

Bioorganic & Medicinal Chemistry 8 (2000) 55-64

BIOORGANIC & MEDICINAL CHEMISTRY

Novel Adenosine A₁ Receptor Antagonists. Synthesis and Structure–Activity Relationships of a Novel Series of 3-(2-Cyclohexenyl-3-oxo-2,3-dihydropyridazin-6-yl)-2phenylpyrazolo[1,5-*a*]pyridines

Satoru Kuroda, ^{a,*} Atsushi Akahane, ^a Hiromichi Itani, ^a Shintaro Nishimura, ^b Kieran Durkin, ^a Yoshiyuki Tenda ^c and Kazuo Sakane ^a

^aMedicinal Chemistry Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 1-6, 2-chome, Kashima, Yodogawa-ku, Osaka 532-8514, Japan

^bBasic Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 1-6, 2-chome, Kashima, Yodogawa-ku, Osaka 532-8514, Japan ^cMedicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 1-6, 2-chome, Kashima, Yodogawa-ku, Osaka 532-8514, Japan

Received 9 July 1999; accepted 24 August 1999

Abstract—A novel series of 3-(2-cyclohexenyl-3-oxo-2,3-dihydropyridazin-6-yl)-2-phenylpyrazolo[1,5-*a*]pyridines was synthesized and evaluated for in vitro adenosine A₁ and A_{2A} receptor binding activities. Most of the cyclohexenyl derivatives (**7a–e**, **8a–s**) were found to be potent adenosine A₁ receptor antagonists. In a series of analogues of FR166124 (**3a**), alcohol **7c**, nitrile **7e** and amide derivatives (**7d**, **8c**, **8r**) were found to be more potent A₁ antagonists with higher A_{2A}/A₁ selectivity than FR166124. Amongst them, **8r** showed considerable water solubility (33.3 mg/mL), but lower than that of the sodium salt of FR166124 (>200 mg/mL). Additionally, FR166124 had strong diuretic activity by both p.o. and iv administration in rats (minimum effective dose=0.1 and 0.032 mg/kg, respectively). © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Adenosine plays a variety of important physiological roles through extracellular adenosine receptors which are classified into four subtypes called A_1 , A_{2A} , A_{2B} and A_3 .¹⁻⁴ With regards to possible therapeutic applications of adenosine antagonists, effects on the cardiovascular system, kidney and central nervous system have been studied, and extensive pharmacological studies have suggested that selective antagonists of the A_1 receptor may lead to novel therapeutic agents for the treatment of certain kidney and central nervous system diseases.^{2,5-10} The low water solubility of the known adenosine A_1 receptor antagonists⁶ has made it especially difficult to develop therapeutic agents, however, several xanthine derivatives are known to be water-soluble A_1 receptor antagonists.^{11,12} We recently reported the

discovery of FK453 (1)^{13–17} and FK838 (2),^{18–21} two potent 3-substituted 2-phenylpyrazolo[1,5-*a*]pyridine adenosine A₁ receptor antagonists with strong diuretic activities (Fig. 1). Moreover, we have also reported the discovery of FR166124 (3a, Fig. 1), a more potent derivative with higher A_{2A}/A₁ selectivity that has very high water solubility as the sodium salt (>200 mg/mL).²²

The design process leading to the discovery of FR166124 involved introduction of various cyclic acid groups to the N2' of the pyridazinone ring, in place of the butyric acid group of FK838, as substituents to induce rigidity and mimic the postulated conformation of FK453.²² A cyclohexenyl acetic acid group was found to be especially effective. In order to discover even more potent and A_{2A}/A_1 selective analogues, we then designed a series of FR166124 derivatives in order to further elucidate the importance of the cyclohexenyl acetic acid moiety. In this paper, we wish to report the synthesis and structure–activity relationships (SAR) of a novel series of 3-(2-cyclohexenyl-3-oxo-2,3-dihydropyr-idazin-6-yl)-2-phenylpyrazolo[1,5-*a*]pyridines, including

Keywords: antagonists; receptors.

^{*}Corresponding author. Tel.: +81-6-6390-5497; fax: +81-6-6304-5435; e-mail: satoru_kuroda@po.fujisawa.co.jp

^{0968-0896/00/\$ -} see front matter O 2000 Elsevier Science Ltd. All rights reserved. PII: S0968-0896(99)00258-8

FR166124 (**3a**)

Figure 1. 3-Substituted-2-phenylpyrazolo[1,5-a]pyridine adenosine A1 receptor antagonists.

alcohol **7c**, nitrile **7e**, amide derivatives (**7d,8a–8s**), and a series of olefin isomers of FR166124.

Chemistry

Synthetic routes for the novel 3-(2-cyclohexenyl-3-oxo-2,3-dihydropyridazin-6-yl)-2-phenylpyrazolo[1,5-a]pyr-idines 3, 7 and 8 prepared in this work are shown in Schemes 1–3. The olefin isomers (**3b–d**) of **3a** were prepared by acidic deprotection of the corresponding

One carbon homologated compound 7a was prepared from 3a in 31% yield by Arndt–Eistert reaction using trimethylsilyldiazomethane and benzylalcohol followed

Scheme 2. Synthesis of N2'-cyclohexenyl analogues. Reagents and conditions: (i) 1. SOCl₂/CH₂Cl₂; 2. trimethylsilyldiazomethane/THF–CH₃CN; 3. 2,4,6-trimethylpyridine, PhCH₂OH; 4. 1 N NaOH aq, THF–H₂O (**7a**, **7b**). (ii) BH₃·THF, THF (**7c**). (iii) 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), HOBt, NH₄Cl/THF–CH₂Cl₂ (**7d**). (iv) TFAA, pyridine, CH₂Cl₂ (**7e**).

Scheme 3. Synthesis of amide derivatives of FR166124 (3a). Reagents and conditions: (i) R³H·HCl, EDC, HOBt/THF–CH₂Cl₂ (8a, b, f, j, l); R³H, EDC·HCl, HOBt/THF–CH₂Cl₂ (8c, p, q) or DMF (8n, o); (COCl)₂/DMF–CH₂Cl₂, then R³H·HCl, Et₃N/CH₂Cl₂ (8d, h); R³H, EDC·HCl, HOBt, Et₃N/DMF, then 4 N HCl/EtOAc (8r); 1-triphenylmethylpiperazine, EDC·HCl, HOBt/THF–CH₂Cl₂, then HCO₂H, c-HCl (8s) (ii) TFA/CH₂Cl₂ (8e, i), (iii) 1 N NaOH/1,4-dioxane-H₂O (8g, k, m).

by alkaline hydrolysis. Two carbon homologated compound 7b was prepared from 7a in 80% yield by repetition of the same procedure. Alcohol 7c was prepared in 70% yield by reduction of **3a** using BH_3 . THF complex. The preparation of amide derivatives 7d, 8a-c and 8n-q was accomplished by activation of 3a as the HOBt (HOBt) ester, followed by treatment with an appropriate amine or amine hydrochloride in 40-92% yields. Compound 7d was easily converted to 7e by dehydration using trifluoroacetic anhydride (TFAA) in 62% yield. Compounds 8e and 8i were prepared by reaction of the acid chloride generated from 3a with (COCl)₂ and the appropriate amino ester, followed by acidic deprotection of the resulting *tert*-butyl esters 8d and 8h using trifluoroacetic acid (TFA), in 55 and 43% yields, respectively. Compounds 8g, 8k and 8m were prepared in 37-60% yields by reaction of the HOBt ester of 3a with the appropriate amino ester, followed by alkaline hydrolysis of the resulting esters 8f, 8j and 8l, respectively. Compound 8r was prepared in 59% yield by reaction of the HOBt ester of 3a with 1-methylpiperazine followed by treatment with hydrogen chloride in EtOAc. Compound 8s was prepared in 76% yield by reaction of the HOBt ester of 6a with 1-triphenylmethylpiperazine²⁴ followed by deprotection of the triphenylmethyl group with a mixture of concd HCl in HCO₂H.

Results and Discussion

The prepared compounds were evaluated for in vitro adenosine A_1 and A_{2A} receptor binding activities according to the reported method.¹⁶ Adenosine A_1 receptor binding was measured in rat cortical mem-

branes using 1 nM [³H]-cyclohexyladenosine (CHA). Adenosine A_{2A} receptor binding was measured in rat striatal membranes using 5 nM [³H]-N-ethylcarboxamideadenosine (NECA) in the presence of 50 nM cyclopentyladenosine (CPA) to eliminate the adenosine A_1 component. The in vitro A_1 and A_{2A} receptor binding activities are expressed as the nanomolar concentration of a compound required for 50% inhibition (IC₅₀) of specific binding of [³H]-CHA and [³H]-NECA, respectively. Selectivity (A_{2A}/A_1) is expressed as the ratio of IC₅₀ values obtained by receptor binding assay. Table 1 shows the results of binding assay and the selectivity of these new N2'-cyclohexenyl analogues, in comparison with DPCPX (xanthine type adenosine A₁ receptor antagonist),²⁵ FK453 and FK838. The results of binding and selectivity for the new amide derivatives of FR166124 are shown in Table 2.

