

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 61 (2005) 1353-1362

New '2-phenylnaphthalene'-mediated synthesis of benzo[b]naphtho[2,3-d]furan-6,11-diones and 6-oxa-benzo[a]anthracene-5,7,12-triones: first total synthesis of 6-oxa-benzo[a]anthracen-5-ones

Ana Martínez, Marcos Fernández, Juan C. Estévez, Ramón J. Estévez* and Luis Castedo

Departamento de Química Orgánica and Unidade Asociada (C.S.I.C.), Universidade de Santiago, E-15782 Santiago de Compostela, Spain

Received 20 October 2003; revised 11 October 2004; accepted 14 October 2004

Available online 16 December 2004

Abstract—We describe here a novel synthesis of benzo[*b*]naphtho[2,3-*d*]furan-6,11-diones based on the heteroannulation of 2-(2-bromophenyl)-3-hydroxy-1,4-naphthoquinones. The naphthoquinones were prepared from 3-(2-bromophenyl)naphthalen-2-ols, which were obtained by intramolecular aldol condensation of 2-[3-(2-bromophenyl)-2-oxo-propyl]benzaldehydes. Alternatively, benzo[*b*]naphtho[2,3-*d*]furan-6,11-diones were obtained more directly and efficiently by cyclization of 3-(2-bromophenyl)naphthalen-2-ols to benzo[*b*]-naphtho[2,3-*d*]furans and oxidation of the resulting compounds. Furthermore, the first 6-oxabenzo[*a*]anthracen-5-one described was similarly obtained from 2-[3-(2-formylphenyl)-2-oxopropyl]benzoic acid and oxidized to 6-oxa-benzo[*a*]anthracene-5,7,12-trione. © 2004 Elsevier Ltd. All rights reserved.

A tricyclic structural pattern, consisting of a either a phenyl ring attached to position 2 of a naphthalene nucleus or composed of various heterocyclic ring units with similar molecular structural arrangements, is present in a large number of biologically and pharmacologically active compounds.¹ Examples include benzo[a]pyrene and 7,12dimethylbenz[a]anthracene (carcinogenic); coralyne and nitidine (antileukemic); chartreusin and rabelomycin (antibacterial, cytotoxic); camptothecin, streptonigrin, and ellipticine (antineoplastic); WS-5995A (anticoccidial); genistein (estrogenic); methaqualone (sedative, hypnotic, anticonvulsive); and gossypol (antioxidant, male contraceptive), among others.¹ The structural pattern per se may not be sufficient to provide biological activity. Nevertheless, by attachment of the appropriate groups or substituents to specific positions on both ring units, it is believed that compounds with the desired biological actions can be designed.

Among compounds possessing this structural pattern, it is evident that many antineoplastic agents assume a coplanar conformation. The coplanarity of the two ring systems can be achieved either by hydrogen-bond formation between the two ring units, as in streptonigrin, or through a condensed structure, such as camptothecin or ellipticine.¹

On the basis of the concept outlined above, a search for suitable chemical structures to fulfil the requirements for drug design has been undertaken in recent years. For instance, it was found that 5H-benzo[d]naphtho[2,3-b]pyran-5,7,12-triones (4) include compounds like the antibiotic WS-5995 A,² which is produced by a new strain of Streptomyces designated *S. auranticolor*. In addition, two recently described synthetic analogues, *o*-quinone J1 and model *p*-quinone J7,³ were shown to be antitumour agents that inhibit macromolecule synthesis, block nucleoside transport, induce DNA fragmentation, and decrease the growth and viability of L1210 leukemic cells more effectively than ellagic acid and genistein in vitro.

Closely related benzo[b]naphtho[2,3-d]furan-6,11-dione **3** belongs to another family of compounds selected as suitable starting structures for drug design. These compounds also possess the characteristic '2-phenylnaphthalene-type' structural pattern, with the presence of the ether linkage connecting the rings making the structure planar. It was found that although this compound did not exhibit anticancer properties itself, compounds of type **3** bearing substituents at specific positions proved to be promising antitumoural agents.⁴

Keywords: Quinones; Heterocycles; Ketoacids; Ullman reaction.

^{*} Corresponding author. Tel.: +34 981 563100; fax: +34 981 591014; e-mail: qorjec@usc.es

^{0040–4020/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2004.10.044

Scheme 1. X = Br, CONEt₂.

Previous syntheses of benzofuronaphthoquinones $3^{,5}$ benzopyronaphthoquinones 4^{6} and related compounds include a common 2-phenylnaphthalene-type strategy for the synthesis of these targets. This method is based on the heteroannulation of appropriate 2-phenyl-1,4-naphthoquinones 2 (Scheme 1) obtained by mixed intramolecular Claisen condensation of phenylacetylphenylacetic acids $1^{.5a,d,6h}$ However, this simple and efficient method is of limited scope due to the lack of availability of starting materials 1.

We describe a novel, yet closely related, '2-phenylnaphthalene'-based synthesis of benzofuronaphthoquinones **3** and benzopyronaphthoquinones **4** that does not suffer from the limitations outlined above. This method also involves heteroannulation of 2-hydroxy-3-phenyl-1,4-naphthoquinones **2**, which can be obtained by intramolecular aldol cyclization of ketobenzaldehydes **5** followed by oxidation of the resulting 3-phenyl-2-naphthols **6**.⁷

This new route to naphthoquinones 2 was first applied to the synthesis of unsubstituted benzofuronaphthoquinone 3a. The starting bromophenylketopropylbenzaldehyde 5a was obtained as follows (Scheme 2): condensation of 1-indanone 7a with *o*-bromobenzaldehyde (8) in basic conditions gave

Scheme 2. 3, 5, 6, 7, 9, 11, 13, 14: (a) R=H; (b) R=OMe; **10**: (a) R=H, X=Br, (b) R=X=H; (c) R=OMe, X=Br; (d) R=OMe, X=H. Conditions. (i) NaMeO/MeOH, rt, 15–27 h. (ii) H₂, Pd/C, AcOEt, 1 atm, 75–210 min. (iii) (a) NaBH₄, MeOH, rt, 60–90 min; (b) H₂SO₄, reflux, 1–2 h. (iv) (a) O₃, –78 °C, 3–6 min; (b) Me₂S, –78 °C (4–7 h), rt (13 h). (v) NaOH aq, rt, 1.5–2 h. (vi) Fremy's salt, K₂HPO₄, acetone, rt, 1–4 h. (vii) H₂SO₄, MeOH, reflux, 29 h. (viii) CuO, K₂CO₃, pyr, reflux, 1.5–4 h. (ix) CrO₃, AcOH, reflux, 10 min. (x) NaH, CO(OEt)₂, benzene, reflux, 0.5 h. (xi) NaH, 2-bromobenzyl bromide, DMF, 60 °C, 44.5 h. (xii) 48% HBr. 96% AcOH, 120 °C, 1.5 h.

the bromobenzylideneindanone 9a (98% yield),⁸ which when subjected to controlled catalytic hydrogenation furnished the expected bromobenzylindanone $10a^9$ (98%) vield) without the formation of compound 10b through simultaneous hydrogenolysis of the C-Br bond. Subsequent reduction of indanone 10a with NaBH₄ gave a mixture of indanols,¹⁰ which was directly converted into bromobenzylindene 11a¹¹ by refluxing with concentrated sulfuric acid for an hour. Finally, indene 11a was transformed into the desired ketoaldehyde 5a by ozonolysis.¹² This key intermediate was easily identified from spectroscopic and analytical data. The mass spectrum showed the molecular ion peaks at m/z 318 and m/z 316, with the typical isotope pattern expected for bromo compounds. The ¹H NMR spectrum contained a singlet at 10.01 ppm due to the aldehyde proton. Several representative signals in the ¹³C NMR include a signal at 125.2 ppm, due to the carbon bearing the bromo- substituent, and two signals at 193.3 and 203.2 ppm, due to the ketone and aldehyde carbonyls, respectively.

Intramolecular aldol condensation of ketoaldehyde **5a** readily gave a quantitative yield of the expected bromophenylnaphthol **6a**.¹³ Treatment of this compound with Fremy's salt yielded bromophenylnaphthoquinone **12a** in 94% yield¹⁴ and this was reacted with sodium hydroxide in methanol at rt for 15 min to give bromophenylhydroxy-naphthoquinone **2** in only 7% yield.¹⁵ However, the yield of this reaction was improved to 93% when it was carried out under acidic conditions (H₂SO₄, MeOH, reflux).¹⁶ Finally, when compound **2** was subjected to previously described Ullman reaction conditions,¹⁵ the expected benzo-furonaphthoquinone **3a** was obtained in 71% yield.

Alternatively, when 3-bromophenyl-2-naphthol **6a** was submitted to the Ullman reaction conditions,¹⁵ 73% yield of the benzonaphthofuran **13a** was obtained. Oxidation of **13a** with CrO₃ in acetic acid¹⁷ gave the target **3a** in quantitative yield. The molecular formula of compound **13a** (C₁₆H₁₀O) was confirmed by mass spectrometry. The ¹H NMR contained signals between 7.35 and 8.42 ppm due to the ten aromatic protons. Two characteristic signals in the ¹³C NMR were observed at 154.8 and 157.6 ppm due to the carbons of the ethereal bridge.

This alternative synthesis of 3a is clearly more convenient than the route via hydroxyphenylnaphthoquinone 2a, not only because it is both shorter and more efficient, but because it avoids experimental problems encountered with the former route due to the manipulation of quinone compounds in earlier stages of the synthesis. Moreover, this new route constitutes a novel synthetic approach to benzonaphthofurans 13,¹⁸ as illustrated by the preparation of benzonaphthofuran 13a (brazan), which was originally isolated² from coal tar distillate.

