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ABSTRACT 

Saturated azacycles are commonly encountered in bioactive compounds and approved 

therapeutic agents. The development of methods for functionalization of the α-methylene C‒H 

bonds of these highly privileged building blocks is of great importance, especially in drug 

discovery. While much effort has been dedicated towards this goal by using a directed C‒H 

activation approach, the development of directing groups that are both general, as well as 

practical, remains a significant challenge. Herein, the design and development of novel amidoxime 

directing groups is described for Ir(I)-catalyzed α-C(sp3)‒H alkylation of saturated azacycles using 

readily available olefins as coupling partners. This protocol extends the scope of saturated 

azacycles to piperidines, azepane, and tetrahydroisoquinoline that are incompatible with our 

previously reported directing group. A variety of olefin coupling partners, including previously 

unreactive di-substituted terminal olefins and internal olefins, are compatible with this 

transformation. The selectivity for a branched α-C(sp3)-alkylation product is also observed for the 

first time when acrylate is used as the reaction partner. The development of practical, one-step 

installation and removal protocols further add to the utility of amidoxime directing groups. 
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INTRODUCTION 

Saturated azacycles constitute a prevalent structural motif in bioactive natural products and 

pharmaceutical compounds (Figure 1).1 The development of methods that enable rapid synthesis 

and late-stage diversification of these heterocycles is appealing from the standpoint of drug 

discovery.2 Not surprisingly, a variety of methods have been developed for the functionalization 

of C(sp3)‒H bonds adjacent to nitrogen in saturated azacycles.3 Important progress has been made 

in the direct functionalization of these heterocycles through iminium ion,4 α-amino carbanion,5 α-

amino radical,6 carbene insertion7, and other innovative pathways.8 Functionalizations proceeding 

via transition-metal-catalyzed α-C(sp3)‒H bond activation have also been developed.9-16 These 

transformations usually entail the installation of a directing group on the azacycle nitrogen for 

recruitment of the transition-metal catalyst near to the α-C(sp3)‒H bond of interest.17 Although 

additional steps are required for the installation and eventual removal of the directing group, a 

directed C‒H activation approach offers important advantages over other methods.4-8 First, 

regioselectivity can be controlled in the presence of multiple equally reactive C‒H bonds; for 

example, when more than one amino-alkyl groups are present within the substrate. Second, the 

formation of a discrete carbon‒metal bond in the intermediate allows for diverse transformations 

that may not be possible with other approaches.4-8 Third, the directing group can be used as a 

functional handle for modulating the reactivity and selectivity of a transformation, thus allowing 

access to different isomers of the product. 
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Figure 1. Some biologically significant compounds containing α-alkylated saturated 

azacycles. 

In the realm of transition-metal-catalyzed directed α-C(sp3)‒H activation of saturated 

azacycles, several arylation transformations have been developed.9 In 2014, our group reported the 

first example of a palladium(II)-catalyzed directed α-arylation of saturated azacycles using aryl 

boronic acids as coupling partners (Scheme 1A).18 Our efforts towards developing an alkylation 

transformation using alkyl boronic acids as coupling partners have met with limited success;19 

possibly due to a challenging sp3‒sp3 reductive elimination and competing β-hydride elimination 

side reactions from the corresponding metal-alkyl intermediate. In contrast, iridium(I)-catalyzed 

α-alkylation using olefins as coupling partners is a promising approach.20 Such alkylation reactions 

proceed via the intermediacy of a metal-hydride species, which reacts with olefin coupling partners 

to affect a net alkylation transformation (Scheme 1B). 
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Scheme 1. Palladium(II)- and Iridium(I)-catalyzed Directed α-C(sp3)‒H Activation 

Reactions of Saturated Azacycles. DG = Directing Group. 

 

       In 1998, Jun et al. reported the first example of a directed α-C(sp3)–H alkylation of 

benzylamines using a ruthenium(0) catalyst.10a Later in 2001, a ruthenium-catalyzed directed α-

C(sp3)–H alkylation of saturated azacycles was reported by Murai and co-workers.10b In 2011, 

the first example of an iridium-catalyzed directed α-C(sp3)–H alkylation of aliphatic amines was 

developed by Shibata and co-workers.11a Since these pioneering studies, several groups have 

developed directed approaches for α-C(sp3)–H alkylation of saturated azacycles via ruthenium10c-

e and iridium catalysis11b-g (Scheme 2A). However, the utility of these approaches is limited due 

to the use of heterocyclic directing groups which require multiple steps and harsh reducing 

reaction conditions for their removal. Additionally, over-alkylation has been a frequently 

encountered problem. 