In order to investigate the potency and selectivity for adenosine A_1 receptors of this type of compounds, we initially synthesized and evaluated the in vitro activity of N2'-cyclohexenyl analogues 3 and 7, which are olefin isomers and related compounds, derived from FR166124 (Table 1). With regards to the stereochemistry of the double bond, olefin isomers 3b and 3d displayed 2-fold lower affinity for the adenosine A_1 receptor (IC₅₀ = 33 and 32 nM, respectively), and the A_{2A}/A_1 selectivity was also 2-fold lower (230 and 210fold, respectively) than that of FR166124. The affinity of isomer 3c was 5-fold less potent ($IC_{50} = 72 \text{ nM}$) and 3-fold less selective (130-fold) than FR166124. Thus, it was elucidated that the position of the double bond of the cyclohexenyl group and the orientation of the carboxylic acid group were critical for A₁ affinity and

Table 1. Binding assay and selectivity of N2'-cyclohexenyl analogues

Compound ^a		Adenosine receptor binding ^b IC ₅₀ (nM)		Selectivity ^c
	$-\mathbf{R}^{1}$	A_1	A _{2A}	A_{2A}/A_1
DPCPX ^d FK453 (1) FK838 (2)	∕∕_ _{CO₂} H	4.7 17 120	1100 11000 5900	230 650 49
3a (FR166124)	,CO₂H	15	6200	410
3b ^e	∠CO₂H	33	7500	230
3c ^e		72	9300	130
3d°	_CO₂H	32	6600	210
7a	→CO ₂ H	28	7600	270
7b	,CO₂H	30	3900	130
7c	ОН	2.1	2500	1200
7d		1.8	740	410
7e	-CN	6.4	3300	520
6a	CO ₂ Bu ^t	8.6	1700	200

^aAll test compounds were dissolved in DMSO.

^bInhibition of [³H]-CHA specific binding to rat cortical membranes (A₁ receptor) and [³H]-NECA specific binding to rat striatal membranes (A_{2A} receptor) (n = 3).

eRacemic compounds.

especially for A_{2A}/A_1 selectivity. The one-carbon homologated compound **7a** was 2-fold less potent (IC₅₀ = 28 nM) and 2-fold less selective (270-fold) than FR166124. The two-carbon homologated compound **7b** was 2-fold less potent (IC₅₀ = 30 nM) and 3-fold less selective (130-fold) than FR166124. It is thus clear that FR166124 is the best compound in the series of N2'-

 Table 2. Binding assay and selectivity of amide derivatives of

 FR166124

		Adenosine receptor binding ^b IC ₅₀ (nM)		Selectivity ^c
$Compound^{a} \\$	R ³	A ₁	A _{2A}	$A_{2A}\!/A_1$
8a	NHMe	6.8	1900	280
8b	NMe_2	1.7	530	310
8c	NH(CH ₂) ₂ OH	2.0	890	450
8e	NHCH ₂ CO ₂ H	16	7600	480
8g	N(Me)CH ₂ CO ₂ H	59	14000	240
8i	$NH(CH_2)_2 CO_2H$	9.2	1900	210
8k	NMe(CH ₂) ₂ CO ₂ H	30	1300	43
8m	$NH(CH_2)_3 CO_2H$	12	1400	120
8n	N	3.1	640	210
80	1''' N4'''	9.2	1600	170
8p	NO	5.0	1200	240
8q	NS	8.7	1800	210
8r	NNMe · HCI	7.9	4200	530
8s	NNH	21	6100	290

^aAll test compounds were dissolved in DMSO.

^bInhibition of [³H]-CHA specific binding to rat cortical membranes (A₁ receptor) and [³H]-NECA specific binding to rat striatal membranes (A_{2A} receptor) (n=3).

^cRatio of IC₅₀ values obtained by receptor binding assay.

cyclohexenylcarboxylic acids (**3a–d**, **7a**, **7b**). *tert*-Butyl ester **6a**, which is the synthetic precursor of FR166124,²³ showed high A₁ affinity (IC₅₀=8.6 nM), but the A_{2A}/A₁ selectivity was low (200-fold). On the other hand, alcohol **7c**, amide **7d** and nitrile **7e** showed very high A₁ affinity and very high A_{2A}/A₁ selectivity. In particular, **7c** was 7-fold more potent (IC₅₀=2.1 nM) and 3-fold more selective (1200-fold) than FR166124; **7d** was 8-fold more potent (IC₅₀= 1.8 nM) than FR166124. From the results obtained in this series, we thus selected **7d** as a new lead compound since a variety of derivatives can be synthesized by chemical modification of the amide moiety, despite the fact that **7d** also displayed 8-fold more potent adenosine A_{2A} receptor binding (IC₅₀=740 nM) than FR166124.

In order to optimize the amide substituent, a variety of derivatives were examined and the results are collected in Table 2. Although introduction of two methyl groups or a hydroxyethyl group to the amide nitrogen of 7d retained A₁ affinity and A_{2A}/A₁ selectivity (**8b**, **8c**), introduction of only one methyl group reduced potency and A_{2A}/A₁ selectivity (**8a**). Introduction of a carboxyl

^cRatio of IC₅₀ values obtained by receptor binding assay.

^dDPCPX: 8-cyclopentyl-1,3-dipropylxanthine.

group into the side chain of the amide group reduced A_1 affinity (8e, 8g, 8i, 8k, 8m) and A_{2A}/A_1 selectivity (8g, 8i, 8k, 8m). Moreover, when an additional methyl group was introduced to the amide nitrogen of 8e and 8i, the A_1 affinity and A_{2A}/A_1 selectivity were reduced (8e versus 8g, 8i versus 8k). Amides derived from cyclic amines (8n–s) had lower A_1 affinity than 7d, however 8r derived from *N*-methylpiperazine showed high A_{2A}/A_1 selectivity (530-fold) compared to 7d (410-fold). Despite the fact that replacement of the C4^{III} of piperidine (8o) by heteroatoms such as oxygen (8p), sulfur (8q), methylamino (8r) and amino (8s) had little effect on A_1 receptor binding, the A_{2A}/A_1 selectivity of 8r was higher than that of 7d.

As a result of these investigations, alcohol 7c, nitrile 7e and amide derivatives (7d, 8c, 8r) were found to be more potent adenosine A_1 receptor antagonists with higher A_{2A}/A_1 selectivity than FR166124. In vitro adenosine A_1 receptor affinity of the cyclohexenyl derivatives (7, 8) decreased in the order: CH₂CONMe₂ (8b), CH₂CONH₂ (7d), CH₂CONH(CH₂)₂OH (8c), (CH₂)₂OH (7c) < CH₂CON(-C₄H₈-) (8n) > CH₂CN (7e), CH₂CONHMe $(8a) > CH_2CON(-C_2H_4-X-C_2H_4-), (8o-s, e.g. X=O, S,$ NH), $CH_2CONH(CH_2)_nCO_2H$ (8e, 8i, 8m, n=1-3) > $(CH_2)_n CO_2 H$ (7a, 7b, n=1, 2)>CH_2CON(Me) $(CH_2)_n CO_2 H$ (8g, 8k, n = 1, 2). Concerning the receptor binding of FR166124 derivatives, introduction of a more hydrophobic moiety than a carboxylic acid group (e.g. 5a, 7c-e, 8b, 8c, 8n) at the C1" of the cyclohexene ring increased both A1 and A2A affinity. Introduction of hydrophilic groups such as carboxylic acid or amino moieties at the amide portion decreased A_{2A} affinity (e.g. 8g, 8s). In the case of amide derivatives of FR166124, it is inferred that hydrophobicity is an important factor for increasing A_1 affinity and A_{2A}/A_1 selectivity rather than steric factors.

In terms of solubility, 8e, 8g, 8i, 8k, 8m and 8r can be expected to have high water solubility, since they possess a carboxylic acid moiety, which can be converted to the sodium salt, or amino groups, obtained as a hydrochloride salt, in the amide moiety. In spite of these features, sodium salts of carboxylates (8e, 8g, 8i, 8k, 8m) were so hygroscopic that suitable solids for measurement of solubility could not be obtained. After consideration of A_1 affinity, A_{2A}/A_1 selectivity and chemical properties, the water solubilities of 7c, 7d, 7e, 8c and 8r were measured by adding the test compound to water and agitating at ambient temperature until insoluble material remained (Table 3). Although, 7c is a highly potent adenosine A1 receptor antagonist with high A_{2A}/A_1 selectivity, solubility in water was very low $(6.4 \,\mu g/mL)$. Compound 8r showed good water solubility (33.3 mg/mL) but lower than that of the sodium salt of FR166124 (> 200 mg/mL).

