

Il Farmaco 56 (2001) 929-931

New 2-(2'-phenyl-9'-benzyl-8'-azapurin-6'-ylamino)-carboxylic acid methylesters as ligands for A₁ adenosine receptors

Giuliana Biagi, Irene Giorgi *, Federica Pacchini, Oreste Livi, Valerio Scartoni

Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno, 6, 56100 Pisa, Italy

Received 15 February 2001; accepted 30 May 2001

Abstract

Synthesis of a series of new 2-phenyl-9-benzyl-8-azaadenines bearing on N^6 an alkyl or aralkyl chain having a carbonyloxymethyl group on the carbon bound to N^6 were reported. The ester group could assure to the molecule a better water-solubility than the 8-azaadenines 2, 6 and 9 substituted with lipophilic groups synthesised in the past. Compounds synthesised demonstrated only little capability of binding A_1 adenosine receptors. \bigcirc 2001 Elsevier Science S.A. All rights reserved.

Keywords: A1 adenosine receptor antagonists; 8-Azaadenines

1. Introduction

In recent years we have synthesised a great number of inhibitors of A_1 adenosine receptors varying substituents in the positions 3, 6 and 9 of the nucleus of 8-azaadenine or adenine and some of these were very effective having a K_i in the range of nanomolar [1–6]. All these compounds were characterised by a high lipophilicity because the substituents on the bicyclic nucleus were hydrophobic as alkyl, cycloalkyl or alkylaromatic groups. This can make these compounds nearly water-insoluble causing the determination of activity in in vitro binding assays to be uncertain in some cases. The scarce water-solubility also leads to a low bioavailability of the compounds so that they are unsuitable for in vivo studies.

Therefore we projected to obtain some A_1 antagonists more water-soluble than the active antagonists discovered in the past, introducing on the N⁶ a substituent having a polar function as a methoxycarbonyl group.

* Corresponding author.

2. Chemistry

The synthetic route (Scheme 1) employed known 1,3 dipolar addition reactions starting from benzylazide, cyanoacetamide, ethyl benzoate to obtain the 2-phenyl-9-benzyl-8-azahypoxanthine (1) [7]. The reaction of 1 with phosphorus oxychloride afforded 6-chloroaza-purine (2) which, by nucleophilic displacement of chlorine atom operated by suitable aminoesters [4], led to N^6 -substituted-8-azaadenines.

3. Experimental

3.1. Biological evaluation

The 8-azaadenines 3, 4, 5, 6, 7, 8, 9, 10 and 11 were tested in radioligand binding assays for affinity at A_1 adenosine receptors in bovine brain cortical membranes. [³H]N⁶-cyclohexyladenosine (CHA) was used as the radio-ligand. The experimental details were reported in a previous paper [1].

3.2. Chemistry

Melting points were determined on a Kofler hotstage apparatus and are uncorrected. ¹H NMR spectra

E-mail address: igiorgi@farm.unipi.it (I. Giorgi).

were recorded on a Bruker AC 200 spectrometer in δ units from TMS as an internal standard; the compounds were dissolved in chloroform-D1. Mass spectra were performed on a Hewlett–Packard GC/MS System 5988A. TLC was performed on precoated silica gel F₂₅₄ plates (Merck). Flash-column chromatographies were performed using Merck Kieselgel 60 (230–400 mesh). Microanalyses (C, H, N) were carried out on a Carlo Erba elemental analyser (Model 1106) and were within $\pm 0.4\%$ of theoretical values.

3.2.1. General procedure to prepare aminoesters hydrochloride

Aminoesters hydrochloride of (D,L)-alanine, β -alanine, (D,L)-phenylalanine, (D,L)-phenylglicine, (D,L)glutamic acid, (D,L)-methionine, (D,L)-norleucine, (D,L)-norvaline, (D,L)-valine and (D,L)-histidine were prepared starting from corresponding aminoacids. To a solution of aminoacid in methanol, cooled at -18 °C, an equimolar amount of SOCl₂ was dropped slowly. The mixture was refluxed for 12 h, then evaporated and the residue was crystallised from methanol–ethyl ether.

