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Summary

Bireactant autopoly(ADP-ribosyl)ation of poly(ADP-ribose)
polymerase (PARP) (EC 2.4.2.30) was carried out by using either
increasing concentrations of 3-NAD™" (donor substrate) at a fixed
protein concentration or increasing concentrations of PARP (ac-
ceptor substrate) at a fixed 3-NAD™" concentration. The [**PJADP-
ribose polymers synthesized were chemically detached from PARP
by alkaline hydrolysis of the monoester bond between the carboxy-
late moiety of Glu and the polymer. Nucleic acid-like polymers
were then analyzed by high-resolution polyacrylamide gel elec-
trophoresis and autoradiography. The ADP-ribose chain lengths
observed displayed substrate concentration-dependent elongation
from 0.2 6M to 2 mM (3-NAD". Similar results were observed at
fixed concentrations of 4.5, 9, 18, 27, and 36 nM PARP. Therefore,
we conclude that the concentration of the ADP-ribose donor sub-
strate determines the average chain length of the polymer synthe-
sized. In contrast, the polymer size was unaltered when the concen-
tration of PARP was varied from 4.5 to 18 nM at a fixed 3-NAD*
concentration. However, when PARP concentrations >18 nM were
used, the total amount of monomeric ADP-ribose produced was
noticeably less. Therefore, we conclude that high concentrations
of PARP lead to acceptor substrate inhibition at the level of the

ADP-ribose chain initiation reaction. .
wsMs Life, 50: 145-149, 2000
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INTRODUCTION

The poly(ADP-ribosyl)ation of DNA-binding proteins, in-
cluding poly(ADP-ribose) polymerase (PARP), is a posttrans-
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lational covalent modification catalyzed by PARP itself (EC
2.4.2.30) (1). Other polypeptides with ADP-ribose polymeriz-
ing activity have recently been reported, for example, PARP-2
(2, 3), tankyrase (4), and VAULT-PARP (5), but little is known
about their biochemical properties.

In the process of poly(ADP-ribose) synthesis, PARP cat-
alyzes three chemically distinct reactions (6, 7). The first step,
or “initiation” reaction, involves the specific attachment of one
ADP-ribose unit to a free carboxylate moiety on an acceptor pro-
tein (8). For example, the intermolecular modification of PARP,
the main protein target for poly(ADP-ribosyl)ation in DNA-
damaged cells, occurs stoichiometrically and quantitatively at
four separate Glu residues (9), the result of formation of a cat-
alytic homodimer of PARP (/0) on nicked or broken DNA (/1).
The second and most efficient reaction catalyzed by PARP is
the protein-distal ADP-ribose polymerization (/2, 13) reaction
or “chain elongation”. In this reaction, the 2’-hydroxyl group of
the adenine proximal ribose of the acceptor unit, for example,
mono(ADP-ribosyl )ated-PARP (12, 13), is used as the target for
ADP-ribose chain elongation, and a 2'-1” O-glycosidic linkage
is formed (/2). The elongation step of ADP-ribose polymer syn-
thesis is highly processive (/4) and occurs with an enzymatic
efficiency (kea/knap+) > 2 X 10* (9). Therefore, PARP may cat-
alyze >200 rounds of elongation for every initiation step (15).
Interestingly, Glu residue 988 of the carboxy-terminal catalytic
domain of PARP has recently been proposed as the key residue
in ADP-ribose chain elongation (16, 17). Finally, the last step
of poly(ADP-ribose) synthesis corresponds to the polymeric
“branching” reaction (17-19). This step involves the enzymatic
formation of a (2”"-1"") ribose-ribose glycosidic bond (18, 19)
and is believed to occur with a frequency of one branching point
per 40 rounds of elongation.

Clearly, one may anticipate that the hyperpoly (ADP-ribosyl )-
ation of DNA binding proteins with these highly branched and
complex nucleic acid-like molecules results in a dramatic
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electrostatic change of the acceptor protein surface. Not sur-
prisingly, the covalent attachment of ADP-ribose (two negative
charges per nucleotide) polymers to an acceptor molecule leads
to the shuttling off, or release, of this protein from the heli-
cal phosphodiester backbone of DNA (20) (one negative charge
per nucleotide). Further, as a result of this ionic repulsion be-
tween ADP-ribose polymers and DNA, chromatin structure and
function may become uncoupled (27). This uncoupling of chro-
matin structure and function may directly alter the physiological
course of DNA replication (22), DNA recombination (23), gene
expression (24-26), DNA base excision repair (27, 28), and cell
survival or apoptosis (29-31).