Whilst a number of these analogues of FR166124 were found to be more potent adenosine A_1 receptor antagonists with high A_{2A}/A_1 selectivity than FR166124, after considering water solubility and synthetic cost, FR166124 was selected as the best compound for further evaluation. To investigate the potential as a

Table 3. Water solubility of selected compounds

Compound	Solubility
1 (FK453)	11.9 µg/mL
2 (FK838) ^a	10 mg/mL
3a (FR166124) ^a	$> 200 \text{ mg/mL}^{b}$
7c	6.4 µg/mL
7d	25.6 µg/mL
7e	$2.8 \mu g/mL$
8c	185.6 µg/mL
8r	33.3 mg/mL

^aWater solubility was measured as sodium salt. ^bUpper limit was not determined.

Table 4. Diuretic activity of FR166124 in rats^a

	Minimum effective dose ^b (mg/kg)		
Compound	p.o.	iv	
2 (FK838)	0.1	0.1	
3a (FR166124)	0.1	0.032	

^aTest compounds were administered (n=3) and the urine was collected for 3 h (iv) and 6 h (p.o.).

^bStatistical evaluation was performed by Dunnett's multiple comparison test (P < 0.05 were considered significant).

therapeutic agent, diuretic activity was determined according to the reported method.¹⁵ Table 4 shows the minimum effective dose of FR166124 in rats by p.o. and iv administration. It was found that FR166124 and FK838 had equal diuretic activity under the conditions of p.o. administration, but in the case of iv administration, FR166124 was three fold more potent than FK838. More potent adenosine A₁ receptor antagonists with high A_{2A}/A₁ selectivity derived from FK838 have stronger diuretic activity. It was thus concluded that FR166124 can possibly lead to a new therapeutic agent, and was progressed to further pharmacological study, the results of which will be reported in due course.

Conclusion

In summary, we have prepared a novel series of 3-(2cyclohexenyl-3-oxo-2,3-dihydropyridazin-6-yl)-2-phenylpyrazolo[1,5-a]pyridines and evaluated their in vitro adenosine A₁ and A_{2A} receptor binding activities, leading to alcohol 7c, nitrile 7e and amide derivatives (7d, 8c, 8r), which were found to be more potent adenosine A_1 receptor antagonists with higher A_{2A}/A_1 selectivity than FR166124. Amongst them, 7c, 7e and 8r were found to be highly potent and highly A_{2A}/A_1 selective adenosine A₁ receptor antagonists. Furthermore, 8r has high water solubility, but less than that of the sodium salt of FR166124. The SAR study in this series of compounds revealed the following main features. (1) The position of the double bond of the cyclohexenyl group and the chain length of the carboxylic acid group were critical for high A_1 affinity and high A_{2A}/A_1 selectivity. (2) Replacement of the carboxylic acid group of FR166124 by hydrophobic moieties such as hydroxy, nitrile and carbamoyl groups increased A_1 affinity and A_{2A}/A_1 selectivity. (3) Certain amide derivatives of FR166124 with an additional amino group on the amide moiety have high water solubility. (4) 3-(2-Cyclohexenyl-3-oxo-2,3-dihydropyridazin-6-yl)-2-phenylpyrazolo[1,5-*a*]pyridines were potent adenosine A_1 receptor antagonists with high A_{2A}/A_1 selectivity. (5) Diuretic activity in rats of FR166124 (iv) was more potent than FK838.

Experimental

General procedures

All melting points (mp) were determined with a Büchi 535 apparatus in open capillaries and are uncorrected. Infrared spectra were recorded on a Horiba Spectradesk FT-210 spectrometer (FT-IR) or Hitachi 260-10 spectrometer (IR) as KBr disks, neat or in solution as indicated. ¹H NMR spectra were measured with a Bruker AC200P (200 MHz). Chemical shifts are given in parts per million (ppm) using tetramethylsilane as the internal standard for spectra obtained in DMSO- d_6 and CDCl₃. All J values are given in Hz. Mass (MS) spectra were measured on a Hitachi model M-1000H mass spectrometer using APCI for ionization. Elemental analyses were carried out on a Perkin-Elmer 2400 CHN elemental analyzer. Column chromatography was performed with the indicated solvents using Merck silica gel 60 (70-230 mesh). Monitoring of reactions was carried out using Merck 60 F₂₅₄ silica gel, glass-supported TLC plates, followed by visualization with UV light (254 and 365 nm) and staining with iodine vapor. Reagents and solvents were used as obtained from commercial suppliers without further purification.

6-[6-Oxo-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1(6H)pyridazinyl]-1-cyclohexenylacetic acid (3b). To a solution of tert-butyl 6-[6-oxo-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1(6H)-pyridazinyl]-1-cyclohexenylacetate 6b (15 g, 31 mmol) in CH₂Cl₂ (30 mL) was added dropwise TFA (24 mL, 310 mmol) at 5 °C under a nitrogen atmosphere. After the addition, the reaction mixture was allowed to warm to ambient temperature and stirred for 2 h. Evaporation of the solvent gave a residue which was azeotroped twice with toluene (100 mL). The resultant residue was partitioned between EtOAc and 1 N aqueous NaOH solution. The aqueous layer was separated, its pH was adjusted to 3.3 with 2 N aqueous HCl and extracted with CH₂Cl₂, which was then washed with water, dried over MgSO₄ and evaporated. The resultant solid was recrystallized from 70% aqueous EtOH to give 3b (9.96 g, 75%) as a white solid. Mp 164.0-166.0°C; FT-IR (KBr) 1720, 1641, 1571, 1529 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.50–2.00 (m, 6H), 2.77 (ABq, 2H, J = 15.9, 15.8 Hz, 5.67 (br-s, 1H), 5.97 (s, 1H), 6.86 (d, 1H, J=9.6 Hz), 7.03–7.11 (m, 2H), 7.38–7.63 (m, 6H), 7.93 (d, 1H, J = 8.9 Hz), 8.81 (d, 1H, J = 6.9 Hz), 12.13 (br-s, 1H); MS m/z 427 (M+H)⁺. Anal. calcd for C₂₅H₂₂N₄O₃: C, 70.41; H, 5.20; N, 13.14. Found: C, 70.58; H, 5.27; N, 13.51.

Preparation of **3c** and **3d** was carried out by a method similar to that described for **3b** from the corresponding *tert*-butyl esters **6c** and **6d**, respectively.

2-[6-Oxo-3-(2-phenylpyrazolo[1,5-*a*]**pyridin-3-yl**)-1(6*H*)**pyridazinyl**]-(*Z*)-cyclohexylidene-1-acetic acid (3c). White solid (65%); mp 256 °C (dec.) (aq EtOH); FT-IR (KBr) 1714, 1651, 1585, 1527, 1495 cm⁻¹; ¹H NMR (CDCl₃) δ 1.41–1.70 (m, 2H), 1.80–2.60 (m, 6H), 5.85– 6.19 (m, 2H), 6.93 (t, 2H, *J*=6.2 Hz), 7.17–7.34 (m, 2H), 7.43–7.46 (m, 3H), 7.55–7.56 (m, 2H), 7.80 (d, 1H, *J*=8.8 Hz), 8.56 (d, 1H, *J*=6.9 Hz); MS *m*/*z* 427 (M+H)⁺. Anal. calcd for C₂₅H₂₂N₄O₃: C, 70.41; H, 5.20; N, 13.14. Found: C, 70.25; H, 5.26; N, 12.86.

6-[6-Oxo-3-(2-phenylpyrazolo[1,5-*a*]**pyridin-3-y**]**)**-1(6*H*)-**pyridazinyl**]-(*E*)-cyclohexylidene-1-acetic acid (3d). White solid (76%); mp 250–253 °C (aq EtOH); FT-IR (KBr) 1714, 1651, 1595, 1527 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.20–2.20 (m, 7H), 3.80–4.00 (m, 1H), 4.93 (s, 1H), 5.40–5.11 (m, 1H), 6.98 (d, 1H, *J*=9.7 Hz), 7.04–7.11 (m, 1H), 7.21 (d, 1H, J=9.7 Hz), 7.40-7.63 (m, 6H), 7.85 (d, 1H, *J*=8.9 Hz), 8.84 (d, 1H, *J*=6.9 Hz), 12.21 (br-s, 1H); MS *m*/*z* 427 (M+H)⁺. Anal. calcd for C₂₅H₂₂ N₄O₃: C, 70.41; H, 5.20; N, 13.14. Found: C, 70.18; H, 5.02; N, 13.51.