The general interest of this novel route was immediately demonstrated by the similar transformation of methoxyindanone **7b** into benzonaphthofuran **13b** and its benzofuronaphthoquinone derivative **3b** via benzylideneindanone **9b**, benzylindanone **10b**, benzylindene **11b**, ketoaldehyde **5b** and bromophenylnaphthol **6b**. In this case, catalytic hydrogenation of benzylideneindanone **9b** was accompanied by the undesired hydrogenolysis of its C–Br bond. Indeed, an oil consisting of a mixture of the bromobenzylindanone **10c** (major component) and benzylindanone **10d** (minor component) was obtained and only a small portion the desired compound **10c** could be isolated from this. However, **10c** was efficiently obtained as follows: treatment of methoxyindanone **7b** with NaH and diethyl carbonate gave 2-ethoxycarbonyl-1-indanone **14b** in 62% yield. This compound was efficiently converted into 2-ethoxycarbonyl-1-indanone **15b** by reaction with NaH and *o*-bromobenzyl bromide.¹⁹ Finally, a solution of **15b** and concentrated HBr was heated under reflux in acetic acid for 1.5 h. This reaction gave the desired *o*-bromobenzylindanone **10c** in 72% yield as a result of the hydrolysis of the ester functionality followed by decarboxylation of the resulting ketoacid.²⁰

We next proceeded to apply this novel 2-phenylnaphthalene-based methodology for the synthesis of benzonaphthofurans 13 and benzofuronaphthoquinones 3 to the preparation of related benzonaphthopyranone 17a and benzopyronaphthoquinone 4.

2-Ethoxycarbonyl-1-indanone **14a** was quantitatively transformed into the corresponding 2-ethoxycarbonyl-2-benzyl-1-indanone **15a** by reaction¹⁹ with 2-ethoxycarbonylbenzyl bromide, which was obtained²¹ by reaction of o-ethoxycarbonyltoluene with NBS (Scheme 3). A solution of 15a in acetic acid was reacted with HBr at 120 °C for 3.25 h in order to hydrolyse the two ester functions and to transform the resulting dicarboxylic acid 15c into benzylindanone 10e by decarboxylation.²⁰ Unexpectedly, the only compound formed was the spiro diindanone 16a,²² as deduced from spectroscopic and analytical data. The mass spectrum indicated a molecular formula $C_{17}H_{12}O_2$ for this compound. Moreover, the IR spectrum showed bands at 1720 and 1694 cm^{-1} due to the two carbonyl groups. The ¹H NMR spectrum showed two signals at 3.73 and 3.20 ppm, corresponding to the two methylene groups, together with signals for a total of eight aromatic protons. Characteristic signals in the ¹³C NMR spectrum were observed at 153.8 ppm, due to the spiranic quaternary carbon, and 202.07 ppm, due to the carbonyl groups. Formation of spiro compound **16a** can be explained by assuming that indanone 15a readily undergoes a highly regioselective hydrolysis of the ethoxycarbonyl group in the position α to the ketone. This is followed by decarboxylation and subsequent intramolecular mixed Claisen condensation of the resulting ethoxycarbonylbenzylindanone 15d under the acidic reaction conditions.

As expected, reaction of **16a** with NaOH readily gave a retro-aldol process and led to the desired indanone ketoacid **10e**.²³ This compound was subjected to a reaction sequence similar to that used for the transformation of bromo compounds **6** into benzofuronaphthoquinones **3**. Thus, reduction of ketoacid **10e** with NaBH₄ gave a quantitative yield of a mixture of indanols, which were reacted with 10% HCl in dioxane to provide the desired indene **11c**. Subsequent ozonolysis of **11c** gave the key ketoaldehyde **5c**, which was reacted with NaOH directly to furnish the target compound **17a**. This process probably involves the initial formation of the expected 2-naphthol **6c** resulting

Scheme 3. 15: (a) R = H, R' = Et, $X = CO_2Et$; (c) R = H, R' = OH, $X = CO_2H$; (d) R = X = H, R' = Et; (e) R = OMe, R' = Et, $X = CO_2Et$; (f) R = OMe, R' = OH, $X = CO_2H$; (g) R = OMe, X = H, R' = Et, 10: (e) $R_1 = R_2 = H$; (f) $R_1 = OMe$, $R_2 = H$; (g) $R_1 = H$, $R_2 = OMe$; **5**, **6.11**: (c) $R_1 = R_2 = H$; (d) $R_1 = OMe$, $R_2 = H$; (e) $R_1 = H$, $R_2 = OMe$; **5**, **6.11**: (c) $R_1 = R_2 = H$; (d) $R_1 = OMe$, $R_2 = H$; (e) $R_1 = H$, $R_2 = OMe$; **5**, **6.11**: (c) $R_1 = R_2 = H$; (d) $R_1 = OMe$, $R_2 = H$; (e) $R_1 = H$, $R_2 = OMe$. **16**, **17**: (a) $R_1 = R_2 = H$; (b) $R_1 = OMe$, $R_2 = H$; (c) $R_1 = H$, $R_2 = OMe$. Conditions. (i) HBr, AcOH, reflux, 3.25 h. (ii) 1.25 M aq NaOH, EtOH, reflux, 5 h. (iii) (a) NaBH_4, MeOH, 0 - > 5 °C, 8.25 h; (b) HCl, dioxan, reflux, 10.5 h. (iv) (a) O3, -78 °C, 3–6 min; (b) Me_2S , -78 °C (4–7 h), rt (13 h). (v) NaOH aq, rt, 1.5–2 h. (vi) CrO₃, AcOH, reflux, 10 min.

from the intramolecular aldol cyclization, followed by the spontaneous lactonization of this compound under the reaction conditions. Finally, as predicted, benzonaphthopyranone 17a was easily oxidized to benzopyronaphthoquinone 4 when reacted with CrO₃.

The synthesis of **4** reported here is clearly more convenient than previous routes⁶ via hydroxyphenylnaphthoquinones **2** and has the additional advantage that it allows the generation of the quinone moiety to be left until the final step of the synthesis. This aspect overcomes the problems associated with the manipulation of quinone compounds. Moreover, the new route constitutes the first total synthesis of 6-oxa-benzo[*a*]anthracen-5-one, as illustrated by the preparation of benzonaphthopyranone **17a**.

A predictable limitation of this route to benzonaphthopyranones 17 was confirmed in the attempt to obtain methoxybenzonaphthopyranone 17b from 2-ethoxycarbonyl-2-benzyl-1-indanone 15e, prepared by reaction of methoxyindanone 14b with 2-ethoxycarbonylbenzyl bromide. As expected, treatment of 15e with HBr, as described above, gave diindanone 16b but reaction of this compound with NaOH gave a mixture of indanone ketoacids 10f and 10g. Since isolation of these compounds from the mixture was not very efficient, they could not be transformed into the corresponding benzonaphthopyranones 17b and 17c.

In conclusion, we describe here a divergent synthesis of benzofuronaphthoquinones **3** from phenylketopropylbenzaldehydes **5**. The route via 2-hydroxy-3-phenyl-1,4naphthoquinones **2** constitutes a more generally applicable version of a previously described route. The alternative shorter and more efficient route includes a novel total synthesis of benzonaphthofurans **14** and the efficient oxidation of these materials to benzofuronaphthoquinones **3**. The extension of this novel synthetic methodology to benzopyronaphthoquinones **4** resulted in the first total synthesis of benzonaphthopyranone **17a**. This target compound was efficiently oxidized to unsubstituted benzopyronaphthoquinone **4**. This route does, however, seems to be limited to the preparation of benzonaphthopyranones **17** with a substitution pattern compatible with the opening of spiro compound **16** to a single indanone ketoacid **10**.

Work is now in progress to overcome this limitation and to extend the 2-phenylnaphthalene-based synthetic methodology reported here to the preparation of tetracyclic 2-phenylnaphtahlene derivatives other than benzonaphthofurans 14, benzofuronaphthoquinones 3, benzonaphthopyranones 17 and benzopyronaphthoquinones 4. It is envisaged that the route will also include indolonaphthoquinones and ellipticines, which are known to show antitumour properties.

1. Experimental

1.1. General

Melting points were determined on a Kofler Thermogerate apparatus and are uncorrected. Infrared spectra were recorded on a MIDAC FTIR spectrophotometer. Nuclear magnetic resonance spectra were recorded, unless otherwise specified, on a Bruker WM-250 apparatus, using deuterochloroform solutions containing tetramethylsilane as internal standard. Mass spectra were obtained on a Kratos MS 50 TC mass spectrometer. Thin layer chromatography (tlc) was performed using Merck GF-254 type 60 silica gel and CH₂Cl₂/MeOH mixtures as eluants; the tlc spots were visualized with ultraviolet light or iodine vapour. Column chromatography was carried out using Merck type 9385 silica gel. Solvents were purified as per Ref. 24. Solutions of extracts in organic solvents were dried with anhydrous sodium sulfate.