Recently, our group reported an alkoxy-thiocarbonyl directing group for α-C(sp3)–H 

alkylation of saturated azacycles using a cationic iridium(I) catalyst (Scheme 2B).21 Although the 

one-step installation and removal of this directing group was advantageous over previous reports 
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employing heterocyclic directing groups, the synthetic utility of the transformation was limited for 

the following reasons. First, while pyrrolidines could be alkylated in moderate yields, the 

alkylation of other azacycles proved to be challenging. Second, the olefin coupling partner scope 

was limited to only mono-substituted olefins. Third, the alkoxy-thiocarbonyl directing group 

promoted over-alkylation. 

Scheme 2. Evolution of Directing Groups for Transition-metal-catalyzed α-C(sp3)‒H 

Alkylation of Amines with Olefin Coupling Partners. 

 

These limitations highlight the challenge associated with designing a practical, as well as 

a general directing group. Herein, we disclose the design and discovery of novel amidoxime 

directing groups for an iridium(I)-catalyzed α-C(sp3)–H alkylation of saturated azacycles (Scheme 
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2C). The amidoxime directing groups are compatible with a wide range of saturated azacycles and 

olefin coupling partners, while also being easy to install and remove. During our study, we 

observed an unprecedented selectivity for branched α-C(sp3)-alkylation products with ethyl 

acrylate as the olefin coupling partner.22 This observation showcases one of the advantages of 

using a directed C‒H activation approach, wherein a new directing group may impact the reactivity 

of the catalytic intermediate, thus enabling access to new mechanistic pathways and products. 

RESULTS AND DISCUSSION 

We designed the amidoxime directing groups (Scheme 3) based on the following 

considerations: 1) an  imine moiety to direct the metal insertion, inspired by the high reactivity 

afforded by heterocyclic directing groups in Scheme 2A, 2) amidoxime moiety to allow easy 

removal under mild conditions (in comparison with previous reports of amidine directing groups5a, 

9a), and 3) a modular α-substituent which can be tuned to improve the reactivity and selectivity. 

Scheme 3. Design Principles of Amidoxime Directing Groups. 

 

Borrowing reaction conditions from our previous work on iridium(I)-catalyzed α-alkylation of 

pyrrolidines with an alkoxy-thiocarbamate directing group,21 we evaluated various amidoxime 

directing groups using pyrrolidine as the model substrate and ethyl acrylate as the olefin coupling 

partner (Table 1). We began our studies with an α-methyl substituted O-benzyl amidoxime 

directing group and obtained the α-alkylated product in a total yield of 29% (2a-1) as a mixture of 

branched (B) and linear (L) regioisomers. Keeping the oxime moiety constant, we changed the α-
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substituent of the directing group to a bulkier tert-butyl group and observed an increase in the total 

yield to 67% (2a-2). The introduction of an electron-withdrawing trifluoromethyl group as the α-

substituent further increased the total yield to 86% (2a-3). On the other hand, using a 

perfluoroethyl group as the α-substituent lowered the total yield to 60% (2a-4). Next, we varied 

the oxime moiety while fixing the α-substituent as a trifluoromethyl group. Changing the benzyl 

oxime to a sterically bulky trityl oxime lowered the total yield to 60% (2a-5). Next, we altered the 

electronics of the oxime moiety by using a para-nitro benzyl oxime which gave a slightly lower 

total yield of 81% (2a-6) as compared to the simple benzyl oxime. Increasing the electron-

withdrawing nature of the oxime moiety further by using a perfluorobenzyl oxime reduced the 

total yield to 48% (2a-7). In order to test the importance of a pendant benzyl oxime unit, we tied 

it into a benzoxazole heterocycle and observed a drop in the total yield to 40% (2a-8). Increasing 

the coordination ability of the pendant oxime unit with a weakly coordinating ester afforded 

product in 70% total yield (2a-9), while a strongly coordinating pyridine completely shut down 

the reaction (2a-10). Next, reaction using an O-phenyl amidoxime directing group suffered from 

poor mass balance and no desired product was observed (2a-11). Employing a tert-butanesulfinyl 

imine as the directing group did not give any product (2a-12). We next screened the reaction 

conditions with trifluoromethyl O-benzyl amidoxime as the optimal directing group, and were able 

to lower the catalyst loading to 5 mol% and the ethyl acrylate loading to 4 equivalents to afford a 

total yield of 83% (2a-3’) of α-alkylated pyrrolidine products. As seen from Table 1, the 

regioisomeric product ratio was found to be dependent on the structure of the directing group. 