3-[2-[6-Oxo-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1(6H)pyridazinyl]-1-cyclohexenyl]propionic acid (7a). To a suspension of **3a** (0.2 g, 0.47 mmol) in CH_2Cl_2 (4 mL) was added SOCl₂ (0.046 mL, 0.61 mmol) at ambient temperature under a nitrogen atmosphere. After stirring for 2.5h, the reaction mixture was evaporated under reduced pressure. The resultant residue was dissolved in a mixture of THF (2mL) and CH₃CN (2mL) and to this mixture was added a solution of 10% trimethylsilvldiazomethane in *n*-hexane (2.2 g, 1.5 mmol) at 0° C under a nitrogen atmosphere, then the mixture was stirred for an additional 3h. Evaporation of volatiles gave a residue which was treated with benzyl alcohol (1.0 mL) and 2,4,6-trimethylpyridine (1.0 mL), then the mixture was stirred at 180-185 °C for 7 min under a nitrogen atmosphere. The reaction mixture was partitioned between EtOAc and 10% aqueous citric acid solution, and the organic layer was separated, washed in turn with water and brine, dried over MgSO₄, evaporated, and the residue was purified by column chromatography on silica gel (CH₂Cl₂:MeOH 100:1 elution) to give benzyl 3-[2-[6-oxo-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1(6H)-pyridazinyl]-1-cyclohexenyl]propionate (87.0 mg, 35%) as a solid. Mp 111–113 °C (Et₂O); IR (Nujol) 1735, 1710, 1670, 1630, 1595, 1530 cm⁻¹; ¹H NMR (CDCl₃) δ 1.65–2.00 (m, 4H), 2.10–2.60 (m, 8H), 5.02 (s, 2H), 6.76 (d, 1H, J=9.7 Hz), 6.88 (dt, 1H, J = 1.4, 6.9 Hz), 7.00 (d, 1H, J = 9.7 Hz), 7.20–7.30 (m, 6H), 7.43–7.47 (m, 3H), 7.60–7.66 (m, 2H), 7.89 (d, 1H, J = 8.9 Hz), 8.50 (d, 1H, J = 6.9 Hz); MS m/z 531 $(M+H)^+$. A mixture of the above benzyl ester (74 mg, 0.14 mmol), 1 N aqueous NaOH solution (0.28 mL) and THF (4mL) was refluxed with stirring for 5h. Evaporation of the solvent gave a residue which was partitioned between EtOAc and water. The aqueous layer was separated, acidified with 1 N aqueous HCl and extracted with EtOAc. The extract was washed with brine and dried over MgSO₄. Evaporation of the solvent gave a residual solid which was recrystallized from aqueous EtOH to give 7a as a white solid (54.0 mg, 88%). Mp 184–185 °C; IR (Nujol) 1695, 1655, 1625, 1585, 1520 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.55–1.81 (m, 4H), 2.00–2.35 (m, 8H), 6.91 (d, 1H, J=9.7 Hz), 7.07 (dt, 1H, J=1.3, 6.9 Hz), 7.14 (d, 1H, J=9.7 Hz), 7.20–7.70 (m, 6H), 7.79 (d, 1H, J=8.9 Hz), 8.82 (d, 1H, J=6.9 Hz), 12.06 (s, 1H); MS m/z 441 (M + H)⁺. Anal. calcd for C₂₆H₂₄N₄O₃: C, 70.89; H, 5.49; N, 12.72. Found: C, 70.57; H, 5.60; N, 12.42.

4-[2-[6-Oxo-3-(2-phenylpyrazolo]1,5-*a***]pyridin-3-yl)-1(6***H***)-pyridazinyl]-1-cyclohexenyl]butyric acid (7b).** 7b was prepared according to a method similar to that described for 7a, using 7a as the starting material instead of 3a. White solid (2 steps, 80%); mp 145–147 °C (EtOAc-*n*-hexane); IR (Nujol) 1700, 1655, 1625, 1585, 1510 cm⁻¹; ¹H NMR (DMSO-*d*₆) & 1.20–1.90 (m, 8H), 2.00–2.50 (m, 6H), 6.90 (d, 1H, J=9.7 Hz), 7.07 (t, 1H, J=6.9 Hz), 7.13 (d, 1H, J=9.7 Hz), 7.38–7.65 (m, 6H), 7.80 (d, 1H, J=8.8 Hz), 8.82 (d, 1H, J=6.9 Hz), 11.92 (s, 1H); MS *m*/*z* 455 (M+H)⁺. Anal. calcd for C₂₇H₂₆ N₄O₃: C, 71.35; H, 5.77; N, 12.33. Found: C, 70.93; H, 5.76; N, 12.23.

2-[2-(2-Hydroxyethyl)-1-cyclohexenyl]-6-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-3(2H)-pyridazinone (7c). To a solution of 3a (2.07 g, 4.86 mmol) in THF (40 mL) was added dropwise a solution of BH₃·THF complex in THF (1 M solution, 9.72 mL, 9.72 mmol) at -10 °C over a period of 10 min under a nitrogen atmosphere. The reaction mixture was allowed to warm to ambient temperature and stirred for an additional 5.5 h, then cooled to 10 °C and treated with 1 N aqueous HCl. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed in turn with 1 N aqueous NaOH solution, water and brine, dried over MgSO₄, evaporated, and purified by column chromatography on silica gel (toluene:MeOH 10:1 elution) to give 7c (1.41 g, 70%) as a white solid. Recrystallization afforded an analytical sample; mp 198-199 °C (aq EtOH); IR (Nujol) 3375, 1650, 1630, 1585, 1520 cm⁻¹; ¹H NMR (CDCl₃) δ 1.66–1.97 (m, 4H), 2.01–2.24 (m, 2H), 2.33–2.47 (m, 4H), 3.23 (t, 1H, J = 5.4 Hz), 3.63–3.83 (m, 2H), 6.85 (t, 1H, J = 9.7 Hz), 6.92 (t, 1H, J = 6.9 Hz), 7.08 (d, 1H, J = 9.7 Hz), 7.32 (dd, 1H, J=8.9, 6.9 Hz), 7.45–7.50 (m, 3H), 7.60–7.65 (m, 2H), 7.91 (d, 1H, J=8.9 Hz), 8.53 (d, 1H, J=6.9 Hz); MS m/z 413 (M+H)⁺. Anal. calcd for C₂₅H₂₄N₄O₂: C, 72.79; H, 5.86; N, 13.58. Found: C, 72.52; H, 5.97; N, 13.56.

2-[2-[6-Oxo-3-(2-phenylpyrazolo]1,5-*a***]pyridin-3-yl)-1(6***H***)pyridazinyl]-1-cyclohexenyl]acetamide (7d). To a solution of 3a** (432 mg, 1 mmol) in a mixture of CH_2Cl_2 (20 mL) and THF (10 mL) was added successively HOBt (162 mg, 1.2 mmol), EDC (0.28 mL, 1.5 mmol) and NH₄Cl (65 mg, 1.2 mmol) at ambient temperature under a nitrogen atmosphere and stirred overnight. The reaction mixture was partitioned between EtOAc and water, and the organic layer was separated, washed in turn with water, saturated aqueous NaHCO₃ solution and brine, dried over MgSO₄, evaporated, and purified by column chromatography on silica gel (EtOAc elution) to give **7d** (185 mg, 43%) as a beige solid. Recrystallization afforded an analytical sample. Mp 204–205 °C (EtOAc); FT-IR (KBr) 1672, 1659, 1589, 1527 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.60–1.85 (m, 4H), 2.05–2.40 (m, 4H), 2.71 (ABq, 2H, J=14.7, 20.7 Hz), 6.96 (d, 1H, J=9.7 Hz), 7.04–7.18 (m, 2H), 7.38–7.70 (m, 6H), 7.92 (d, 1H, J=8.9 Hz), 8.82 (d, 1H, J=6.9 Hz); MS m/z 426 (M+H)⁺. Anal. calcd for C₂₅H₂₃N₅O₂·0.5H₂O: C, 69.11; H, 5.57; N, 16.12. Found: C, 69.49; H, 5.51; N, 16.18.

Using the same procedure **8a**, **8b**, **8f**, **8j** and **8l** were also prepared as described for **7d** from the appropriate amine hydrochloride.