In spite of the multiple roles that ADP-ribose polymers play
in chromatin function, a termination of the ADP-ribose chain
length(s) required to modulate or regulate a specific DNA func-
tion has not been documented. A major obstacle to identifying
the metabolic signals that dictate the chain length and complex-
ity of ADP-ribose polymers is our limited understanding of the
role that the substrate concentrations (of S-NAD™*, DNA, and
perhaps PARP itself) play in this process. Here, we report that
the concentration of B-NAD™* available to PARP determines the
average chain length of the polymer synthesized and that an
oversupply of PARP leads to substrate inhibition at the level of
chain initiation.

EXPERIMENTAL PROCEDURES
Chemicals and Materials. Dithiothreitol, lithium dodecyl
sulfate (LDS), and calf thymus DNA were obtained from Sigma;
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[a-**P)B-NAD" was purchased from ICN. All other chemicals
used were of the highest purity commercially available.
Enzyme Purification. PARP was purified to homogeneity
from calf thymus by a previously published procedure (32).
Autopoly(ADP-Ribosyl )ation of PARP. Increasing concen-
trations of PARP from 4.5 to 36 nM were incubated with vari-
ous concentrations of [*?P]B-NAD™ in a 100-u1 assay mixture
containing 100 mM Tris-HCI, pH 8.0, 10 mM MgCl,, 1 mM
dithiothreitol, and 20 pg/ml calf thymus DNA. After incuba-
tion for 3 min at 37 °C, the reaction was stopped with ice-cold
trichloroacetic acid (20%, w/v).
Size Distribution of Enzyme-Bound ADP-Ribose Chains.
Acid-precipitable material was processed for qualitative anal-
ysis of the size distribution of the ADP-ribose polymers by a
procedure published elsewhere (15).

RESULTS

The size distribution of ADP-ribose polymers synthesized in
the autopoly (ADP-ribosyl )ation reaction catalyzed by PARP as
a function of the concentration of either B-NAD* (ADP-ribose
donor) or PARP (ADP-ribose acceptor) was analyzed by high-
resolution polyacrylamide gel electrophoresis (15).

The electrophoretic distribution of the ADP-ribose polymers
synthesized with 4.5 nM PARP (a suboptimal amount of en-
zyme) at increasing concentrations of -NAD* from 200 nM to
2 mM is shown in Fig. 1A. The short ADP-ribose oligomers
of no more than 8 residues when synthesized with 200 nM
B-NAD* (Fig. 1A, lane 1) increased to 18 ADP-ribose units
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Figure 1. Effect of the B-NAD™* concentration on the ADP-ribose polymer size distribution of the products generated by PARP at
a fixed, suboptimal enzyme concentration of either 4.5 nM (A) or 9 nM (B), as shown by autoradiographic analysis of the protein-
free polymers synthesized in the automodification reaction of PARP after high-resolution polyacrylamide gel electrophoresis. The
relative electrophoretic migration of xylene cyanol (20-mer), bromophenol blue (8-mer), and AMP are indicated to the left of the
autoradiograph. The concentration of S-NAD™ is indicated at the bottom of each lane.
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when B-NAD™* was increased to 400 nM (Fig. 1A, lane 2). No
sign of branched polymers at the origin of the gel (/5) was de-
tected in this population of polymers. In contrast, the presence
of a radioactive signal at the origin of the gel (Fig. 1A, lane 3)
indicated that branched polymers were synthesized with 1 uM
B-NAD™. As expected, greater micromolar concentrations of
the ADP-ribose donor (1.0 uM to 2 mM) increased the length
and complexity of ADP-ribose polymers generated, as shown
by the band at the origin of the gel (Fig. 1A, lanes 3-10). Inter-
estingly, the overall amount of [*?P]JAMP observed in Fig. 1A,
lanes 3-8, a hallmark of ADP-ribose chain initiation, gradu-
ally disappeared when B-NAD™* concentrations were between
1 and 500 uM. That is, under those conditions, the elongation
and branching reactions were favored. Surprisingly, however,
the [*?P]JAMP band reappeared at millimolar concentrations of
B-NAD™* (Fig. 1A, lanes 9 and 10). Thus, the efficiency of elon-
gation and branching decreased as a result of substrate inhibition
by millimolar concentrations of B-NAD™*.
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We also determined the size distribution of ADP-ribose chains
synthesized with 9 nM PARP (Fig. 1B), that is, at half of the op-
timal enzyme concentration (see below). Results of these exper-
iments were similar to those using 4.5 nM PARP. Under closer
analysis, however, an obvious difference between the patterns
of ADP-ribose polymers synthesized at 4.5 (Fig. 1A) and 9 nM
PARP (Fig. 1B) became evident when comparing lanes 9 and 10
of both panels. In Fig. 1B the intensity of the [*>’P]AMP bands
synthesized with 1 and 2 mM B-NAD™ slightly decreased when
the concentration of enzyme was increased to 9 nM PARP.

