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Protein bioconjugation strategies largely rely on the reaction of
nucleophilic amino acid side chains with properly matched elec-
trophilest As the selectivity of these reactions is primarily driven
by the frequency of a particular residue on a protein surface, labeling
approaches commonly target more rarely occurring amino acids
such as cysteinégryptophang,and solvent accessible tyrosirtes,
when positional control is required. Despite these options, however
there remain many situations in which a unique residue is not
available, limiting one’s ability to achieve protein modification in
a single location. Recently available technicdfuies the incorpora-
tion of unnatural amino acids provide a powerful solution to this
problem, as they allow unique chemical handles to be introduced
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and modified with reactions that disregard native functionality.
Several of these strategies have been employed in the biologicg
context, including the condensation of ketones with hydrazides and
alkoxyamines, the [3+ 2] cycloaddition of alkynes and azides to
form triazoles’ and the formation of amides through a modified
Staudinger reduction of azides with triarylphosphihBs.ch of these
methods is drawn from an important set of reactions that proceed
in aqueous solution with excellent functional group tolerghce.

To add to this group, we have developed a new reactive pair
based on the oxidative coupling of anilines. These functional groups
are particularly attractive targets for selective bioconjugation in light
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of recent success for the incorporation of 4-aminophenylalaning

into proteins? Groundbreaking work by the Schultz lab has led to
the evolution of a bacterium that can both biosynthesize this amino
acid and carry it through protein translation. To target this side
chain, we report herein a rapid, chemoselective, and high yielding
reaction that couples new functionality to anilines under conditions
mild enough to preserve the function of most biomolecules.

The development of this reaction began with the observation that
N-acyl phenylenediamine derivative trimerizes cleanly under
oxidative conditions in aqueous solution, ultimately forming highly
stable dye molecul@ within minutes, Figure 1& To develop a
two-component version of this reaction, this self-coupling pathway
was first eliminated through the addition of two alkyl groups to
the free phenylenediamine nitrogen, yieldiBidJpon the addition
of an oxidant, such as NalQlittle reaction occurs fo alone;
however, this group still undergoes rapid coupling with primary
anilines (such ad). The alkyl substituents & also block the second
aniline addition that would lead to three-component products.
Instead, the final product results from nucleophilic addition of water
to yield 5a after subsequent oxidation (Figure b)Y his “A + B”
analog of2 has similar stability, showing no degradation from pH
2to pH 11 over 12 h. When carried out in'D, the corresponding
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Figure 2. Covalent protein modification using the oxidative coupling

reaction. (a) Anilines were introduced through the reaction of lysine residues
with isatoic anhydrid&’. These groups were modified through exposure to
3 and NalQ. (b) Aniline-labeled lysozym8 was analyzed using ESI-MS.

A small amount of doubly-acylated product can be seen at 14%51(c)
Following treatment witt8 and NalQ, species8 was converted to coupling
product 9. (d) No coupling products were observed upon exposure of
unmodified lysozyme®) to analogous reaction conditions. The new peak
at 14326m/z arises from methionine or cysteine oxidation by the periodate.

To evaluate the selectivity of this reaction for protein modifica-
tion, an analog oft was coupled to lysine residues on lysozyéne
This was conveniently achieved through exposure to isatoic
anhydride7 at pH 8.0 for 20 min, Figure 2a. ESI-MS indicated
50% conversion to addud, with a small amount of doubly
modified protein also present (Figure 2B).

Oxidative coupling was achieved by exposing a0 solution
of 8to 500u4M 3 and 1.5 mM NalQ in pH 6.5 phosphate buffer
for 15 min (Figure 2c). The anticipated mass adduct, corresponding
to compound9, was observed with a high level of conversién.
For unlabeled lysozyme, no addition 8fwas observed under
analogous conditions, indicating that none of the natural amino-
acid side chains participated in the coupling reaction (Figure 2d).

product mass increased by 2 amu. Interestingly, the carbonyl groupThe reaction was accompanied by the oxidation of sulfur-containing
of 5b showed no isotope exchange over a 24 h period when returnedside chains, which occurred to the same extent with or without the
to H,1%0, further confirming the high degree of stability toward aniline or phenylenediamine components. In some reports of
hydrolysis. In addition to produd&a, minimal amounts of aniline N-terminal serine oxidation with Nalf) methionine-containing

dimer (<10%) were also isolate. buffers and/or carefully controlled quenches have been used to
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reagentl10 (these samples are boxed in red in graphic b). The protein
mixtures were then combined with Naj@nd fluorescent rhodaminédga

or 14b. (b) SDS-PAGE, followed by visualization with fluorescence i |mag|ng
(bottom) and Coomassie staining (top), indicating the samples in which
successful labeling had occurred.

minimize sulfur oxidatior? To date, these approaches have not
been successful with our aniline coupling strategy. We are currently
evaluating alternative oxidants to minimize these side reactfons.
Similar to the small molecule studies, a small amourt§%) of
protein crosslinking was detected in some instances.

The fluorescent labeling of uniquely functionalized proteins has
proven useful for reactive profiling studiés.To explore the
feasibility of the oxidative coupling reaction for this purpose,
samples of lysozymesf and chymotrypsinogen ALR) were labeled
with NHS-esterl 0, Figure 3a. Mixtures of the labeled and unlabeled
proteins were then exposed to fluorescent dialkylphenylenediamine
14a(250uM) and NalQ (1.5 mM). SDS-PAGE analysis indicated
that only the aniline-bearing proteins participated in the reaction
(Figure 3b, lanes46). Additional control experiments confirmed
that no reaction occurred in the absence of the oxidant (lane 1) or
aniline component (lanes-). To test the stability of the reaction

product, a labeled sample of lysozyme was subjected to a series of

conditions for 24 h and then analyzed. No losses in fluorescence
were observed from pH 410, or in the presence of NalQ
reductants such as glutathione and dithionite, or nucleophilic
reagents such as hydrazine or benzyloxyariine.

As a convenient way to confirm the overall conversion of the
reaction, a native chemical ligation stratégyas used to install a
single aniline at the C-terminus of the green fluorescent protein
(A206K eGFP) according to Figure'2217Upon exposure of a 50
uM solution of the aniline-labeled proteii7) to fluorescent probe
14a (250 uM) and NalQ, (1 mM), 82% conversion was obtained
in 2 h, as measured by UWis analysis:! When exposed to poly-
(ethylene glycol)-substituted phenylenediamine derivat®et5%
conversion to the singly labeled protein conjugate was observed
(determined by optical densitometry after staining) (Figure 4b).

In summary, we have developed an efficient protein modification
reaction that targets a bioorthogonal functional group under mild
reaction conditions. This strategy features excellent chemo-
selecitvity, rapid coupling rates in buffered aqueous solution, and
product stability over a wide range of conditions. Alternative
activation strategies and coupling partners are under development,

igure 4. Attachment of a PEG polymer to eGFP using the oxidative
coupling strategy. (a) A single aniline group was introduced through a native
chemical ligation withl6. (b) Following exposure té8and NalQ, a single
PEG conjugate (indicated by the arrow) could be seerlirThe upper

bands in the gel arise because of protein aggregation and are independent

of the reaction conditions.

Supporting Information Available: Experimental procedures and
characterization data for all intermediates. This material is available
free of charge via the Internet at http://pubs.acs.org.
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