N-Methyl-2-[2-[6-oxo-3-(2-phenylpyrazolo[1,5-*a*]pyridin-3-yl)-1(6*H*)-pyridazinyl]-1-cyclohexenyl]acetamide (8a). Amorphous powder (43%). FT-IR (KBr) 1659, 1587, 1529 cm⁻¹; ¹H NMR (CDCl₃) δ 1.80–2.00 (m, 4H), 2.15–2.50 (m, 4H), 2.60–2.70 (m, 1H), 2.74 (d, 3H, J=4.7 Hz), 3.12 (d, 1H, J=14.8 Hz), 6.84 (t, 1H, J=9.6 Hz), 6.90–7.00 (m, 1H), 7.11 (d, 1H, J=9.6 Hz), 7.29–7.65 (m, 6H), 7.86 (d, 1H, J=9.0 Hz), 8.54 (d, 1H, J=6.9 Hz); MS m/z 440 (M+H)⁺. Anal. calcd for C₂₆H₂₅N₅O₂·0.5H₂O: C, 69.63; H, 5.84; N, 15.61. Found: C, 69.80; H, 5.83; N, 15.89.

N,*N*-Dimethyl-2-[2-[6-oxo-3-(2-phenylpyrazolo[1,5-*a*]pyridin-3-yl)-1(6*H*)-pyridazinyl]-1-cyclohexenyl]acetamide (8b). White solid (40%); mp 178–179 °C (EtOH); FT-IR (KBr) 1666, 1639, 1591, 1527 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.60–1.85 (m, 4H), 2.05–2.40 (m, 4H), 2.69 (s, 3H), 2.80 (s, 3H), 2.93 (s, 2H), 6.89 (d, 1H, *J*=9.7 Hz), 7.07–7.11 (m, 2H), 7.37–7.66 (m, 6H), 7.90 (d, 1H, *J*=8.9 Hz), 8.81 (d, 1H, *J*=6.9 Hz); MS *m*/*z* 454 (M+H)⁺. Anal. calcd for C₂₇H₂₇N₅O₂·0.5H₂O: C, 70.11; H, 6.10; N, 15.14. Found: C, 70.33; H, 5.97; N, 15.20.

Ethyl [methyl-[2-[2-[6-oxo-3-(2-phenylpyrazolo]1,5-*a*]pyridin-3-yl)-1(*6H*)-pyridazinyl]-1-cyclohexenyl]acetyl]amino]acetate (8f). Yellow solid (80%); mp 56–60 °C (EtOAc*n*-hexane); FT-IR (KBr) 1743, 1670, 1639, 1591, 1527 cm⁻¹; ¹H NMR (DMSO- d_6) δ 0.96–1.67 (m, 3H), 1.60–1.85 (m, 4H), 2.05–2.40 (m, 4H), 2.70–3.00 (m, 5H), 3.90–4.10 (m, 4H), 6.80–7.13 (m, 3H), 7.35–7.63 (m, 6H), 7.89 (d, 1H, J=8.9 Hz), 8.81 (d, 1H, J= 6.9 Hz); MS *m*/*z* 526 (M+H)⁺. Anal. calcd for C₃₀H₃₁ N₅O₄: C, 68.55; H, 5.94; N, 13.32. Found: C, 68.32; H, 6.06; N, 12.86.

Ethyl 3-[methyl-[2-[2-[6-0xo-3-(2-phenylpyrazolo[1,5-*a*]pyridin-3-yl)-1(*6H*)-pyridazinyl]-1-cyclohexenyl]acetyl]amino]propionate (8j). Amorphous foam (75%). FT-IR (KBr) 1736, 1666, 1645, 1593, 1529 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 0.95–1.16 (m, 3H), 1.55–1.80 (m, 4H), 2.10–2.50 (m, 6H), 2.65–3.20 (m, 7H), 3.80–4.05 (m, 2H), 6.88 (d, 1H, *J*=9.7 Hz), 7.00–7.12 (m, 2H), 7.30– 7.65 (m, 6H), 7.90 (d, 1H, *J*=8.9 Hz), 8.81 (d, 1H, *J*=6.9 Hz); MS *m*/*z* 540 (M + H)⁺.

Methyl 4-[2-[2-[6-oxo-3-(2-phenylpyrazolo[1,5-*a*]pyridin-3-yl)-1(6*H*)-pyridazinyl]-1-cyclohexenyl]acetylamino]butyrate (8l). Amorphous foam (61%). FT-IR (KBr) 1736, 1668, 1589, 1529 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.45–1.85 (m, 6H), 2.16–2.35 (m, 6H), 2.65–3.10 (m, 4H), 3.53 (s, 3H), 6.95 (d, 1H, J=9.7 Hz), 7.03–7.12 (m, 1H), 7.15 (d, 1H, J=9.7 Hz), 7.35–7.67 (m, 7H), 7.91 (d, 1H, J=8.9 Hz), 8.82 (d, 1H, J=6.9 Hz); MS m/z 526 (M+H)⁺.

[2-[6-Oxo-3-(2-phenylpyrazolo]1,5-a]pyridin-3-yl)-1(6H)pyridazinyl]-1-cyclohexenyl]acetonitrile (7e). To a stirred mixture of 7d (2.15g, 5mmol) and pyridine (2.1mL, 25 mmol) in CH₂Cl₂ (25 mL) was added dropwise TFAA (1.1 mL, 7.5 mmol) at 0 °C, followed by warming to ambient temperature and stirring an additional 3 h under a nitrogen atmosphere. The reaction mixture was partitioned between EtOAc and water, and the organic layer separated, washed in turn with water, saturated aqueous NaHCO₃ solution, 1 N aqueous HCl, brine, saturated aqueous NaHCO₃ solution, water and brine, dried over MgSO₄, evaporated, and purified by column chromatography on silica gel (CH₂Cl₂:EtOAc 100:3 and 100:5 elution) to give 7e (1.28 g, 62%) as a beige solid. Recrystallization afforded an analytical sample: mp 163–165 °C (EtOH); FT-IR (KBr) 2251, 1734, 1670, $1633, 1595, 1529 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR} (\text{DMSO-}d_6) \delta 1.60 - 1.85$ (m, 4H), 2.05–2.40 (m, 4H), 3.26 (s, 2H), 6.94 (d, 1H, J=9.7 Hz), 7.04–7.17 (m, 2H), 7.38–7.69 (m, 6H), 7.87 (d, 1H, J = 8.9 Hz), 8.83 (d, 1H, J = 6.9 Hz); MS m/z 408 $(M+H)^+$. Anal. calcd for $C_{25}H_{21}N_5O.0.5H_2O$: C, 72.10; H, 5.32; N, 16.82. Found: C, 72.03; H, 5.13; N, 16.54.

N-(2-Hydroxyethyl)-2-[2-[6-oxo-3-(2-phenylpyrazolo[1,5a|pyridin-3-yl)-1(6H)-pyridazinyl]-1-cyclohexenyl]acetamide (8c). To a solution of 3a (800 mg, 1.88 mmol) in a mixture of CH₂Cl₂ (10 mL) and THF (10 mL) was successively HOBt (305 mg, 2.26 mmol), added EDC·HCl (541 mg, 2.82 mmol) and 2-aminoethanol (0.14 mL, 2.26 mmol) at ambient temperature under a nitrogen atmosphere and stirred for 3h. The reaction mixture was partitioned between EtOAc and water, and organic layer was separated, washed in turn with 1 N HCl, water, saturated aqueous NaHCO₃ solution and brine, dried over MgSO₄, evaporated, and purified by column chromatography on silica gel (EtOAc elution) to give 8c (500 mg, 57%) as a solid. Recrystallization afforded an analytical sample; mp 204–205 °C (EtOAc); FT-IR (KBr) 3315, 1657, 1585, 1529 cm⁻¹; ¹H NMR (CDCl₃) & 1.75-2.00 (m, 4H), 2.10-2.50 (m, 4H), 2.60-2.80 (m, 1H), 3.10-3.30 (m, 2H), 3.50-3.90 (m, 4H), 6.83 (d, 1H, J = 9.7 Hz), 6.90–7.00 (m, 1H), 7.14 (d, 1H, J = 9.7 Hz, 7.30–7.40 (m, 1H), 7.45–7.70 (m, 6H), 7.87 (d, 1H, J = 8.9 Hz), 8.54 (d, 1H, J = 6.9 Hz); MS m/z 470 $(M+H)^+$. Anal. calcd for $C_{27}H_{27}N_5O_3 \cdot H_2O$: C, 66.51; H, 6.00; N, 14.36. Found: C, 66.19; H, 5.82; N, 14.18.

Using a similar procedure **8n–q** were also prepared as described for **8c**, from the appropriate amine.