1.1.1. 2-(2-Bromobenzylidene)indan-1-one (9a). A solution of 1-indanone (1 g, 7.5 mmol) in dry MeOH (18 mL) was added dropwise under argon to a solution of 2-benzaldehyde (0.93 mL, 7.95 mmol) and sodium methoxide (120 mg, 2.35 mmol) in dry MeOH (22 mL). The mixture was stirred at rt for 15 h and poured into water (50 mL). The resulting suspension was acidified by the addition of 20% aq HCl and extracted with CH_2Cl_2 (3×100 mL). The combined organic extracts were dried and concentrated to dryness in vacuo. Crystallisation of the solid residue from MeOH yielded the title compound as white needless (2.2 g, 98%). Mp 134-136 °C (MeOH). IR ($\bar{\nu}$, cm⁻¹, NaCl): 1695 (C=O), 1621 (C=C). ¹H NMR (δ , ppm): 3.94 (s, 2H, CH₂), 7.23 (m, 1H, Ar–H), 7.35–7.68 (m, 6H, 6×Ar–H), 7.91 (δ , 1H, J= 7.6 Hz, Ar–H), 7.97 (s, 1H, HC=C). ¹³C NMR (δ , ppm): 31.7 (CH₂), 124.6 (CH), 126.2 (CH), 126.6 (C), 127.5 (CH), 127.8 (CH), 130.0 (CH), 130.5 (CH), 132.5 (CH), 133.6 (CH), 134.8 (CH), 135.4 (C), 137.1 (C), 138.0 (C), 149.8 (C), 193.8 (C=O). MS (m/z, %): 300 $[(M+2)^+, 2]$, 298 $(M^+, 1.7)$, 219 $[(M-79.9)^+, 100]$, 189 (32). Anal. Calcd for C₁₆H₁₁BrO, C: 64.24; H: 3.71; Br: 26.71. Found C: 64.41; H: 3.68; Br: 27.03.

1.1.2. 2-(2-Bromobenzyl)indan-1-one (10a). 10% Pd-C (50 mg) was added to a deoxygenated solution of bromobenzylideneindanone 9a (0.96 g, 3.21 mmol) in ethyl acetate (80 mL) and the mixture was stirred under a hydrogen atmosphere (1 atm) at rt for 1 h 15 min. After removal of the excess of hydrogen in vacuo, the reaction mixture was filtered though Celite, which was eluted with ethyl acetate. The filtrate was concentrated to dryness in vacuo to give the title compound as white crystals (0.947 g, 98% yield). Mp 67–69 °C (MeOH). IR ($\bar{\nu}$, cm⁻¹, NaCl): 1710 (C=O). ¹H NMR (δ , ppm): 2.86 (m, 2H, -CH₂), 3.11-3.18 (m, 2H, CH₂, CH), 3.53 (dd, 1H, J=14.1 Hz, J'=4.0 Hz, CH₂), 7.10 (m, 1H, Ar–H), 7.23–7.34 (m, 2H, $2 \times \text{Ar-H}$, 7.37–7.43 (m, 2H, $2 \times \text{Ar-H}$), 7.55–7.61 (δ , 2H, J=7.5 Hz, 2×Ar–H), 7.79 (δ , 1H, J=7.5 Hz, Ar–H). ¹³C NMR (δ, ppm): 32.1 (CH₂), 36.9 (CH₂), 47.5 (CH), 124.1 (CH), 124.9 (C), 126.7 (CH), 127.5 (CH), 127.6 (CH), 128.2 (CH), 131.0 (CH), 133.1 (CH), 134.9 (CH), 136.6 (C), 139.2 (C), 153.5 (C), 207.4 (C=O). MS (m/z, %): 301 $[(M+2)^+,$ 0.15], 299 (M⁺, 0.09), 221 [(M-79.9)⁺, 100], 131 (26). Anal. Calcd for C₁₆H₁₃BrO, C: 63.81; H: 4.35; Br: 26.53. Found C: 64.09; H: 4.23; Br: 26.87.

1.1.3. 2-(2-Bromobenzyl)-1*H***-indene (11a).** Small portions of NaBH₄ (540 mg, 1.43 mmol) were added every 15 min during 1 h to a solution of benzylindanone **10a** (700 mg, 0.23 mmol) in MeOH (60 mL) cooled to 0–5 °C using a water/ice bath. The mixture was stirred at rt for 30 min and poured into water (100 mL). The MeOH was evaporated in vacuo and the remaining suspension was extracted with CH₂Cl₂ (3×100 mL) and the combined organic extracts were washed with water (3×100 mL), dried and concentrated to dryness in vacuo. The remaining solid was immediately mixed with 9 M H₂SO₄ (75 mL) and the

stirred suspension was refluxed in a dry atmosphere for 30 min. 20% aq NaOH was added until a basic pH was attained and the suspension was extracted with CH₂Cl₂ (3× 100 mL). The combined organic extracts were dried and concentrated to dryness in vacuo. The remaining solid was submitted to flash column chromatography (eluant: ethyl acetate/hexane, 0.3:9.7) to give the title compound in 96% yield (0.638 g) as a yellow oil. IR ($\bar{\nu}$, cm⁻¹, NaCl): 3071 (C=C). ¹H NMR (δ , ppm): 3.39 (s, 2H, –CH₂), 4.01 (s, 2H, –CH₂), 6.52 (s, 1H, HC=C), 7.13–7.34 (m, 6H, 6×Ar–H), 7.42 (δ , 1H, J=7.2 Hz, Ar–H), 7.63 (d, 1H, J=8.2 Hz, Ar–H). ¹³C NMR (δ , ppm): 37.9 (CH₂), 41.1 (CH₂), 120.4 (CH), 123.6 (CH), 124.1 (CH), 124.8 (CBr), 126.4 (CH), 127.7 (CH), 128.1 (CH), 128.5 (CH), 131.1 (CH), 139.6 (C), 143.4 (C), 145.4 (C), 147.6 (C). HRMS: C₁₆H₁₃Br (M⁺), calcd 284.0201; found 284.0199.

1.1.4. 2-[3-(2-Bromophenyl)-2-oxopropyl]benzaldehyde (5a). N_2 and O_2 were bubbled consecutively for 10 min each through a solution of indene 11a (400 mg, 1.39 mmol) in CH_2Cl_2 (60 mL) at -78 °C connected to an ozonizer. O₃ was then bubbled through the solution for 2 min until a blue colour appeared due to the presence of ozonide. O_2 was then bubbled through for 10 min to destroy the excess O_3 and finally N₂ was bubbled through for 5 min. Dimethyl sulfide (1.9 mL, 26.38 mmol) was added and the mixture was stirred at -78 °C under argon for 7 h and at rt for 13 h. The solvent was removed in vacuo and the solid residue was submitted to column chromatography (eluant: ethyl acetate/ hexane, 0.5:9.5) to give the target compound (324 mg) in 73% yield as white crystals. Mp 68-69 °C (MeOH). IR $(\bar{\nu}, \text{ cm}^{-1}, \text{ NaCl})$: 1719, 1693 (CHO, C=O). ¹H NMR (δ, ppm): 4.11 (s, 2H, CH₂), 4.20 (s, 2H, CH₂), 7.24–7.53 (m, 7H, 7×Ar–H), 7.56 (t, 1H, J=1.8 Hz, Ar–H), 10.01 (s, 1H, CHO). ¹³C NMR (δ, ppm): 47.1 (CH₂), 50.0 (CH₂), 125.2 (C), 127.6 (CH), 127.8 (CH), 128.8 (CH), 132.2 (CH), 132.8 (2×CH), 133.7 (CH), 134.4 (C), 134.9 (C), 135.0 (CH), 135.8 (C), 193.3 (C=O), 203.2 (C=O). MS (*m*/*z*, %): 318 [(M+2)⁺, 0.37], 316 (M⁺, 0.34), 237 [(M-79.9)⁺ 2], 171 (36.4), 169 (37.6), 147 (100), 119 (88), 91 (65). Anal. Calcd for C₁₆H₁₃BrO₂, C: 60.59; H: 4.13; Br: 25.19. Found C: 60.32; H: 4.19; Br: 24.96.

1.1.5. 3-(2-Bromophenyl)naphthalen-2-ol (6a). A solution of ketoaldehyde 5a (200 mg, 0.63 mmol) in 5% aq NaOH (10 mL) was magnetically stirred in a dry atmosphere at rt for 1 h. The reaction mixture was acidified by adding 10% aq HCl and the resulting suspension was extracted with CH_2Cl_2 (3×25 mL). The combined organic extracts were washed with water (25 mL), dried and concentrated to dryness in vacuo to give a quantitative yield of the title compound (188 mg) as an oil. IR ($\bar{\nu}$, cm⁻¹, NaCl): 3535 (OH). ¹H NMR (δ , ppm): 7.18–7.42 (m, 6H, 6×Ar–H), 7.59 (s, 1H, Ar–H), 7.67–7.73 (m, 3H, 3×Ar–H). ¹³C NMR (δ , ppm): 110.3 (CH), 124.0 (CH), 124.4 (C), 125.9 (C), 126.4 (CH), 126.7 (CH), 127.8 (2×CH), 128.6 (C), 130.0 (2× CH), 132.2 (CH), 133.2 (CH), 134.7 (C), 137.8 (C), 150.7 (C=O). MS (m/z, %): 300 $[(M+2)^+, 66]$, 298 $(M^+, 69)$, 219 (72), 218 (98), 191 880), 189 (100), 109 (42), 95 (63). HRMS: C₁₆H₁₁BrO (M⁺), calcd 297.9993; found 297.9994.