Fig. 2 (lanes 1-10) shows the results for polymer synthe-
sis with increasing concentrations of 3-NAD™ at a fixed PARP
concentration of 18 nM, the optimal enzyme concentration for
PARP autopoly(ADP-ribosyl)-ation in vitro (/0). These results
confirm our preliminary observation (/0) that the final chain
length of the polymers synthesized is a BNAD™* concentration-
dependent phenomenon (lanes 1-10). Note that the intensity
of the [**P]JAMP band observed with 1 and 2 mM S-NAD™*
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Figure 2. Effect of the B-NAD™ concentration on the ADP-ribose polymer size distribution of the products generated by PARP
at a fixed optimal enzyme concentration of 18 nM. The relative electrophoretic migration of xylene cyanol (20-mer), bromophenol
blue (8-mer), and AMP are indicated to the left of the autoradiograph. The concentration of B-NAD™ is indicated at the bottom of

each lane.
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Figure 3. Effectof the B-NAD™ concentration on the ADP-ribose polymer size distribution of the products generated by PARP at
a fixed above-optimal enzyme concentration of either27 nM (A) or 36 nM (B), as shown by autoradiographic analysis of the protein-
free polymers synthesized in the automodification reaction of PARP after high-resolution polyacrylamide gel electrophoresis. The
relative electrophoretic migration of xylene cyanol (20-mer), bromophenol blue (8-mer), and AMP are indicated to the left of the
autoradiograph. The concentration of B-NAD™ is indicated at the bottom of each lane.

(Fig. 2, lanes 9 and 10) is unchanged from that in Figs. 1A
and 1B.

Finally, to fully evaluate the effects of the enzyme concen-
tration on the structural complexity of the products formed by
PARP, we also carried out enzymatic autopoly(ADP-ribosyl)-
ation at 27 and 36 nM PARP. Indeed, we had previously re-
ported a decline in overall enzymatic activity under these high
nanomolar concentrations of PARP (/0) apparently because of
acceptor substrate inhibition. The results observed under higher
nanomolar concentrations of PARP are shown in Figs. 3A and
3B. Again, even at high nanomolar PARP concentrations, our
results indicate that the concentration of the ADP-ribose donor,
B-NAD?Y, determines the final size and complexity of the poly-
mers synthesized (compare the overall polymer size distribu-
tion with that in Figs. 1 and 2). In addition, Figs. 3A and 3B
show that, although the size distribution of poly(ADP-ribose)
did not change substantially, the [*?P]JAMP band observed at
1 and 2 mM B-NAD? decreased until undetectable. Thus, our
results also indicate that the inhibition of the autopoly(ADP-
ribosyl)ation reaction at high nanomolar concentrations of
PARP (acceptor substrate) and millimolar concentrations of
B-NAD™ (donor substrate) is the result of inhibition by acceptor
substrate of the initiation step of polymer synthesis.

DISCUSSION
To elucidate the biological role of ADP-ribose polymers in
eukaryotic cells, we must uncover the regulatory mechanisms

that modulate the activity(ies) of PARP—oparticularly, those that
shift this versatile DNA-dependent enzyme from mono(ADP-
ribosyl)ating activity (9) to ADP-ribose elongation and branch-
ing functions (12, 13, 17). A clear understanding of the signals
that regulate PARP enzymatic behavior is crucial, given that
the biological function of ADP-ribose polymers in transcription
(23-26) and DNA base excision repair (27, 28) may be chain-
length dependent.

Here, we conclusively demonstrate that the size and com-
plexity of poly(ADP-ribose) is specifically determined by the
B-NAD™ concentration and not by the concentration of PARP
(Figs. 1-3). Indeed, the size distribution pattern of ADP-ribose
polymers as a function of f-NAD™* concentration from 200 nM
to 2 mM, at five distinct fixed nM concentrations of PARP,
remains unchanged. Therefore, the length and complexity of
ADP-ribose polymers synthesized by PARP are determined by
the ADP-ribose donor (3-NAD™) concentration. Our results
are also consistent with the notion that PARP is a highly pro-
cessive enzyme (/4) at high micromolar concentrations of
B-NAD™. Furthermore, our data suggest that when the ADP-
ribose donor substrate concentration is limiting, PARP does not
display much processivity. This is particularly relevant to the
putative roles of PARP in DNA base excision repair and apop-
tosis after DNA damage, conditions in which the intracellular
pools of B-NAD™ are usually depleted. Finally, our data (Figs. 1
and 2, lanes 9 and 10) are also consistent with the conclusion
that high nanomolar concentrations of PARP result in acceptor
substrate inhibition at the level of ADP-ribose chain initiation.
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