Attempts at improving the regioisomeric product ratio by further screening of the reaction 

conditions were unsuccessful. Moreover, the regioisomeric ratio was affected by the identity of 
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solvent, the catalyst counteranion, and the diene ligand on iridium (see the Supporting Information 

for details). 

Table 1. Directing Group Evaluation for α-C(sp3)‒H Alkylation of Pyrrolidine.a,b 

 

aReaction conditions: 1a-1 to 1a-11 (0.1 mmol, 1.0 equiv), Ir(cod)2OTf (0.01 mmol, 0.1 equiv), 

ethyl acrylate (0.8 mmol, 8.0 equiv), degassed PhCl (0.5 mL), 85 °C, under Ar, 6 h. bYields were 

determined by 1H NMR analysis of the crude products using mesitylene as the internal standard. 

c0.05 equiv of Ir(cod)2OTf (0.005 mmol). d4.0 equiv of ethyl acrylate (0.4 mmol). e0.1 mL of 

degassed PhCl. fYield after isolation by chromatography is shown. 
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We then tested the trifluoromethyl O-benzyl amidoxime directing group against a variety of 

substituted pyrrolidine substrates (Table 2). When ethyl acrylate was used as the olefin coupling 

partner, separable mixtures of branched and linearly α-alkylated products were obtained (2b-2i), 

the ratios of which were dependent on the nature of substituents on the pyrrolidine substrates. On 

the other hand, when 1-hexene was used as the olefin coupling partner, only linearly α-alkylated 

products were obtained (2j-2m). With ethyl acrylate as the olefin coupling partner, 2-methyl and 

2-phenyl substituted pyrrolidine substrates afforded products in total yields of 80% (2b) and 83% 

(2c), respectively. A benzyl protected proline substrate was also compatible and afforded product 

in a total yield of 68% (2d). Spirocyclic and bicyclic pyrrolidine substrates, which are relevant to 

various medicinal chemistry campaigns,23 reacted in good yields of 98% (2e) and 80% (2f), 

respectively. Pyrrolidine substrates with 3-alkyl substituents also reacted in good yields (2g, 2h). 

On the other hand, an electron deficient 3,3-difluoropyrrolidine substrate gave a low yield of 36% 

(2i). With 1-hexene as the olefin coupling partner, 3-phenyl, 3-alkyl, 3-methoxy, and 3-amino 

substituted pyrrolidine substrates afforded products in 73% (2j), 86% (2k), 66% (2l), and 77% 

(2m) yields, respectively. We were pleased to find that the use of trifluoromethyl O-benzyl 

amidoxime directing group (with adequate substrate-specific tuning of the reaction conditions) 

prevented over-alkylation of a variety of substituted pyrrolidine substrates, thus addressing one of 

the major limitations with previous directing group designs.9,10 
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Table 2. Pyrrolidine Substrate Scope.a,b 

 

aReaction conditions: 1b to 1m (0.1 mmol, 1.0 equiv), Ir(cod)2NTf2 (0.01 mmol, 0.1 equiv), ethyl 

acrylate (0.8 mmol, 8.0 equiv), degassed PhCl (0.1 mL), 85 °C, under Ar, 24 h. bYields after 

isolation by chromatography are shown. cIr(cod)2OTf instead of Ir(cod)2NTf2. 
d0.1 equiv of 

HBF4.Et2O (0.01 mmol) as additive. e0.05 equiv of Ir(cod)2OTf (0.005 mmol). f12 h instead of 24 

h. g48 h instead of 24 h. 
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Having established the scope of pyrrolidine substrates with the trifluoromethyl O-benzyl 

amidoxime directing group, we next investigated the scope of olefin coupling partners using 3,3-

dimethyl pyrrolidine (1g) as the standard substrate (Table 3). Olefins with a wide variety of steric 

and electronic properties proved to be efficient coupling partners. A wide range of styrene 

analogues, including 4-bromostyrene, afforded the respective linearly α-alkylated products in good 

yields of 66%-81% (3a-3i). Electron deficient olefins such as vinyl phthalimide and ethyl vinyl 