Table 1					
Reaction	data	for	com	pounds	3–11

3.2.2. General procedure to prepare 6-aminosubstituted-2-phenyl-9-benzyl-8-azaadenines (3–11)

In a well-stoppered flask a mixture of **2** (200 mg, 0.623 mmol), toluene (2 ml), the suitable amino ester hydrochloride (1 mmol) (see Table 1) and N,N-diethylaniline (0.1 ml, 0.67 mmol) were stirred at room temperature for 24 h. Then the solution was evaporated at reduced pressure, diluted with chloroform and washed with 10% HCl and water. After evaporation of the organic layer the residue was flash-chromatographed using as eluent hexane–ethyl acetate 3:1. (see Tables 1 and 2).

4. Biological results and conclusions

None of the compounds showed a significant activity as A_1 adenosine receptors ligands. Compounds 4, 7, 8, 9 and 11 showed a K_i included between 300 and 500 nM, while compounds 3, 5, 6 and 10 showed an inhibition < 65% at 10 μ M. Results demonstrated that for 2-phenyl-9-benzyl-8-azaadenines a carboxymethyl

Comp.	Reagent	Yield (%)	m.p. (°C)	Formula (anal.)
3	NH ₂ CH(COOCH ₃)CH ₃	71	137–138	C ₂₁ H ₂₀ N ₆ O ₂ (CHN)
4	NH ₂ (CH ₂) ₂ COOCH ₃	55	157-159	$C_{21}H_{20}N_6O_2$ (CHN)
5	NH ₂ CH(CH ₂ C ₆ H ₅)COOCH ₃	86	134–135	$C_{27}H_{24}N_6O_2$ (CHN)
6	NH ₂ CH(C ₆ H ₅)COOCH ₃	50	129-130	$C_{26}H_{22}N_6O_2$ (CHN)
7	NH ₂ CH(CH ₂ CH ₂ COOCH ₃)COOCH ₃	33	140-141	$C_{24}H_{24}N_6O_2$ (CHN)
8	NH ₂ CH(CH ₂ CH ₂ SCH ₃)COOCH ₃	38	164-165	$C_{23}H_{24}N_6O_2S$ (CHN)
9	NH ₂ CH(CH ₂ CH ₂ CH ₃)COOCH ₃	52	143–144	$C_{23}H_{24}N_6O_2$ (CHN)
10	NH ₂ CH(CH ₂ CH ₂ CH ₂ CH ₃)COOCH ₃	65	157-158	$C_{24}H_{26}N_6O_2$ (CHN)
11	NH ₂ CH(COOCH ₃)CH(CH ₃)CH ₃	62	119–120	$C_{23}H_{24}N_6O_2$ (CHN)

Table 2				
Spectroscopic of	lata o	f compo	ounds 3–11	

Comp.	¹ H NMR				MS	
	Aromatic H	Benzylic H	Aliphatic H	Exchang. H	<i>m</i> / <i>z</i> (%)	
3	8.50 (m, 2H); 7.53–7.48 (m, 5H), 7.36–7.32 (m, 3H)	5.82 (s, 2H)	5.18–5.05 (m, 1H, CH); 3.80 (s, 3H, OCH ₃); 1.69 (d, 3H, CH ₃)	6.65 (1H)	388 (M ⁺ , 2); 329 (8); 287 (1); 91 (100)	
4	8.50 (s, 2H); 7.49 (m, 2H); 7.31 (m, 2H)	5.80 (s, 2H)	4.10 (t, 2H, CH ₂); 3.73 (s, 3H OCH ₃); 2.83 (t, 2H, CH ₂)	6.64 (1H)	388 (M ⁺ , 4); 329 (2); 91 (100)	
5	8.49 (m, 2H); 7.49 (m, 5H); 7.39–7.22 (m, 8H)	5.80 (s, 2H); 3.37 (m, 2H)	5.40 (m, 1H, CH); 3.75 (s, 3H, CH ₃)	6.62 (1H)	464 (M ⁺ ,0.5); 373 (13); 273 (18); 91 (100)	
6	8.50–8.45 (m, 3H); 7.61–7.27 (m, 12H)	6.05 (d, 1H); 5.81 (s, 2H)	3.80 (s, 3H, OCH ₃)	7.11 (1H)	450 (M ⁺ , 2); 391 (7); 91 (100)	
7	8.49 (m, 2H); 7.49 (m, 5H); 7.35 (m, 3H);	5.83 (s, 2H)	5.27 (m, 1H, CHN); 3.82 (s, 3H, OCH ₃); 3.65 (s, 3H, OCH ₃); (t, 2H, CH ₂ -CO); 2.30 (m, 2H, CH ₂)	6.91 (1H)	460 (M ⁺ , 12); 387 (22); 287 (10); 91 (100)	
8	8.52 (m, 2H); 7.52 (m, 5H); 7.35 (m, 3H)	5.83 (s, 2H)	5.33 (m, 1H, CH); 3.81 (s, 3H, OCH ₃); 2.68 (t, 2H, CH ₂ –S); 2.38 (m, 2H, CH–C <i>H</i> ₂); 2.12 (s, 3H, S–CH ₃)	6.92 (1H)	374 (4); 287 (6); 91 (100); 61 (54)	
9	8.51 (m, 2H); 7.50 (m, 5H); 7.35 (m, 3H)	5.82 (s, 2H)	5.15 (m, 1H, CH); 3.79 (s, 3H, OCH ₃); 1.98 (m, 2H, CH ₂); 1.50 (m, 2H, CH ₂); 0.99 (t, 3H, CH ₃)	6.64 (1H)	357 (5); 302 (1); 91 (100)	
10	8.51 (m, 2H); 7.51 (m, 5H); 7.35 (m, 3H)	5.82 (s, 2H)	5.12 (m, 1H, CH); 3.79 (s, 3H, OCH ₃); 2.00 (m, 2H, CH ₂); 1.42 (m, 4H, CH ₂ -CH ₂); 0.91 (t, 3H)	6.66 (1H)	371 (6); 302 (2); 91 (100)	
11	8.51 (m, 2H); 7.50 (m, 5H); 7.35 (m, 3H)	5.83 (s, 2H)	5.14 (m, 1H, CH–N); 3.80 (s, 3H, OCH ₃); 2.42 (m, 1H, CH); 1.14 (d, 3H, CH ₃); 1.11 (d, 3H, CH ₃)	6.66 (1H)	357 (3); 302 (3.5); 91 (100)	