1.1.6. 3-(2-Bromophenyl)-1,2-naphthoquinone (12a). A solution of Fremy's salt (1.187 g, 4.42 mmol) and

potassium biphosphate (215 mg, 1.58 mmol) in water (30 mL) was added to a solution of naphthol **6a** (137 mg, 0.46 mmol) in acetone (13 mL). The suspension was stirred in a dry atmosphere at rt for 1 h and the acetone was evaporated in vacuo. The pink suspension was extracted with CH_2Cl_2 (3×25 mL) and the combined organic layers were washed with water (25 mL), dried and concentrated to dryness in vacuo. The solid residue was submitted to flash column chromatography (eluant: ethyl acetate/hexane, 1:9) and the title compound was isolated as red crystals (133 mg, 94% yield). Mp 164–166 °C (MeOH). IR ($\bar{\nu}$, cm⁻¹, NaCl): 1675 (C=O). ¹H NMR (δ , ppm): 7.15–7.64 (m, 8H, 7× Ar–H, CH=C), 8.08 (d, 1H, J=7.6 Hz, Ar–H). ¹³C NMR (δ, ppm): 123.4 (CBr), 127.4 (CH), 130.2 (2×CH), 130.3 (CH), 130.8 (CH), 131.1 (CH), 131.4 (C), 133.0 (CH), 134.7 (C), 135.5 (C), 135.9 (CH), 139.6 (C), 144.1 (CH), 178.8 $(C=0), 178.9 (C=0). MS (m/z, \%): 286 \{[(M-28)+2]^+, \}$ 15.2, 284 [(M-28)⁺, 15.2], 205 (100), 176 (43). Anal. Calcd for C₁₆H₉BrO₂, C: 61.37; H: 2.90; Br: 25.52. Found C: 61.72; H: 2.93; Br: 25.11.

1.1.7. 2-(2-Bromophenyl)-3-hydroxy-1,4-naphthoquinone (2a). 20% ag sulfuric acid (2 mL) was added to a suspension of quinone 12a (31 mg, 0.09 mmol) in MeOH (2 mL) and the mixture was refluxed for 94 h. The MeOH was removed in vacuo and the resulting suspension was poured into water (25 mL) and extracted with CH_2Cl_2 (3× 25 mL). The combined organic extracts were washed with water (25 mL), dried and concentrated to dryness in vacuo. The solid residue was submitted to flash column chromatography (eluant: ethyl acetate/hexane, 1:1) and the title compound was obtained (30 mg, 93% yield) as red crystals. Mp 172–174 °C (MeOH). IR $(\bar{\nu}, \text{ cm}^{-1}, \text{ NaCl})$: 3425 (OH), 1635 (C=O). ¹H NMR (δ , ppm): 6.99–7.14 (m, 3H, 3× Ar–H), 7.46–7.55 (m, 2H, $2 \times$ Ar–H), 7.66 (t, 1H, J =7.5 Hz, Ar–H), 7.94 (δ , 2H, J=7.6 Hz, 2×Ar–H). ¹³C NMR (δ, ppm, CDCl₃/MeOD): 119.9 (C), 124.9 (C), 125.1 (2×CH), 125.7 (CH), 127.2 (CH), 129.9 (C), 130.4 (CH), 131.1 (CH), 132.2 (CH), 134.1 (CH), 134.4 (C), 136.0 (C), 167.5 (C), 181.1 (C=O), 189.1 (C=O). MS (m/z, %): 249 $[(M-79.9)^+, 100], 165 (32)$. Anal. Calcd for C₁₆H₉BrO₃, C: 58.38; H: 2.76; Br: 24.28. Found C: 50.82; H: 2.83; Br: 24.62.

1.1.8. Benzo[b]naphtho[2,3-d]furan-6,11-dione (3a). A mixture of naphthoquinone 2a (30 mg, 0.09 mmol), CuO (23 mg, 0.28 mmol) and K₂CO₃ (64 mg, 5.1 mmol) in dry deoxygenated pyridine (3 mL) was refluxed under argon for 4 h. The mixture was then added to 20% aq HCl solution (40 mL) and the resulting suspension was extracted with CH_2Cl_2 (3×25 mL). The combined organic layers were washed with 10% aq NaOH (3×25 mL), dried, filtered and concentrated in vacuo. The solid residue was submitted to flash column chromatography (eluant: ethyl acetate/hexane, 1:9) to give the title compound (16 mg, 71% yield) as yellow crystals. Mp 245–247 °C (MeOH). IR ($\bar{\nu}$, cm⁻¹, NaCl): 1674 (C=O). ¹H NMR (δ, ppm): 7.48–7.81 (m, 5H, 5×Ar-H), 8.22–8.34 (m, 3H, 3×Ar-H). ¹³C NMR (δ , ppm): 112.9 (CH), 122.7 (C), 124.0 (CH), 124.3 (C), 126.1 (CH), 126.8 (CH), 126.9 (CH), 129.6 (CH), 132.4 (C), 133.3 (C), 133.9 (CH), 134.2 (CH), 153.5 (C), 156.5 (C), 175.5 (C=O), 181.4 (C=O). MS (*m*/*z*, %): 248 (M⁺, 100), 220

(46), 163 (51). Anal. Calcd for C₁₆H₈O₃, C: 77.42; H: 3.25. Found C: 77.29; H: 3.33.

1.1.9. Benzo[*b*]naphtho[2,3-*d*]furan (13a). Reaction of a suspension of bromonaphthol **6a** (30 mg, 0.10 mmol), CuO (0.31 mg, 3.1 mmol) and potassium carbonate (70 mg, 5.1 mmol) in dry deoxygenated pyridine was subjected to the same conditions as for the preparation of benzofuronaphthoquinone **3a**. The title compound was obtained as white crystals (16 mg, 73% yield). Mp 210–212 °C (MeOH). ¹H NMR (δ , ppm): 7.35–7.58 (m, 5H, 5× Ar–H), 7.93 (s, 1H, Ar–H), 7.96–8.07 (m, 3H, 3×Ar–H), 8.42 (s, 1H, Ar–H). ¹³C NMR (δ , ppm): 106.9 (CH), 111.6 (CH), 119.1 (CH), 121.3 (CH), 122.7 (CH), 123.9 (C), 124.3 (CH), 125.4 (C), 125.9 (CH), 127.8 (CH), 128.3 (2×CH), 130.2 (C), 133.0 (C), 154.8 (CO), 157.6 (CO). MS (*m*/*z*, %): 218 (M⁺, 100), 189 (24). Anal. Calcd for C₁₆H₁₀O, C: 88.05; H: 4.62. Anal. Calcd for C₁₆H₁₆O, C: 88.05; H: 4.67.

1.1.10. Benzo[b]naphtho[2,3-d]furan-6,11-dione (3a). A solution of CrO_3 (75 mg, 0.76 mmol) in glacial acetic acid (6 mL) and water (1 mL) was added to a solution of benzonnaphthofuran **13a** (30 mg, 0.14 mmol) in glacial acetic acid and the mixture was refluxed during 10 min. The suspension was poured into CH_2Cl_2 (25 mL) and the organic phase was washed with water (3×25 mL), dried and concentrated in vacuo. The title compound was obtained as a yellow solid (34 mg, 100% yield).

1.1.11. 2-(2-Bromobenzylidene)-5-methoxyindan-1-one (9b). 1-Methoxyindanone 7b (2 g, 12.33 mmol) and o-bromobenzaldehyde (1.526 mL, 13.07 mmol) were reacted under the same conditions as for the preparation of benzylideneindanone 9a to give the title compound as white crystals (3.31 g, 85% yield). Mp 158–160 °C (MeOH). IR ($\bar{\nu}$, cm⁻¹, NaCl): 1685 (C=O), 1628 (C=C). ¹H NMR (δ , ppm): 3.81 (s, 2H, CH₂), 3.86 (s, 3H, OCH₃), 6.88–6.91 (m, 2H, 2×Ar–H), 7.17 (m, 1H, Ar–H), 7.34 (t, J=7.5 Hz, 1H, Ar–H), 7.58–7.63 (m, 2H, $2 \times Ar-H$), 7.77-7.85 (m, 2H, $2 \times Ar-H$). ¹³C NMR (δ, ppm): 31.7 (CH₂), 55.6 (CH₃), 109.5 (CH), 115.3 (CH), 126.1 (CH), 126.2 (C), 127.3 (CH), 129.7 (CH), 130.1 (CH), 131.0 (CH), 131.2 (C), 133.3 (CH), 135.3 (C), 137.5 (C), 152.5 (C), 165.2 (C=O), 191.9 (C=O). MS (*m*/*z*, %): 330 [(M+2)⁺, 42], 328 (M⁺, 43), 249 [(M-79.9)⁺, 100], 243 (23). Anal. Calcd for C₁₇H₁₃BrO₂, C: 62.03; H: 3.98; Br: 24.27. Found C: 62.31; H: 4.05; Br: 23.96.

1.1.12. 2-(2-Bromobenzyl)-5-methoxyindan-1-one (10c). Catalytic hydrogenation of bromobenzylideneindanone **9b** (1 g, 2.94 mmol), under the same conditions as for analogue **10a**, resulted in a mixture of the title compound and benzylindanone **10d**. The mixture was purified by flash column chromatography (eluant: ethyl acetate/hexane, 1:9) to give the title compound (0.099 g, 9.8% yield) as a colourless oil. IR ($\bar{\nu}$, cm⁻¹, NaCl): 1701 (C=O). ¹H NMR (δ , ppm, CDCl₃): 2.81 (m, 2H, CH₂), 3.09 (m, 2H, CH₂), 3.50 (m, 1H, CH), 3.85 (s, 3H, OMe), 6.81–6.91 (m, 2H, ArH), 7.08 (m, 1H, ArH), 7.21–7.29 (m, 2H, ArH), 7.55 (m, 1H, ArH), 7.70 (dd, J=8.5 Hz, J'=2.8 Hz, 1H, ArH). ¹³C NMR (δ , ppm, CDCl₃): 32.1 (CH₂), 36.9 (CH₂), 47.5 (CH), 55.5 (OMe), 109.6 (CH), 115.4 (CH), 124.7 (C), 125.6

1359

(CH), 127.4 (CH), 128.0 (CH), 129.6 (C), 130.8 (CH), 132.9 (CH), 139.1 (C), 156.4 (C), 165.3 (C), 205.5 (C=O). HRMS: $C_{17}H_{15}BrO_2$ (M⁺), calcd 330.0255; found 330.0258.