ketone also proceeded to give linearly α-alkylated products in 78% (3j) and 65% (3k) yields, 

respectively. Alternate ester protecting groups on the acrylate were well tolerated (3l) to give a 

mixture of branched and linearly α-alkylated regioisomeric products. However, vinyl acetate 

reacted in a low yield of 32% (3m) to give linearly α-alkylated product. Electron neutral olefins 

all gave their corresponding linearly α-alkylated products selectively. While allylbenzene (3n) 

reacted in a moderate yield of 51%, allyl silane, vinyl silane, and 1-hexene reacted in good yields 

of 71% (3o), 74% (3p), and 73% (3q), respectively. When vinyl norbornene was used as the olefin 

coupling partner, the reaction occurred regioselectively at the vinyl position in 73% yield (3r). 

Moreover, a selectivity of 6.1:1 was observed in favor of the endo-isomer over the exo-isomer of 

vinyl norbornene. In contrast, in the absence of a vinyl group, simple norbornene reacted in 78% 

yield (3s). The reaction also tolerated di-substituted terminal olefins in moderate yields of 55% 

(3t) and 50% (3u), respectively. When cis-2-hexene was used as the olefin coupling partner, an 

isomerized linear product was obtained in a moderate yield of 51% (3v). We also observed 

isomerization of methyl crotonate to give a linear product, albeit in a low yield of 35% (3w).24 A 

sterically hindered maleate ester also reacted in 23% yield (3x). To the best of our knowledge, this 

is the first example of an iridium(I)-catalyzed α-C(sp3)‒H alkylation reaction which can utilize di-

substituted terminal olefins and internal olefins as effective coupling partners. 
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Table 3. Olefin Coupling Partner Scope.a,b 

 

aReaction conditions: 1g (0.1 mmol, 1.0 equiv), Ir(cod)2NTf2 (0.01 mmol, 0.1 equiv), olefin 

coupling partner (0.8 mmol, 8.0 equiv), degassed PhCl (0.1 mL), 85 °C, under Ar, 48 h. bYields 

after isolation by chromatography are shown. c1a instead of 1g. dmono:di = 4:1. emono:di = 7.5:1. 
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After establishing the performance of the trifluoromethyl O-benzyl amidoxime directing group 

with a variety of substituted pyrrolidine substrates and olefin coupling partners, we next tested the 

efficacy of this directing group for azacycles of other ring sizes (Scheme 4). When we subjected 

the azetidine substrate (1n) to the optimized reaction conditions with ethyl acrylate as the olefin 

coupling partner, no product was observed. The piperidine substrate afforded a linearly α-alkylated 

product in a low yield of 25% (2o). In contrast, the azepane substrate reacted in a good yield of 

70% (2p) and afforded a mixture of separable branched and linearly α-alkylated regioisomers. A 

similar reactivity trend has been observed in previous reports where piperidines were found to be 

a more challenging class of substrates than pyrrolidines and azepanes. 

Scheme 4. Evaluation of the Trifluoromethyl O-Benzyl Amidoxime Directing Group for α-

C(sp3)‒H Alkylation of Azetidine, Piperidine, and Azepane. 

 

aYield was determined by 1H NMR analysis of the crude product using mesitylene as the internal 

standard. bYield after isolation by chromatography is shown. 

 

We reasoned that a lower reactivity for the piperidine substrate (2o) relative to the pyrrolidine 

and azepane substrates might be associated with an unfavorable conformation of the six-membered 

saturated azacycle. This led us to consider that a different directing group might be required for 
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the piperidine substrate. Leveraging the modular nature of the amidoxime directing groups, we re-

evaluated directing groups for the piperidine substrate as shown in Table 4. Under the optimized 

reaction conditions, with ethyl acrylate as the olefin coupling partner, changing the α-substituent 

to a perfluoroethyl group had deleterious effect on reactivity (4a-1). On the other hand, a variety 

of alkyl groups such as, methyl (4a-2), ethyl (4a-3), and isobutyl (4a-4), all worked as efficient α-

substituents and gave a mixture of branched and linearly α-alkylated regioisomers in moderate 

yields. A bulkier alkyl α-substituent in the directing group led to a higher yield of the linearly α-

alkylated regioisomer. We selected methyl O-benzyl amidoxime as the optimal directing group for 

piperidines because we anticipated that a smaller directing group would have an easier removal 

protocol. 