2-[2-[2-Oxo-2-(pyrrolidin-1-yl)ethyl]-1-cyclohexenyl]-6-(**2-phenylpyrazolo[1,5-***a***]pyridin-3-yl)-3(2***H***)-pyridazinone** (**8n**). White solid (75%); mp 178–179 °C (EtOAc); IR (Nujol) 1660, 1635, 1585, 1525 cm⁻¹; ¹H NMR (CDCl₃) δ 1.51–2.76 (m, 12H), 2.86–3.55 (m, 6H), 6.77 (d, 1H, J=9.7 Hz), 6.92 (t, 1H, J=6.9 Hz), 7.03 (d, 1H, J= 9.7 Hz), 7.36 (dd, 1H, J=8.9, 6.9 Hz), 7.45–7.48 (m, 3H), 7.60–7.65 (m, 2H), 8.11 (d, 1H, J=8.9 Hz), 8.53 (d, 1H, J=6.9 Hz); MS m/z 480 (M+H)⁺. Anal. calcd for C₂₉H₂₉N₅O₂: C, 72.63; H, 6.10; N, 14.60. Found: C, 72.61; H, 6.19; N, 14.50.

2-[2-[2-Oxo-2-(piperidin-1-yl)ethyl]-1-cyclohexenyl]-6-(2-phenylpyrazolo[1,5-*a***[pyridin-3-yl)-3(***2H***)-pyridazinone** (80). White solid (76%); mp 184–185 °C (EtOAc–Et₂O); IR (Nujol) 1660, 1635, 1585, 1530 cm⁻¹; ¹H NMR (CDCl₃) δ 1.28–1.60 (m, 6H), 1.70–1.97 (m, 4H), 2.20–2.58 (m, 4H), 3.09 (s, 2H), 3.20–3.43 (m, 4H), 6.78 (d, 1H, *J*=9.7 Hz), 6.93 (dd, 1H, *J*=8.9, 6.7 Hz), 7.03 (d, 1H, *J*=9.7 Hz), 7.35 (dd, 1H, *J*=8.9, 6.7 Hz), 7.46–7.49 (m, 3H), 7.60–7.63 (m, 2H), 8.05 (d, 1H, *J*=8.9 Hz), 8.52 (d, 1H, *J*=6.7 Hz); MS *m*/*z* 494 (M+H)⁺. Anal. calcd for C₃₀H₃₁N₅O₂·0.5H₂O: C, 71.69; H, 6.42; N, 13.96. Found: C, 71.71; H, 6.31; N, 13.76.

2-[2-[2-(Morpholin-4-yl)-2-oxoethyl]-1-cyclohexenyl]-6-(**2-phenylpyrazolo**[**1,5-***a*]**pyridin-3-yl)-3(***2H***)-pyridazinone** (**8p**). White solid (89%); mp 202–204 °C (EtOAc-Et₂O); IR (Nujol) 1655, 1590, 1530 cm⁻¹; ¹H NMR (CDCl₃) δ 1.70–2.00 (m, 4H), 2.10–2.60 (m, 4H), 3.10 (s, 2H), 3.30–3.70 (m, 8H), 6.76 (d, 1H, *J*=9.8 Hz), 6.92 (t, 1H, *J*=6.9 Hz), 7.05 (d, 1H, *J*=9.8 Hz), 7.34 (t, 1H, *J*=6.9 Hz), 7.45–7.49 (m, 3H), 7.59–7.63 (m, 2H), 7.99 (d, 1H, *J*=9.0 Hz), 8.52 (d, 1H, *J*=6.9 Hz); MS *m*/*z* 496 (M+H)⁺. Anal. calcd for C₂₉H₂₉N₅O₃: C, 70.29; H, 5.90; N, 14.13. Found: C, 70.19; H, 5.84; N, 13.72.

2-[2-[2-Oxo-2-(thiomorpholin-4-yl)ethyl]-1-cyclohexenyl]-**6-(2-phenylpyrazolo[1,5-***a***]pyridin-3-yl)-3(2H)-pyridazinone (8q).** White solid (92%); mp 181–183 °C (EtOAc); FT-IR (KBr) 1660, 1587, 1529 cm⁻¹; ¹H NMR (CDCl₃) δ 1.60–2.00 (m, 4H), 2.10–2.70 (m, 8H), 3.10 (m, 2H), 3.60–4.00 (m, 4H), 6.78 (d, 1H, J=9.7 Hz), 6.94 (t, 1H, J=6.9 Hz), 7.05 (d, 1H, J=9.7 Hz), 7.26–8.05 (m, 6H), 8.00 (d, 1H, J=9.0 Hz), 8.55 (d, 1H, J=6.9 Hz); MS m/z512 (M+H)⁺. Anal. calcd for C₂₉H₂₉N₅O₂S: C, 68.08; H, 5.71; N, 13.69. Found: C, 67.96; H, 5.66; N, 13.42.

tert-Butyl [2-[2-[6-oxo-3-(2-phenylpyrazolo]1,5-a]pyridin-3-yl)-1(6H)-pyridazinyl]-1-cyclohexenyl]acetylamino]acetate (8d). To a solution of 3a (222 mg, 0.52 mmol) and DMF (1 drop) in CH₂Cl₂ (4 mL) was added dropwise $(COCl)_2$ (99 mg, 0.78 mmol) at 5 °C under a nitrogen atmosphere. After stirring for 20 min at the same temperature, the reaction mixture was allowed to warm to ambient temperature, stirred for an additional 2h and concentrated under reduced pressure to give a residue. To an ice-cooled mixture of glycine tert-butyl ester hydrochloride (95.8 mg, 0.57 mmol) and Et₃N (158 mg, 1.56 mmol) in CH₂Cl₂ (5 mL) was added a solution of the above residue in CH_2Cl_2 (2 mL). After the addition, the reaction mixture was allowed to warm to ambient temperature and stirred for an additional 5.5h. The reaction mixture was washed in turn with 1 N aqueous HCl, saturated aqueous NaHCO₃ solution and brine, dried over MgSO₄, evaporated, and purified by column chromatography on silica gel (CH2Cl2:EtOAc 10:1 elution) to give 8d (152.9 mg, 55%) as a foam. IR (CH₂Cl₂) 3280, 1735, 1650, 1585, 1525 cm⁻¹; ¹H NMR (CDCl₃) δ 1.44 (s, 9H), 1.75–1.92 (m, 4H), 2.11–2.52 (m,

4H), 2.78 (d, 1H, J = 14.7 Hz), 3.16 (d, 1H, J = 14.7 Hz), 3.74 (dd, 1H, J = 17.6, 5.5 Hz), 3.91 (dd, 1H, J = 17.6, 6.0 Hz, 6.84 (d, 1H, J = 9.7 Hz), 6.93 (td, 1H, J = 6.9, 1.4 Hz), 7.10 (d, 1H, J = 9.7 Hz), 7.32 (ddd, 1H, J = 8.9, 6.9, 1.1 Hz), 7.46–7.51 (m, 3H), 7.60–7.68 (m, 3H), 7.88 (d, 1H, J = 8.9 Hz), 8.53 (d, 1H, J = 6.9 Hz); MS m/z 540 (M + H)⁺.

tert-Butyl 3-[2-[2-[6-oxo-3-(2-phenylpyrazolo[1,5-*a*]pyridin-3-yl)-1(6*H*)-pyridazinyl]-1-cyclohexenyl]acetylamino]propionate (8h). 8h was obtained from 3a by the same procedure described for 8d using *tert*-butyl 3-aminopropionate instead of *tert*-butyl 2-aminoacetate. Foam (43%). IR (CH₂Cl₂) 3280, 1720, 1655, 1585, 1525 cm⁻¹; ¹H NMR (CDCl₃) δ 1.45 (s, 9H), 1.75–1.96 (m, 4H), 2.15–2.30 (m, 2H), 2.43 (t, 4H, *J*=6.9 Hz), 2.71 (d, 1H, *J*=14.7 Hz), 3.09 (d, 1H, *J*=14.7 Hz), 3.35–3.49 (m, 2H), 6.82 (d, 1H, *J*=9.7 Hz), 6.93 (td, 1H, *J*=7.0, 1.3 Hz), 7.09 (d, 1H, *J*=9.7 Hz), 7.32 (dd, 1H, *J*=8.9, 7.0 Hz), 7.46–7.49 (m, 4H), 7.60–7.65 (m, 2H), 7.87 (d, 1H, *J*=8.9 Hz), 8.53 (d, 1H, *J*=7.0 Hz); MS *m*/*z* 554 (M+H)⁺.