1.1.13. 5-Methoxy-1-oxoindan-2-carboxylic acid ethyl ester (14b). A solution of methoxyindanone 7b (5.1 g, 32 mmol) in benzene (75 mL) was added dropwise under argon during 4.5 h to a mixture of 80% sodium hydride (1.66 g, 69 mmol), diethyl carbonate (7.5 mL, 62 mmol) and benzene (40 mL) under reflux. A further quantity of benzene (4.5 mL) was added and the mixture was heated for a further 0.5 h. Water (35 mL) and acetic acid (6 mL) were added to the reaction mixture and the organic layer was separated and the aqueous layer extracted with benzene ($2 \times$ 75 mL) and diethyl ether $(2 \times 75 \text{ mL})$. The combined organic extracts were dried and concentrated in vacuo. The solid residue was submitted to flash column chromatography (eluant: CH₂Cl₂/hexane, 9:1) and the resulting solid was refluxed in hexane (500 mL) for 30 min and filtered immediately. The filtrate was concentrated to dryness in vacuo to give the title compound as white crystals (6.35 g, 62% yield). Mp 63-65 °C (ethyl acetate/ hexane). IR ($\bar{\nu}$, cm⁻¹, KBr): 1262 (C–OMe), 1707 (CO₂Et), 1738 (C=O). ¹H NMR (δ , ppm): 1.25 (t, J=7.2 Hz, 3H, -CH₃), 3.21-3.29 (m, 1H, -CH₂), 3.41-3.48 (m, 1H, -CH₂), 3.62-3.66 (m, 1H, -CH), 3.83 (s, 3H, -OCH₃), 4.19 (q, J =7.2 Hz, 2H, -CH₂O), 6.84-6.87 (m, 2H, ArH), 7.61-7.64 (m, 1H, ArH). ¹³C NMR (δ, ppm): 13.9 (CH₃), 30.0 (CH₂), 53.2 (CH), 55.4 (CH₃), 61.2 (CH₂), 109.2 (CH), 115.6 (CH), 125.8 (CH), 128.1 (C), 156.5 (C), 165.6 (C), 169.1 C=O), 197.3 (C=O). MS (m/z, %): 234 (M⁺, 50), 188 (29), 160 (100).

1.1.14. 2-(2-Bromobenzyl)-5-methoxy-1-oxo-indan-2carboxylic acid ethyl ester (15a). A mixture of 80% sodium hydroxide (24 mg, 1.13 mmol), indanone 14a (237 mg, 1.10 mmol) and N,N-dimethylformamide (0.5 mL) was heated at 60 °C for 1 h. A solution of 98% 2-bromobenzyl bromide (290 mg, 1.16 mmol) in N,Ndimethylformamide (0.8 mL) was added and the mixture was heated at 60 °C for 44.5 h. A few drops of water were added and the suspension was extracted with diethyl ether $(3 \times 10 \text{ mL})$. The combined organic extracts were washed with saturated aq sodium chloride, dried and concentrated to dryness in vacuo. The solid residue was submitted to flash column chromatography (eluant: CH2Cl2/hexane, 3:1) and the title compound was isolated as a transparent oil (319 mg, 78% yield). IR ($\bar{\nu}$, cm⁻¹, KBr): 1263 (C–OMe), 1706 (CO₂Et), 1738 (C=O). ¹H NMR (δ , ppm, CDCl₃): 1.15 (t, J = 7.1 Hz, 3H, $-CH_3$), 3.05 (δ , J = 17.5 Hz, 1H, CHH), 3.43 (d, J = 14.7 Hz, 1H, CHH), 3.58 (δ , J = 17.5 Hz, 1H, CHH), 3.71 (s, 1H, CHH), 3.76 (s, 3H, OMe), 4.13 (q, J =7.2 Hz, 2H, $-OCH_2$), 6.74 (δ , J = 1.9 Hz, 1H, ArH), 6.81 (m, 1H, ArH), 6.90–6.96 (m, 1H, ArH), 7.00–7.06 (m, 1H, ArH), 7.16 (m, 1H, ArH), m (m, 1H, ArH), 7.67 (m, 1H, ArH). ¹³C NMR (δ, ppm, CDCl₃): 13.8 (CH₃), 34.9 (CH₂), 37.8 (CH₂), 55.4 (CH₃), 61.6 (CH₂), 109.0 (CH), 115.7 (CH), 125.9 (CH), 126.1 (CH), 127.2 (CH), 128.1 (CH), 130.9 (CH), 132.7 (CH), 136.4 (C), 156.6 (C), 165.6 (C), 170.6 (C=O), 199.9 (C=O). HRMS: $C_{20}H_{19}BrO_4$ (M⁺), calcd 402.0467; found 402.0463.

1.1.15. 2-(2-Bromobenzyl)-5-methoxyindan-1-one (10c). A suspension of indanone **15a** (128 mg, 0.317 mmol), 48% HBr (0.7 mL) and 96% AcOH (0.6 mL) was stirred at 120 °C for 1.5 h. The mixture was cooled and diluted with water (5 mL). The organic material was extracted with diethyl ether $(3 \times 10 \text{ mL})$ and the combined organic extracts were dried and concentrated in vacuo. The solid residue was submitted to flash column chromatography (eluant: CH₂Cl₂/ hexane, 5.5:4.5) and the title compound (76 mg, 72% yield) was isolated as an oil (76 mg, 72% yield). IR (NaCl, $\bar{\nu}$, cm⁻ 1): 1701 (C=O). ¹H NMR (δ, ppm, CDCl₃): 2.81 (m, 2H, CH₂), 3.09 (m, 2H, CH₂), 3.50 (m, 1H, CH), 3.85 (s, 3H, -OMe), 6.81-6.91 (m, 2H, ArH), 7.08 (m, 1H, ArH), 7.21-7.29 (m, 2H, ArH), 7.55 (m, 1H, ArH), 7.70 (dd, J=8.5 Hz, J' = 2.8 Hz, 1H, ArH). ¹³C NMR (δ , ppm, CDCl₃): 32.1 (CH₂), 36.9 (CH₂), 47.5 (CH), 55.5 (CH₃), 109.6 (CH), 115.4 (CH), 124.7 (C), 125.6 (CH), 127.4 (CH), 128.0 (CH), 129.6 (C), 130.8 (CH), 132.9 (CH), 139.1 (C), 156.4 (C), 165.3 (C), 205.5 (C=O). HRMS: C₁₇H₁₅BrO₂ (M⁺), calcd 330.0255; found 330.0251.

1.1.16. 2-(2-Bromobenzyl)-6-methoxy-1*H*-indene (11b). Following the procedure for the preparation of benzylindene 11a, benzylindanone 10c (780 mg, 2.35 mmol) was transformed into the title compound (3.71 mmol, 88% yield). Mp 62–64 °C (MeOH). ¹H NMR (δ , ppm): 3.29 (s, 2H, CH₂), 3.78 (s, 3H, -OCH₃), 3.90 (s, 2H, CH₂), 6.38 (s, 1H, HC=C), 6.76 (dd, 1H, J=8.2 Hz, J'=2.4 Hz, Ar–H), 6.96 (m, 1H, Ar–H), 7.13 (δ , 1H, J=8.3 Hz, Ar–H), 7.25–7.23 (m, 3H, 3×Ar–H), 7.55 (δ , 1H, J=7.7 Hz, Ar–H). ¹³C NMR (δ, ppm): 37.9 (CH₂), 41.1 (CH₂), 55.5 (CH₃), 110.4 (CH), 111.7 (CH), 120.4 (CH). 124.7 (C), 126.1 (C), 127.5 (CH), 127.7 (CH), 127.9 (CH), 130.9 (CH), 132.9 (CH), 138.4 (C), 139.7 (C), 145.1 (C), 157.4 (CO). MS (*m*/*z*, %): 316 [(M+2)⁺, 14.8], 316 (M⁺, 15.0), 237 [(M-79.9)⁺ 9], 145 (100). Anal. Calcd for C₁₇H₁₅BrO, C: 64.78; H: 4.80; Br: 25.25. Found C: 64.92; H: 4.79; Br: 24.87.

1.1.17. 2-[3-(2-Bromophenyl)-2-oxopropyl]-4-methoxybenzaldehyde (5b). Ozonolysis of benzylindene 11b (195 mg, 0.62 mmol) under the same conditions as for analogue 11a gave the title compound as a white solid (131 mg, 61% yield). Mp 87–88 °C (MeOH). IR ($\bar{\nu}$, cm⁻¹, NaCl): 1723, 1684 (CHO, C=O). ¹H NMR (δ, ppm): 3.75 (s, 3H, OCH₃), 4.00 (s, 2H, CH₂), 4. 01 (s, 2H, CH₂), 6.62 $(\delta, 1H, J=2.3 \text{ Hz}, \text{Ar-H}), 6.83 \text{ (dd, 1H, } J=8.5 \text{ Hz}, J'=$ 2.3 Hz, Ar-H), 7.16–7.24 (m, 3H, 3×Ar-H), 7.47 (δ, 1H, J=7.9 Hz, Ar–H), 7.61 (δ , 1H, J=8.5 Hz, Ar–H), 9.76 (s, 1H, CHO). ¹³C NMR (δ, ppm): 47.3 (CH₂), 49.9 (CH₂), 55.4 (CH₃), 112.2 (CH), 118.8 (CH), 125.0 (C), 127.5 (CH), 128.6 (C), 128.7 (CH), 132.1 (CH), 132.6 (CH), 134.8 (C), 137.8 (CH), 138.2 (C), 163.5 (C=O), 191.7 (C=O), 203.2 (C=O). MS (m/z, %): 348 $[(M+2)^+, 0.52]$, 316 $(M^+, 0.60)$, 267 $[(M-79.9)^+, 2]$, 177 (92), 149 (100), 91 (33). Anal. Calcd for C₁₇H₁₅BrO₃, C: 58.81; H: 4.35; Br: 23.01. Found C: 59.12; H: 4.31; Br: 22.79.