Table 4. Directing Group Evaluation for α-C(sp3)‒H Alkylation of Piperidine.a,b 

 

aReaction conditions: 4a-1 to 4a-4 (0.1 mmol, 1.0 equiv), [Ir(cod)Cl]2 (0.005 mmol, 0.05 equiv), 

AgOTf (0.01 mmol, 0.1 equiv), ethyl acrylate (0.8 mmol, 8.0 equiv), HBF4.Et2O (0.01 mmol, 0.1 

equiv), degassed PhCl (0.5 mL), 85 °C, under Ar, 24 h. bYields were determined by 1H NMR 

analysis of the crude products using mesitylene as the internal standard. 
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With the optimal directing group for piperidine in hand, we further optimized the reaction 

conditions using 1-hexene as the olefin coupling partner (see the Supporting Information for 

details). As shown in Table 5, simple piperidine reacted to give a separable mixture of mono- and 

di-alkylated products in a total yield of 65% (5b). Next, we tested the methyl O-benzyl amidoxime 

directing group against a variety of substituted piperidine substrates (5c-5j). 3-Methyl piperidine 

substrate reacted to give mono-alkylated product in 72% yield (5c). 4-Methyl and 4-phenyl 

substituted piperidine substrates also reacted in 82% (5d) and 62% (5e) yields, respectively, giving 

a mixture of separable mono- and di-alkylated products. Piperidine substrates containing various 

functional groups such as 4-methoxy (5f), 4-amino (5g), 3-trifluoromethyl (5h), and 3-ester (5i) 

were also compatible and reacted in moderate to good yields. A spirocyclic piperidine substrate 

yielded a separable mixture of mono- and di-alkylated products in a total yield of 58% (5j). 

Tetrahydroisoquinoline was also a compatible substrate and reacted to give di-alkylated product 

in 53% yield (5k). 3-Methyl morpholine was a challenging substrate and gave the corresponding 

mono-alkylated product in a low yield of 20% (5l). However, complete site-selectivity was 

achieved for the α-C(sp3)‒H bonds next to the nitrogen atom in the presence of the α-C(sp3)‒H 

next to an oxygen atom. Finally, the di-alkylation favored anti-stereochemistry; where 5b-di, 5d-

di, and 5k were isolated as single diastereomers (see the Supporting Information for details on 

diastereoselectivity). 
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Table 5. Piperidine Substrate Scope.a,b 

 

aReaction conditions: 4b to 4l (0.1 mmol, 1.0 equiv), [Ir(cod)Cl]2 (0.005 mmol, 0.05 equiv), 

AgSbF6 (0.01 mmol, 0.1 equiv), 1-hexene (0.8 mmol, 8.0 equiv), degassed PhCl (2.0 mL), 85 °C, 

under Ar, 24 h. bYields after isolation by chromatography are shown. c0.1 equiv of Ir(cod)2NTf2 

(0.01 mmol) instead of [Ir(cod)Cl]2 and AgSbF6. 
d48 h instead of 24 h. 

 

Scheme 5A shows the one-step installation protocols developed for both the 

trifluoromethyl O-benzyl amidoxime and the methyl O-benzyl amidoxime directing groups 

Page 16 of 26

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17 
 

starting from precursors 6 and 7 (see the Supporting Information for details). These precursors 

were used for the synthesis of the azacycle substrates (1a-3, 1b-1p, 4a-2, 4b-4l) in a divergent 

manner. Scheme 5B shows the removal protocols for two representative products, 2k and 5h. Both 

the directing groups were cleaved effectively under DIBAL-H reduction at 0 °C in a single step. 

Scheme 5. Installation and Removal of Amidoxime Directing Groups.a 

 

aReaction conditions: (a) Azacycle (1.0 equiv), 6 (1.2 equiv), triethylamine (1.2 equiv), DCM, 50 

°C, under air, 12 h. (b) Azacycle (1.0 equiv), 7 (1.2 equiv), DMF, 70 °C, under air, 12 h. (c) 2k or 

5h (0.1 mmol, 1.0 equiv), DIBAL-H (0.5 mmol, 5.0 equiv), toluene (0.5 mL), 0 °C, under N2, 30 

min. (d) CbzCl (0.3 mmol, 3.0 equiv), Et3N (0.3 mmol, 3.0 equiv), DCM (1.0 mL), rt, under N2, 

