid, acetic acid, or ammonia acetate). The data is presented in Table 1.