1.1.18. 3-(2-Bromophenyl)-7-methoxynaphthalen-2-ol (**6b**). Reaction of ketoaldehyde **5b** with NaOH under the same conditions as for analogue **5a** provided the title compound as a colourless solid (344 mg, 95% yield). Mp 145–147 °C (EtOH/H₂O). IR ($\bar{\nu}$, cm⁻¹, NaCl): 3425 (OH). ¹H NMR (δ , ppm): 3.77 (s, 3H, –OCH₃), 6.87–6.92 (m, 2H,

2×Ar–H), 7.10–7.17 (m, 2H, 2×Ar–H), 7.26 (s, 1H, Ar–H), 7.27 (s, 1H, Ar–H), 7.44 (s, 1H, Ar–H), 7.51–7.60 (m, 2H, 2×Ar–H). ¹³C NMR (δ , ppm): 55.2 (CH₃), 104.4 (CH), 109.4 (CH), 116.7 (CH), 124.0 (C), 124.5 (C), 127.6 (C), 127.7 (CH), 129.3 (CH), 127.3 (CH), 129.7 (CH), 132.2 (CH), 133.0 (CH), 136.0 (C), 138.0 (C), 151.3 (C), 158.3 (C). MS (*m*/*z*, %): 330 [(M+2)⁺, 99.96], 316 (M⁺, 100), 250 (37), 234 (60), 206 (59), 178 (46), 175 (36). Anal. Calcd for C₁₇H₁₃BrO₂, C: 62.03; H: 3.98; Br: 24.27. Found C: 59.69; H: 3.91; Br: 24.62.

1.1.19. 8-Methoxybenzo[b]naphtho[2,3-d]furan (13b). Reaction of naphthol 6b (55 mg, 0.17 mmol) under the conditions used for analogue **6a** gave the title compound as a white solid (32 mg, 77% yield). Mp 208–210 °C (MeOH). IR $(\bar{\nu}, \text{cm}^{-1}, \text{NaCl})$: 1222 (C–O–C). ¹H NMR (δ, ppm) : 3.96 (s, 3H, $-OCH_3$), 7.14 (dd, 1H, J=9.0 Hz, J'=2.4 Hz, Ar–H), 7.24 (δ , 1H, J=5.5 Hz, Ar–H), 7.34 (t, 1H, J= 7.3 Hz, Ar-H), 7.43-7.56 (m, 2H, 2×Ar-H), 7.79 (s, 1H, Ar–H), 7.90 (δ , 1H, J=9.0 Hz, Ar–H), 8.01 (δ , 1H, J= 7.6 Hz, Ar–H), 8.30 (s, 1H, Ar–H). ¹³C NMR (δ, ppm): 55.3 (CH₃), 105.4 (CH), 105.8 (CH), 111.4 (CH), 117.7 (CH), 119.1 (CH), 120.9 (CH), 122.7 (CH), 123.0 (C), 124.2 (C), 125.8 (C), 127.7 (CH), 129.8 (CH), 134.5 (C), 155.6 (C), 157.3 (C), 157.8 (C). MS (*m*/*z*, %): 248 (M⁺, 93), 233 (18), 205 (100), 176 (22), 149 (29). Anal. Calcd for C₁₇H₁₂O₂, C: 82.24; H: 4.87. Found C: 81.89; H: 4.96.

1.1.20. 8-Methoxybenzo[*b*]naphtho[2,3-*d*]furan-6,11dione (3b). Oxidation of benzonaphthofuran 13b (15 mg, 0.06 mmol) under the same conditions as for analogue 13a yielded the title compound as a yellow solid (4 mg, 24% yield). Mp 254–256 °C (MeOH). IR ($\bar{\nu}$, cm⁻¹, NaCl): 1679 (C=O). ¹H NMR (δ , ppm): 4.00 (s, 3H, OCH₃), 7.23 (m, 1H, Ar–H), 7.50–7.61 (m, 2H, 2×Ar–H), 7.68–7.71 (m, 2H, 2×Ar–H), 8.18 (d, 1H, *J*=8.6 Hz, Ar–H), 8.32 (d, 1H, *J*=7.5 Hz, Ar–H). ¹³C NMR (δ , ppm): 56.0 (OCH₃), 111.0 (CH), 112.8 (CH), 119.9 (CH), 122.9 (C), 124.1 (CH), 124.4 (C), 126.0 (CH), 126.6 (C), 129.2 (CH), 129.6 (CH), 134.5 (C), 153.4 (C), 156.5 (C), 164.2 (C), 175.5 (C=O), 180.0 (C=O). MS (*m*/*z*, %): 278 (M⁺, 13), 149 (56), 85 (37), 83 (38), 71 (50), 69 (37), 58 (100), 57 (70). Anal. Calcd for C₁₇H₁₀O₄, C: 73.38; H: 3.62. Found C: 73.51; H: 3.54.

1.1.21. 2-(2-Methoxycarbonylbenzyl)-1-oxoindan-2-carboxylic acid ethyl ester (15b). Treatment of indanone 14a (4.602 g, 22.5 mmol) with o-methoxycarbonylbenzyl bromide under the same conditions as for analogue 14b furnished the title compound as a white solid (650 mg, 52%) yield). Mp 88–90 °C (MeOH). IR (,cm⁻¹, KBr): 1716 (3× C=O). ¹H NMR (δ , ppm, CDCl₃): 1.18 (t, J=7 Hz, 3H, CH₃), 3.05 (d, J=17.5 Hz, 1H, CHH), 3.58–3.70 (m, 2H, CH₂), 3.82 (s, 3H, OMe), 4.05 (d, J = 14 Hz, 1H, CHH), 4.16 (q, J=7 Hz, 2H, CH₂O), 7.16–7.34 (m, 5H, ArH), 7.48–7.53 (m, 1H, ArH), 7.72–7.81 (m, 2H, ArH). ¹³C NMR (δ, ppm, CDCl₃): 13.9 (CH₃), 35.6 (CH₂), 35.8 (CH₂), 52.0 (Me), 61.8 (C), 124.5 (CH), 126.1 (CH), 126.7 (CH), 127.4 (CH), 130.5 (CH), 131.1 (C), 131.4 (CH), 131.7 (CH), 135.1 (CH), 138.1 (C), 153.7 (C), 168.1 (C=O), 170.9 (C=O), 202.6 (C=O). MS (m/z, %, CI): 353 (M⁺ +1, 48), 321 (100), 307 (58), 275 (69), 205 (68). Anal. Calcd for C₂₁H₂₀O₅, C: 71.58; H: 5.72. Found C: 71.96; H: 5.59.

1.1.22. 2,2'-Spirobiindanone (16a). A mixture of indanone 15b (2.67 g, 7.58 mmol), 96% AcOH (5.5 mL) and 48%HBr (5 mL) was refluxed for 3.25 h. The cooled reaction mixture was diluted with water (40 mL) and the resulting suspension was extracted with diethyl ether $(3 \times 30 \text{ mL})$. The combined organic extracts were dried and concentrated in vacuo. Crystallisation of the solid residue from MeOH yielded the title compound as white crystals (1.731 g, 92% yield). Mp 171–173 °C (MeOH). IR $(\bar{v}, \text{ cm}^{-1}, \text{ KBr})$: 1694 (C=O), 1720 (C=O). ¹H NMR (δ , ppm, CDCl₃): 3.20 (d, J = 17 Hz, 2H, -CH₂), 3.73 (d, J = 17 Hz, 2H, -CH₂), 7.39-7.45 (m, 2H, ArH), 7.55–7.78 (m, 6H, ArH). ¹³C NMR (δ, ppm, CDCl₃): 38.0 (CH₂), 65.3 (C), 124.9 (CH), 126.3 (CH), 127.8 (CH), 135.2 (CH), 135.4 (C), 153.8 (C), 202.7 (C=O). MS (*m*/*z*, %): 248 (M⁺, 100), 220 (47), 191 (33). Anal. Calcd for C₁₇H₁₂O₂, C: 82.24; H: 4.87. Found C: 81.93; H: 4.79.

1.1.23. 2-(1-Oxoindan-2-vlmethyl)benzoic acid (10e). A stirred suspension of diindanone **16a** (1.731 mg, 6.97 mmol) and 1 M NaOH (1.25 mL) in EtOH (40 mL) was refluxed during 5 h. The ethanol was removed in vacuo and the remaining suspension was acidified by addition of 0.625 M HCl. The mixture was extracted with CHCl₃ (3 \times 75 mL) and the combined organic extracts were dried and concentrated in vacuo. Crystallisation of the solid residue from benzene provided the title compound as a white solid (1.632 mg, 88% yield). Mp 141–143 °C (benzene). IR ($\bar{\nu}$, cm⁻¹, KBr): 1688 (C=O), 1706 (C=O), 2906 (C-OH). ¹H NMR (δ , ppm, CDCl₃): 2.89 (d, J = 13.6 Hz, 1H, CHH), 3.10-3.24 (m, 3H, CHH and CH₂), 3.77-3.87 (m, 1H, CH), 7.30-7.58 (m, 6H, Ar-H), 7.77 (d, 1H, Ar-H), 8.07-8.10 (m, 1H, ArH), 10.70 (br s, 1H, -OH). ¹³C NMR (δ , ppm, CDCl₃): 32.3 (CH₂), 34.9 (CH₂), 48.6 (CH), 123.9 (CH), 126.4 (CH), 126.5 (CH), 127.3 (CH), 128.7 (C), 131.6 (CH), 131.8 (CH), 132.8 (CH), 134.7 (CH), 136.4 (C), 142.5 (C), 153.5 (C), 172.6 (C=O), 208.1 (C=O). MS (m/z, %): 266 (M⁺, 46), 248 (100), 220 (49), 131 (63). Anal. Calcd for C₁₇H₁₄O₃, C: 76.68; H: 5.30. Found C: 77.03; H: 5.19.