12 h. 
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Due to the observation of unconventional branch-selective α-alkylation with acrylates, we 

performed deuterium labelling experiments (Scheme 6). When substrate 1a-3 was subjected to the 

reaction conditions in the presence of D2O and in the absence of an olefin coupling partner, 

deuterium incorporation at the α- and α’-positions of the pyrrolidine substrate was observed 

(Scheme 6A). This result implies that the α-C(sp3)‒H bond of 1a-3 is cleaved under the present 

reaction conditions, without the involvement of an olefin coupling partner. Next, the reaction of 

substrate 1a-3 with deuterated benzyl acrylate was examined (Scheme 6B). Incorporation of 

deuterium atoms was detected at the α- and α’-positions of both the branched and linearly alkylated 

products (3y-B, 3y-L). Moreover, the recovered benzyl acrylate coupling partner was found to 

have a reduced deuterium content. These observations indicate that the catalytic cycle consists of 

reversible C‒H bond activation and olefin insertion steps. The experimentally observed 

isomerization of internal olefins to give linearly α-alkylated products (3v, 3w) lends further support 

for a reversible olefin insertion step. 

Scheme 6. Deuterium labelling experiments. 
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On the basis of the above labelling experiments, the proposed mechanism for the 

amidoxime-directed Ir(I)-catalyzed α-C(sp3)‒H alkylation reaction of pyrrolidine with an acrylate 

coupling partner is shown in Scheme 7. Since the reaction yield and selectivity were found to be 

dependent on the diene ligand (see the Supporting Information), it is likely that one unit of the 

diene ligand remains coordinated to iridium.25 The first step involves the directed α-C‒H activation 

of the pyrrolidine substrate via an oxidative addition mechanism, leading to the formation of a 

cationic Ir(III) intermediate. Next, a molecule of acrylate may react reversibly with this iridium-

hydride species in two different ways - thus giving rise to Pathways L and B. In Pathway L, acrylate 

undergoes a sterically-controlled 1,2-migratory insertion into the Ir‒H bond, leading to a linear Ir-

alkyl species, which upon a C‒C reductive elimination gives the linearly α-alkylated product. In 

Pathway B, acrylate undergoes an electronically-controlled 2,1-migratory insertion into the Ir‒H 

bond leading to a branched Ir-alkyl species, which upon a C‒C reductive elimination gives the 

branched α-alkylated product. 

Scheme 7. Proposed Mechanistic Pathways. 
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CONCLUSION 

In summary, we report the design and discovery of novel amidoxime directing groups for 

the iridium(I)-catalyzed α-C(sp3)‒H alkylation of saturated azacycles using readily available 

olefins as coupling partners. A trifluoromethyl O-benzyl amidoxime directing group was 

developed for substituted pyrrolidines, proline, and azepane substrates. This transformation is 

applicable on wide arrays of olefin coupling partners with diverse steric and electronic properties, 

including previously unreactive di-substituted terminal olefins and internal olefins. For more 

challenging substrates, such as substituted piperidines and tetrahydroisoquinoline, a methyl O-

benzyl amidoxime directing group was developed. The selectivity for a branched α-C(sp3)‒H 

alkylation product is observed for the first time when acrylate was used as the reaction partner. 

New protocols enabling practical, one-step installation and removal of these directing groups were 

also developed. Future work from our group will focus on developing enantioselective α-C(sp3)‒

H alkylation of saturated azacycles and on exploiting the potential of amidoxime directing groups 

for other interesting substrates and transformations. 

EXPERIMENTAL SECTION 

A 2-dram vial was charged with the substrate (0.1 mmol, 1.0 equiv) and taken inside an argon 

glovebox. Ir(cod)2NTf2 (6.9 mg, 0.01 mmol, 0.1 equiv, unless otherwise noted) was added 

followed by a magnetic stir bar. The vial was sealed with a PTFE septum and taken out of the 

glovebox. Degassed PhCl (0.1 mL, unless otherwise noted) and olefin coupling partner (0.8 mmol, 

8.0 equiv, unless otherwise noted) were added to the vial. The solution was stirred at 85 °C for 24 

hours (unless otherwise noted). Upon completion, the reaction mixture was cooled to rt and diluted 
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with 2 mL EtOAc. The mixture was filtered through a pad of celite. The celite was washed 

thoroughly with EtOAc and the combined organics were concentrated in vacuo. The crude reside 

was purified by preparative TLC to provide the alkylated product(s). 
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