group on the carbon bound to N^6 cannot give positive interactions with the receptors.

Acknowledgements

This research was supported by the Ministero della Ricerca Scientifica e Tecnologica (MURST).

References

- G. Biagi, I. Giorgi, O. Livi, V. Scartoni, A. Lucacchini, C. Martini, P. Tacchi, 2-Aryl-8-azaadenosines: Structure-activity relationships in the binding with A1 and A2 receptors: A comparison with the corresponding 9-benzyl-8-azaadenines. III, Farmaco 49 (1994) 93–96.
- [2] G. Biagi, I. Giorgi, O. Livi, V. Scartoni, A. Lucacchini, C. Martini, P. Tacchi, Synthesis of new N⁶-substituted 2-phenyl-8-

azaadenines. Their affinity for A1 and A2 receptors. A comparison with the corresponding 2-phenyl-9-benzyl-8-azaadenosines, Farmaco 50 (1995) 13–19.

- [3] G. Biagi, I. Giorgi, O. Livi, V. Scartoni, A. Lucacchini, C. Martini, P. Tacchi, N⁶-substituted 2-n-butil-9-benzyl-8-azaadenines. Affinity for A1 and A2 receptors. IV, Farmaco 49 (1994) 183–186.
- [4] G. Biagi, I. Giorgi, O. Livi, V. Scartoni, A. Lucacchini, C. Martini, P. Tacchi, N⁶-substituted 2-phenyl-9-benzyl-8-azaadenines. Affinity for A1 and A2 receptors. A comparison with 2-*n*-butil analogous derivatives. V, Farmaco 49 (1994) 187–191.
- [5] G. Biagi, I. Giorgi, O. Livi, V. Scartoni, C. Breschi, C. Martini, R. Scatizzi, N⁶- or N(9)-substituted 2-phenyl-8-azaadenines: affinity for A1 receptors, Farmaco 50 (1995) 659–667.
- [6] G. Biagi, I. Giorgi, O. Livi, V. Scartoni, A. Lucacchini, N(9)-substituted 2-phenyl-N⁶-benzyl-8-azaadenines: A1 adenosine receptor affinity. A comparison with the corresponding N⁶-substituted 2-phenyl-N(9)-benzyl-8-azaadenines, Farmaco 51 (1996) 395–399.
- [7] P.L. Barili, G. Biagi, O. Livi, V. Scartoni, A facile "one pot" synthesis of 2,9-disubstituted 8-azapurin-6-ones (3,5-disubstituted 7-hydroxy-3-H-1,2,3-triazolo[4,5-d]pyrimidines), J. Heterocyclic Chem. 22 (1985) 1607–1609.