2-[2-[6-Oxo-3-(2-phenylpyrazolo]1,5-a]pyridin-3-yl)-1(6H)pyridazinyl]-1-cyclohexenyl]acetylamino]acetic acid (8e). To a solution of 8d (141 mg, 0.262 mmol) in CH₂Cl₂ (0.28 mL) was added dropwise TFA (299 mg, 2.62 mmol) at 5 °C under a nitrogen atmosphere. After the addition, the reaction mixture was allowed to warm to ambient temperature and stirred for 14h. Evaporation of the solvent gave a residue which was partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃ solution. The organic layer was separated and the aqueous layer was acidified with 1 N aqueous HCl, extracted with CH₂Cl₂. The extracts were combined, washed with brine, dried over MgSO₄, and evaporated to give 8e (106.0 mg, 83%) as a pale yellow solid. Recrystallization afforded an analytical sample; mp 190–192°C (EtOAc); IR (Nujol) 3280, 1727, 1675, 1650, 1585, 1530 cm⁻¹; ¹H NMR (CDCl₃) δ 1.72–2.63 (m, 8H), 2.79 (d, 1H, J = 14.9 Hz), 3.15 (d, 1H, J = 14.9 Hz), 3.96 (t, 2H, J = 5.7 Hz), 6.92 (td, 1H, J = 7.0, 1.3 Hz), 6.94 (d, 1H, J=9.7 Hz), 7.11 (d, 1H, J=9.7 Hz), 7.35 (dd, 1H, J = 8.9, 7.0 Hz), 7.45–7.50 (m,3H), 7.57–7.63 (m, 2H), 7.72 (t, 1H, J=5.8 Hz), 7.88 (d, 1H, J=8.9 Hz), 8.55 (d, 1H, J = 7.0 Hz); MS m/z 484 (M+H)⁺. Anal. calcd for C₂₇H₂₅N₅O₄: C, 67.07; H, 5.21; N, 14.48. Found: C, 66.80; H, 5.38; N, 14.10.

3-[2-[2-[6-Oxo-3-(2-phenylpyrazolo]1,5-*a***]pyridin-3-yl)-1(***6H***)-pyridazinyl]-1-cyclohexenyl]acetylamino]propionic** acid (**8i**). **8i** was obtained from **8h** by the same procedure described for **8e**. Pale yellow solid (86%). Mp 183– 184 °C (EtOAc); IR (Nujol) 3275, 1720, 1670, 1650, 1580, 1530 cm⁻¹; ¹H NMR (CDCl₃) δ 1.69–2.01 (m, 4H), 2.09–2.48 (m, 4H), 2.54 (t, 2H, *J*=6.5 Hz), 2.74 (d, 1H, *J*=15.0 Hz), 3.09 (d, 1H, *J*=15.0 Hz), 3.41–3.52 (m, 2H), 6.89 (d, 1H, *J*=9.7 Hz), 6.93 (td, 1H, *J*=7.0, 1.3 Hz), 7.11 (d, 1H, *J*=9.7 Hz), 7.34 (dd, 1H, *J*=8.9, 7.0 Hz), 7.45–7.50 (m, 3H), 7.57–7.64 (m, 3H), 7.88 (d, 1H, *J*=8.9 Hz), 8.55 (d, 1H, *J*=7.0 Hz); MS *m*/*z* 498 (M+H)⁺. Anal. calcd for C₂₈H₂₇N₅O₄: C, 67.59; H, 5.47; N, 14.08. Found: C, 67.25; H, 5.57; N, 13.77. [Methyl-[2-[2-[6-oxo-3-(2-phenylpyrazolo]1,5-a]pyridin-3yl)-1(6H)-pyridazinyl]-1-cyclohexenyl]acetyl]amino]acetic acid (8g). To a solution of 8f (710 mg, 1.35 mmol) in a mixture of 1,4-dioxane (7 mL) and water (4 mL) was added 1 N aqueous NaOH solution (3.4 mL, 3.38 mmol) at ambient temperature and the mixture was stirred for 2h. The reaction mixture was partitioned between EtOAc and water, and the aqueous layer was separated. The pH was adjusted to 1.5 with 6 N aqueous HCl, extracted with EtOAc, washed in turn with water and brine, dried over MgSO₄, evaporated, and purified by column chromatography on silica gel (CH₂Cl₂:MeOH 20:1, 10:1 and 6:1 elution) to give 8g (300 mg, 46%) as a white solid. Recrystallization afforded an analytical sample; mp 135-138 °C (aq EtOH); FT-IR (KBr) 1730, 1657, 1585, 1529 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.60–1.85 (m, 4H), 2.05–2.40 (m, 4H), 2.70–3.00 (m, 5H), 3.80–3.90 (m, 2H), 6.83–7.12 (m, 3H), 7.35–7.65 (m, 6H), 7.85–7.96 (m, 1H), 8.81 (d, 1H, J=6.9 Hz); MS m/z 498 (M+H)⁺. Anal. calcd for C₂₈H₂₇N₅O₄·0.25H₂O: C, 69.99; H, 5.52; N, 13.95. Found: C, 69.98; H, 5.85; N, 14.06.

Using a similar procedure **8k** and **8m** were prepared as described for **8g**.

3-[Methyl-[2-[2-[6-oxo-3-(2-phenylpyrazolo[1,5-*a***]pyridin-3-yl)-1(***6H***)-pyridazinyl]-1-cyclohexenyl]acetyl]amino]propionic acid (8k).** White solid (80%); mp 138–140 °C (aq EtOH); FT-IR (KBr) 1720, 1660, 1633, 1587, 1529 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.60–1.85 (m, 4H), 2.05–2.40 (m, 6H), 2.60–3.20 (m, 7H), 6.82–6.91 (m, 1H), 7.00–7.11 (m, 2H), 7.40–7.65 (m, 6H), 7.85–7.95 (m, 1H), 8.80 (d, 1H, *J*=6.8 Hz); MS *m*/*z* 512 (M+H)⁺. Anal. calcd for C₂₉H₂₉N₅O₄: C, 68.09; H, 5.71; N, 13.69. Found: C, 67.87; H, 5.67; N, 13.60.

4-[2-[2-[6-Oxo-3-(2-phenylpyrazolo]1,5-*a***]pyridin-3-yl)-1(6***H***) - pyridazinyl] - 1 - cyclohexenyl]acetylamino]butyric acid (8m). White solid (80%); mp 206–207 °C (EtOH); FT-IR (KBr) 1726, 1659, 1585, 1529 cm⁻¹; ¹H NMR (DMSO-***d***₆) \delta 1.43–1.85 (m, 6H), 2.09–2.35 (m, 6H), 2.65–3.10 (m, 4H), 6.95 (d, 1H,** *J***=9.7 Hz), 7.04–7.11 (m, 1H), 7.15 (d, 1H,** *J***=9.7 Hz), 7.35–7.70 (m, 7H), 7.91 (d, 1H,** *J***=8.8 Hz), 8.82 (d, 1H,** *J***=6.8 Hz); MS** *m***/***z* **512 (M+H)⁺. Anal. calcd for C₂₉H₂₉N₅O₄: C, 68.09; H, 5.71; N, 13.69. Found: C, 67.90; H, 5.78; N, 13.69.**

2-[2-[2-(4-Methylpiperazin-1-yl)-2-oxoethyl]-1-cyclohexenyl]-6-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-3(2H)-pyridazinone hydrochloride (8r). A mixture of 3a (500 mg, 1.2 mmol), 1-methylpiperazine (0.14 mL, 1.3 mmol), Et₃N (0.2 mL, 1.4 mmol), HOBt (180 mg, 1.3 mmol) and EDC·HCl (250 mg, 1.3 mmol) in DMF (10 mL) was stirred for 16 h at ambient temperature under a nitrogen atmosphere. The reaction mixture was partitioned between EtOAc and water, and the organic layer was separated, washed with water, dried over MgSO₄ and evaporated to give a residue. This residue was treated with 4 N HCl in EtOAc and the resultant solid was collected by filtration to give 8r (380 mg, 59%) as a beige solid. Recrystallization afforded an analytical sample; mp 188–191 °C (H₂O); IR (Nujol) 2675, 2600, 1650, 1630, 1580, 1530 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.55–190 (m, 3H), 2.00–2.50 (m, 3H), 2.60–3.60 (m, 10H), 2.66 (s, 3H), 3.87 (s, 1H), 4.34 (s, 1H), 6.90 (d, 1H, J=9.7 Hz), 7.05–7.13 (m, 1H), 7.10 (d, 1H, J=9.7 Hz), 7.40–7.60 (m, 4H), 7.61–7.70 (m, 2H), 7.89 (d, 1H, J=8.8 Hz), 8.83 (d, 1H, J=6.9 Hz), 11.01 (s, 1H); MS m/z 509 (M+H)⁺. Anal. calcd for C₃₀H₃₃ N₆O₂Cl·2.2H₂O: C, 61.63; H, 6.44; N, 14.37. Found: C, 61.41; H, 6.61; N, 14.21.