1.1.24. 2-(1*H***-Inden-2-ylmethyl)benzoic acid (11c).** Reaction of indanone **10e** (1.601 g, 6.01 mmol) under the same conditions as for analogue **10a** provided the title compound as a white solid (1.281 g, 85% yield). Mp 143–145 °C (ethyl acetate/hexane). IR ($\bar{\nu}$, cm⁻¹, KBr): 1687 (C=O), 2881 (C–OH). ¹H NMR (δ , ppm, CDCl₃): 3.34 (s, 2H, CH₂), 4.28 (s, 2H, CH₂), 6.37 (s, 1H, CH), 7.07–7.54 (m, 7H, ArH), 8.07–8.10 (m, 1H, ArH). ¹³C NMR (δ , ppm, CDCl₃): 35.8 (CH₂), 41.2 (CH₂), 120.2 (CH), 123.4 (CH), 123.8 (CH), 126.2 (CH), 126.5 (CH), 127.7 (CH), 128.3 (C), 131.7 (CH), 131.8 (CH), 133.0 (CH), 142.6 (C), 143.3 (C), 145.3 (C), 149.4 (C), 172.7 (C=O). MS (*m*/*z*, %): 250 (M⁺, 60), 232 (100), 202 (63), 115 (66). Anal. Calcd for C₁₇H₁₄O₂, C: 81.58; H: 5.64. Found C: 81.72; H: 5.57.

1.1.25. 2-[3-(2-Formylphenyl)-2-oxopropyl]benzoic acid (5c). Indene 10e (100 mg, 0.40 mmol) was subjected to the ozonolysis conditions used for the transformation of analogue 10a and the title compound was obtained as a white solid (50 mg, 44% yield). Mp 143–145 °C (ethyl acetate/hexane). IR ($\bar{\nu}$, cm⁻¹, KBr): ¹H NMR (δ , ppm, DMSO): 3.40 (s, 2H, CH₂), 3.47 (s, 2H, -CH₂), 6.27–6.78 (m, 7H, ArH), 6.94–7.05 (m, 1H, ArH), 9.13 (s, 1H, -CHO), 12.06 (br s, 1H, -CO₂H). ¹³C NMR (δ , ppm, CDCl₃): 37.9

(CH₂), 38.5 (CH₂), 127.5 (CH), 127.8 (CH), 128.1 (CH), 128.7 (CH), 128.8 (CH), 129.2 (C), 129.4 (CH), 134.2 (CH), 134.8 (CH), 136.6 (C), 136.9 (C), 137.7 (C), 165.0 (C=O), 194.0 (C=O), 205.0 (C=O). HRMS: $C_{17}H_{14}O_4$, (M⁺⁾, calcd 282.0892; found 282.0888.

1.1.26. 6-Oxabenzo[*a*]**anthracen-5-one** (**17a**). Ketoaldehyde **5c** (88 mg, 0.31 mmol) was reacted with NaOH in the same way as analogue **5a** to give the title compound as a white solid (43 mg, 56% yield). Mp 190–192 °C (MeOH). IR ($\bar{\nu}$, cm⁻¹, KBr): 1725 (C=O). ¹H NMR (δ , ppm, CDCl₃): 7.42–7.89 (m, 7H, ArH), 8.20 (d, J=8 Hz, 1H, ArH), 8.33–8.42 (m, 2H, ArH). ¹³C NMR (δ , ppm, CDCl₃): 113.5 (CH), 118.0 (C), 121.4 (C), 121.9 (CH), 122.4 (CH), 125.7 (CH), 127.2 (CH), 127.5 (CH), 128.2 (CH), 128.9 (CH), 130.1 (C), 130.6 (CH), 133.9 (C), 134.5 (C), 134.7 (CH), 148.7 (C), 160.9 (C=O). MS (m/z, %): 246 (M⁺, 100), 218 (32), 189 (48). Anal. Calcd for C₁₇H₁₀O₂, C: 82.91; H: 4.09. Found C: 83.24; H: 3.97.

1.1.27. 6-Oxabenzo[*a*]**anthracene-5,7,12-trione** (4). Oxidation of dibenzochromanone **17a** (35 mg, 0.13 mmol) under the same conditions as for benzonaphthofuran **13a** gave the title compound as a yellow solid (16 mg, 41% yield). Mp 251–253 °C (MeOH/acetone/CH₂Cl₂). IR ($\bar{\nu}$, cm⁻¹, KBr): 1755 (C=O), 1679 (C=O). ¹H NMR (δ , ppm, TFA): 7.78–8.05 (m, 4H, ArH), 8.23 (t, *J*=7.5 Hz, 2H, ArH), 8.47 (d, *J*=8 Hz, 1H, ArH), 9.27 (d, *J*=8.5 Hz, 1H, ArH). ¹³C NMR (δ , ppm, TFA): 118.0 (C), 121.3 (C), 126.7 (CH), 126.9 (CH), 128.3 (CH), 128.3 (C), 129.1 (C), 129.9 (CH), 131.1 (C), 131.8 (CH), 134.4 (CH), 135.8 (CH), 136.7 (CH), 149.5 (C), 161.7 (C=O), 178.8 (C=O), 184.1 (C=O). MS (*m*/*z*, %): 276 (M⁺, 13), 248 (100), 220 (20), 163 (43). Anal. Calcd for C₁₇H₈O₄, C: 73.91; H: 2.82. Found C: 74.36; H: 2.77.

1.1.28. 5-Methoxy-2-(2-methoxycarbonylbenzyl)-1oxoindan-2-carboxylic acid ethyl ester (15e). Reaction of 2-ethoxycarbonylindanone 14b (1.159 g, 3.16 mmol) with o-methoxycarbonylbenzyl bromide under the same conditions as for analogue 14a furnished the title compound as an oil (1.323 g, 73% yield). IR ($\bar{\nu}$, cm⁻¹, KBr): 1735 (C=O), 1717 (C=O). ¹H NMR (δ , ppm, CDCl₃): 1.19 (t, J=7.0 Hz, 3H, $-CH_3$), 3.56 (d, J=17.5 Hz, 1H, $-CH_1$), 3.65 (d, J = 14.0 Hz, 1H, -CHH), -), 3.81 (s, 3H, OMe), 3.83 (s, 3H, OMe), 3.87 (s, 1H, -CHH), 4.03 (d, J = 14.0 Hz, 1H, -CHH), 4.16 (q, J=7.0 Hz, 2H, $-CH_2O$), 6.73 (d, J=2.0 Hz, 1H, ArH), 6.84 (m, 1H, ArH), 7.16-7.27 (m, 3H, ArH), 7.66 (d, J = 8.5 Hz, 1H, ArH), 7.79 (m, 1H, ArH). ¹³C NMR (δ, ppm, CDCl₃): 35.4 (CH₂), 35.7 (CH₂), 52.0 (CH₃), 55.5 (CH₃), 61.7 (CH₂), 61.9 (C), 109.0 (CH), 115.5 (CH), 126.0 (CH), 126.4 (CH), 128.1 (C), 130.3 (CH), 130.9 (CH), 131.2 (CH), 131.5 (C), 138.1 (C), 156.7 (C), 165.4 (C), 167.9 (C), 170.9 (C), 200.3 (C=O). HRMS: C₂₂H₂₂O₆ (M⁺ +1), calcd 383.1416; found 383.1419.

1.1.29. 5-Methoxy-2,2'-spirobiindanone (16b). A mixture of benzylindanone **15d** (1.393 g, 3.80 mmol) in 96% AcOH (5.5 mL) and 48% HBr (2.9 mL) was subjected to the same reaction conditions as for analogue **15b**. The title compound was obtained as a white solid (531 mg, 53% yield). Mp 176–78 °C (MeOH). IR ($\bar{\nu}$, cm⁻¹, KBr): 1709 (C=O), 1690 (C=O). ¹H NMR (δ , ppm, CDCl₃): 3.10–3.20 (m, 2H,

CH₂), 3.63–3.75 (m, 2H, CH₂), 3.91 (s, 3H, OMe), 6.93– 6.98 (m, 2H, ArH), 7.40 (t, J=7.5 Hz, 1H, ArH), 7.54–7.77 (m, 4H, ArH). ¹³C NMR (δ , ppm, CDCl₃): 38.0 (CH₂), 38.1 (CH₂), 55.7 (CH₃), 65.4 (C), 109.4 (CH), 115.9 (CH), 124.7 (CH), 126.2 (CH), 126.4 (CH), 127.6 (CH), 128.4 (C), 135.1 (CH), 135.4 (C), 153.7 (C), 156.7 (C), 165.6 (C), 200.4 (C=O), 202.9 (C=O). MS (m/z, %): 278 (M⁺, 100), 250 (52), 178 (28). Anal. Calcd for C₁₈H₁₄O₃, C: 77.68; H: 5.07. Found C: 77.84; H: 5.02.

1.1.30. 2-(5-Methoxy-1-oxoindan-2-ylmethyl)benzoic acid and 4-methoxy-2-(1-oxoindan-2-ylmethyl)benzoic acid (10f-10g). Reaction of spiroindanone 16b (451 mg, 1.72 mmol) under the same conditions as for analogue 16a provided a solid reaction mixture. Purification by flash column chromatography (eluant: $CH_2Cl_2/MeOH$, 98.5/1.5) led to the isolation of small fractions of ketoacid 10f (71 mg, 30% yield) and ketoacid 10g (29 mg, 12% yield) as white solids.