2-[2-[2-Oxo-2-(piperazin-1-yl)ethyl]-1-cyclohexenyl]-6-(2phenylpyrazolo[1,5-a]pyridin - 3 - yl) - 3(2H) - pyridazinone (8s). To a solution of 3a (3.0 g, 7.03 mmol) in a mixture of CH₂Cl₂ (30 mL) and THF (30 mL) was added successively HOBt (1.14 g, 8.44 mmol), EDC·HCl (2.02 g, 10.55 mmol) and 1-triphenylmethylpiperazine (2.77 g, 8.44 mmol) at ambient temperature under a nitrogen atmosphere and stirred for 1.5 h. The reaction mixture was partitioned between EtOAc and water, and the organic layer was separated, washed in turn with water, saturated aqueous NaHCO₃ solution and brine, dried over MgSO₄ and evaporated to give 2-[2-[2-oxo-2-(4triphenylmethylpiperazin-1-yl)ethyl]-1-cyclohexenyl]-6-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-3(2H)-pyridazinone (500 mg, quant.) as a solid: mp 208–209 °C (EtOAc); FT-IR (KBr) 1662, 1637, 1587, 1529 cm⁻¹; ¹H NMR (CDCl₃) δ 1.70–2.00 (m, 4H), 2.20–2.60 (m, 4H), 2.70– 2.80 (m, 4H), 3.10 (s, 2H), 3.30-3.70 (m, 4H), 6.77 (d, 1H, J=9.7 Hz), 6.89–6.96 (m, 1H), 7.04 (d, 1H, J=9.7 Hz), 7.30-7.40 (m, 1H), 7.45-7.70 (m, 5H), 8.00 (d, 1H, J = 8.9 Hz), 8.52 (d, 1H, J = 6.9 Hz); MS m/z 495 $(M+H)^+$. Anal. calcd for $C_{29}H_{30}N_6O_2 \cdot 0.5H_2O$: C, 69.17; H, 6.20; N, 16.69. Found: C, 69.41; H, 6.35; N, 16.41. To a solution of the above compound in HCO_2H (10 mL) was added concd HCl (1.43 mL) at ambient temperature and the mixture was stirred for 2h. The reaction mixture was partitioned between EtOAc and water, and the aqueous layer was separated and washed with EtOAc. The pH of the solution was adjusted to 12 with 4 N aqueous NaOH solution and then extracted twice with CH₂Cl₂. The extracts were combined, washed with brine, dried over MgSO₄, evaporated and purified by column chromatography on silica gel (CH₂Cl₂: MeOH 20:1 and 10:1 elution) to give 8s (2.65 g, 76%) as beige solid. Recrystallization afforded an analytical sample; mp 208-209 °C (EtOAc); FT-IR (KBr) 1662, 1637, 1587, 1529 cm⁻¹; ¹H NMR (CDCl₃) δ 1.70–2.00 (m, 4H), 2.20–2.60 (m, 4H), 2.70–2.80 (m, 4H), 3.10 (s, 2H), 3.30-3.70 (m, 4H), 6.77 (d, 1H, J=9.7 Hz), 6.89-6.96 (m, 1H), 7.04 (d, 1H, J = 9.7 Hz), 7.30–7.40 (m, 1H), 7.45–7.70 (m, 5H), 8.00 (d, 1H, J=8.9 Hz), 8.52 (d, 1H, J=6.9 Hz); MS m/z 495 (M+H)⁺. Anal. calcd for C₂₉H₃₀N₆O₂·0.5H₂O: C, 69.17; H, 6.20; N, 16.69. Found: C, 69.41; H, 6.35; N, 16.41.

Acknowledgements

The authors would like to acknowledge Dr. Hisashi Takasugi and Dr. Kiyoshi Taniguchi for encouragement,

and Dr. David Barrett for helpful discussions and for critical evaluation of this paper.

References

- 1. Adenosine and Adenosine Receptors, Williams, M., Ed.; The Humana Press: Clifton, New Jersey; 1990; pp 1–15.
- 2. Williams, M. Med. Res. Rev. 1989, 9, 219.
- 3. Fredholm, B. B.; Abbracchio, M. P.; Burnstock, G.; Daly,
- J. W.; Harden, K.; Jacobson, K. A.; Leff, P.; Williams, M. *Pharmacol. Rev.* **1994**, *46*, 143.
- 4. Dalziei, H. H.; Westfall, D. P. Pharmacol. Rev. 1994, 46, 449.
- 5. Poulsen, S.-A.; Quinn, R. J. Bioorg. Med. Chem. 1998, 6, 619.
- 6. For a recent review of adenosine A_1 receptor antagonists,
- see Müller, C. E. *Exp. Opin. Ther. Patents* **1997**, *7*, 419. 7. Müller, C. E.; Stein, B. *Curr. Pharm. Des.* **1996**, *2*, 501.
- B. Jacobson, K. A.; Trivedi, B. K.; Churchill, P. C.; Williams, M. Biochem. Pharmacol. 1991, 41, 1399.
- 9. Jacobson, K. A.; van Galen, P. J. M.; Williams, M. J. Med. Chem. 1992, 35, 407.
- 10. Suzuki, F. Drug News Perspect 1992, 5, 587.
- 11. Suzuki, F.; Shimada, J.; Nonaka, H.; Ishii, A.; Shiozaki, S.; Ichikawa, S.; Ono, E. J. Med. Chem. **1992**, *35*, 3578.
- 12. Ceccarelli, S.; Altobelli, M.; D'Alessandro, A.; Paesano, A. Res. Commun. Mol. Pathol. Pharmacol. **1995**, 87, 101.
- 13. Akahane, A.; Katayama, H.; Mitsunaga, T.; Kita, Y.; Kusunoki, T.; Terai, T.; Yoshida, K.; Shiokawa, Y. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 2059.
- 14. Terai, T.; Kita, Y.; Kusunoki, T.; Ando, T.; Shimazaki, T.; Deguchi, Y.; Akahane, A.; Shiokawa, Y.; Yoshida, K. *Eur. J. Pharmacol.* **1990**, *183*, 1057.
- 15. Terai, T.; Kita, Y.; Kusunoki, T.; Ando, T.; Nagatomi, I.; Horiai, H.; Akahane, A.; Shiokawa, Y.; Yoshida, K. *Drug Dev. Res.* **1995**, *36*, 25.
- 16. Terai, T.; Kita, Y.; Kusunoki, T.; Shimazaki, T.; Ando, T.; Horiai, H.; Akahane, A.; Shiokawa, Y.; Yoshida, K. *Eur. J. Pharmacol.* **1995**, *279*, 217.
- 17. Terai, T.; Kusunoki, T.; Kita, Y.; Akahane, A.; Shiokawa, Y.; Kohno, Y.; Horiai, H.; Uehara, Y.; Yoshida, K. *Cardiovascular Drug Rev.* **1997**, *15*, 44.

18. Akahane, A.; Katayama, H.; Mitsunaga, T.; Kato, T.; Kinoshita, T.; Kita, Y.; Kusunoki, T.; Terai, T.; Yoshida, K.; Shiokawa, Y. J. Med. Chem. **1999**, *42*, 779.

19. Kusunoki, T.; Kita, Y.; Akahane, A.; Shiokawa, Y.; Kohno, Y.; Horiai, H.; Sendoh, H.; Yoshida, K.; Tanaka, H. *Can. J. Physiol. Pharmacol.* **1994**, *72*(Suppl. 1), 505.

20. Horiai, H.; Yoshida, K.; Minoura, H.; Takeda, M.; Nakano, K.; Hanaoka, K.; Kusunoki, T.; Terai, T.; Ohtsuka, M.; Shimomura, K. *Can. J. Physiol. Pharmacol.* **1994**, 72(Suppl. 1) 505.

21. Takeda, M.; Kohno, Y.; Y.; Esumi, K.; Horai, H.; Ohtsuka, M.; Shimomura, K.; Imai, M. *Jpn J. Pharmacol.* **1994**, *64* (Suppl 1), 176P.

22. Kuroda, S.; Akahane, A.; Itani, H.; Nishimura, S.; Durkin, K.; Kinoshita, T.; Tenda, Y.; Sakane, K. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1979.

23. Kuroda, S.; Akahane, A.; Itani, H.; Nishimura, S.; Durkin, K.; Kinoshita, T.; Nakanishi, I.; Sakane, K. *Tetrahedron* **1999**, *55*, 10351.

24. Maccoss, M.; Wagner, A. F.; Tolman, R. L. European Patent 330263. *Chem. Abstr.* **1989**, *112*, 55917.

25. Bruns, R. F.; Fergus, J. H. J. Pharm. Pharmacol. 1989, 41, 590.