1.1.31. Ketoacid a. Mp 150–152 °C (benzene/CH₂Cl₂). IR ($\bar{\nu}$, cm⁻¹, KBr): 3434 (OH), 1709 (C=O), 1679 (C=O). ¹H NMR (δ , ppm, CDCl₃): 2.90 (d, J=13.5 Hz, 1H, *CH*H), 3.16–3.23 (m, 3H, *CH*H and CH₂), 3.77–3.85 (m, 4H, CH and OMe), 6.80–6.87 (m, 2H, ArH), 7.32–7.41 (m, 2H, ArH), 7.52–7.57 (m, 1H, ArH), 7.77 (d, J=7.5 Hz, 1H, ArH), 8.11 (d, J=9.0 Hz, 1H, ArH) ¹³C NMR (δ , ppm, CDCl₃): 32.3 (CH₂), 35.1 (CH₂), 48.6 (CH), 55.4 (CH₃), 111.7 (CH), 117.1 (CH), 120.6 (C), 123.9 (CH), 126.5 (CH), 127, (CH), 134.5 (CH), 134.7 (CH), 136.6 (C), 139.3 (C), 145.7 (C), 153.6 (C), 163.1 (C=O), 207.9 (C=O). MS (m/z, %): 296 (M⁺, 25), 278 (100), 250 (46). Anal. Calcd for C₁₈H₁₆O, C: 72.96; H: 5.44. Found C: 73.15; H: 5.37.

1.1.32. Ketoacid b. Mp 143–145 °C (benzene/CH₂Cl₂). IR ($\bar{\nu}$, cm⁻¹, KBr): 1257 (C–OMe), 1703 (C=O ketone and C=O acid); 3430 (C–OH). ¹H NMR (δ , ppm, CDCl₃): 2.84 (d, J=14.5 Hz, 1H, –CHH), 3.06–3.17 (m, 3H, CHH and CH₂), 3.77–3.84 (m, 4H, CH and OMe), 6.83–6.90 (m, 2H, ArH), 7.29–7.38 (m, 2H, ArH), 7.46–7.52 (m, 1H, ArH), 7.71 (d, J=8.5 Hz, 1H, ArH), 8.05–8.08 (m, 1H, ArH). ¹³C NMR (δ , ppm, CDCl₃): 32.3 (CH₂), 35.0 (CH₂), 48.8 (CH), 55.6 (CH₃), 109.6 (CH), 115.4 (CH), 125.7 (CH), 126.5 (CH), 129.7 (C), 131.6 (CH), 131.8 (CH), 132.8 (CH), 140.5 (C), 142.5 (C), 148.0 (C), 156.5 (C), 165.4 (C=O), 206.3 (C=O). MS (m/z, %): 296 (M⁺, 74), 278 (57), 250 (29), 161 (100). Anal. Calcd for C₁₈H₁₆O, C: 72.96; H: 5.44. Found C: 72.69; H: 5.48.

Acknowledgements

We thank the Spanish Ministry of Science and Technology and the Xunta de Galicia for financial support and the latter for grants to A.M. and M.F.

References and notes

 Cheng, C. C. In Structural Aspects of Antineoplastic Agents— A New Approach; Ellie, G. P., West, G. B., Eds.; Progress in Medicinal Chemistry; Elsevier: Amsterdam, 1988; Vol. 25, pp 35-83.

- (a) Perchellet, E. M.; Sperfslage, B. J.; Qabaja, G.; Jones, G. B.; Perchellet, J.-P. *Anti-Cancer Drugs* 2001, *12*, 401.
 (b) Ikushima, H.; Okamoto, M.; Tanaka, H.; Ohe, O.; Kohsaka, M.; Aoki, H.; Imanaka, H. *J. Antibiot.* 1980, *33*, 1107–1113.
- Ikushima, H.; Okamoto, M.; Tanaka, H.; Ohe, O.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1980, 33, 1107–1113.
- (a) Ren, J.; Qu, X.; Dattagupta, N.; Chaires, J. B. J. Am. Chem. Soc. 2001, 123, 6742. (b) Caprio, V.; Guyen, B.; Opoku-Boahen, Y.; Mann, J.; Gowan, S.; Kelland, L. M.; Read, M. A.; Neidle, S. Bioorg. Med. Chem. Lett. 2000, 10, 2063. (c) Cheng, C. C.; Dong, J. Q.; Liu, D.-F.; Yi-lin Luo, Y.-l.; Liu, L. F.; Allan, Y.; Chen, A. Y.; Chiang Yu, C.; Savaraj, N.; Ting-Chao Chou, T.-C. J. Med. Chem. 1993, 36, 4108.
- (a) Martinez, E.; Martinez, L.; Treus, M.; Estevez, J. C.; Estevez, R. J.; Castedo, L. *Tetrahedron* 2000, *56*, 6023.
 (b) Martinez, A.; Estevez, J. C.; Estevez, R. J.; Castedo, L. *Tetrahedron Lett.* 2000, *41*, 2365. (c) Chang, H.-X.; Chou, T.-C.; Savaraj, N.; Liu, L. F.; Yu, C.; Cheng, C. C. *J. Med. Chem.* 1999, *42*, 405. (d) Martinez, E.; Martinez, L.; Estevez, J. C.; Estevez, R. J.; Castedo, L. *Tetrahedron Lett.* 1998, *39*, 2175. (e) Echavarren, A. M.; Tamayo, N.; De Frutos, O.; Garcia, A. *Tetrahedron* 1997, *53*, 16835. (f) Yoshida, K.; Yamanaka, Y.; Euno, Y. *Chem. Lett.* 1994, 2051. (g) Cheng, C. C.; Dong, Q.; Liu, D. F.; Luo, Y. L.; Liu, L. F.; Chen, A. Y.; Yu, C.; Savaraj, N.; Chou, T. C. *J. Med. Chem.* 1993, *36*, 4108. (h) Forrester, A. R.; Ingram, A. S.; John, I. L.; Thomson, R. H. *J. Chem. Soc., Perkin Trans. 1* 1975, 1115.
- 6. (a) Qabaja, G.; Jones, G. B. J. Org. Chem. 2000, 65, 7187.
 (b) Qabaja, G.; Perchellet, E. M.; Perchellet, J.-P.; Jones, G. B. Tetrahedron Lett. 2000, 41, 3007. (c) Martinez, E.; Martinez, L.; Treus, M.; Estevez, J. C.; Estevez, R. J.; Castedo, L. Tetrahedron 2000, 56, 6023. (d) Mohri, S.-I.; Stefinovic, M.; Snieckus, V. Can. J. Chem. 1997, 62, 7072. (e) Echavarren, A. M.; Tamayo, N.; Cardenas, D. J. J. Org. Chem. 1994, 59, 6075. (f) Tamayo, N.; Echavarren, A. M.; Paredes, M. C.

J. Org. Chem. **1991**, *56*, 6488. (g) McKenzie, T. C.; Choi, W. B. *Synth. Commun.* **1989**, *19*, 1523. (h) Watanabe, M.; Date, M.; Furukawa, S. *Chem. Pharm. Bull.* **1989**, *37*, 292.

- For a preliminary communication, see: Martínez, A.; Estévez, J. C.; Estévez, R. J.; Castedo, L. *Tetrahedron Lett.* 2000, *41*, 2365.
- 8. Buttery, J. H.; Wege, D. Aust. J. Chem. 1998, 51, 409.
- Chatterjee, A.; Dutta, L. N.; Chatterjee, S. K. Indian J. Chem., Sect. B 1980, 19B, 955.
- Campbell, N.; Davison, P. S.; Heller, H. G. J. Chem. Soc. 1963, 993.
- 11. Ko, K.-Y.; Eliel, E. L. J. Org. Chem. 1986, 5353.
- 12. Rangarajan, R.; Eisenbraun J. Org. Chem. 1985, 50, 2435.
- 13. Borner, Ch.; Dennis, M. R.; Sinn, E.; Woodward, S. Eur. J. Org. Chem. 2001, 13, 2435.
- 14. Majetich, G.; Liu, S.; Fang, J.; Siesel, D.; Zhang, Y. J. Org. Chem. **1997**, 62, 6928.
- Martinez, E.; Martinez, L.; Treus, M.; Estevez, J. C.; Estevez, R. J.; Castedo, L. *Tetrahedron* **2000**, *56*, 6023.
- Mackenzie, N. E.; Surendrakumar, S.; Thomson, R. H.; Cowe, H. J.; Cox, P. J. J. Chem. Soc., Perkin Trans. 1 1986, 12, 2233.
- 17. Robineon, R. K.; Moeettig, E. J. Am. Chem. Soc. 1939, 61, 1148.
- (a) Kruber, O. Ber. Dtsch. Chem. Ges. 1937, 70, 1556.
 (b) Markgraft, J. H.; Patterson, D. E. J. Heterocycl. Chem. 1996, 33, 109.
- Hannemann, K.; Wirz, J.; Riesen, A. Helv. Chim. Acta 1988, 71, 1841.
- 20. Fathi, B.; Giovannini, E. Pasquier. *Helv. Chim. Acta* **2002**, *85*, 2089.
- 21. Hannemann, K.; Wirz, J.; Riesen, A. *Helv. Chim. Acta* **1988**, *71*, 1841.
- 22. Nieman, J. A.; Keay, B. A. Tetrahedon: Asymmetry 1995, 6, 1575.
- 23. Leuchs, R. Chem. Ber. 1912, 45, 197.
- 24. Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*; Pergamon: Oxford, 1988.