Discovery of 7-Oxopyrazolo[1,5-*a*]pyrimidine-6-carboxamides as Potent and Selective CB₂ Cannabinoid Receptor Inverse Agonists

Mojgan Aghazadeh Tabrizi,^{*,†} Pier Giovanni Baraldi,^{*,†} Giulia Saponaro,[†] Allan R. Moorman,^{‡,#} Romeo Romagnoli,[†] Delia Preti,[†] Stefania Baraldi,[†] Emanuela Ruggiero,[†] Cristina Tintori,[§] Tiziano Tuccinardi,[∥] Fabrizio Vincenzi,[⊥] Pier Andrea Borea,[⊥] and Katia Varani[⊥]

[†]Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy [‡]Research and Development, King Pharmaceuticals, Inc., 4000 Centre Green Way, Suite 300, Cary, North Carolina 27707, United States

[§]Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Alcide de Gasperi 2, I-53100 Siena, Italy

^{II}Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy

[⊥]Dipartimento di Scienze Mediche e Sperimentale, Sezione di Farmacologia, Università di Ferrara, 44121, Ferrara, Italy

(5) Supporting Information

ABSTRACT: We recently described the medicinal chemistry of a new series of heteroaryl-4-oxopyridine/7-oxopyrimidines as CB_2 receptor partial agonists, showing that the functionality of these ligands is controlled by the nature of the heteroaryl function condensed with the pyridine ring. We describe herein the design and synthesis of the 7-oxopyrazolo[1,5-*a*]pyrimidine-6-carboxa-mides, structural isomers of our previously reported pyrazolo[3,4-*b*]pyridines. All of the new compounds showed high affinity and selectivity for the CB_2 receptor in the nanomolar range. In 3,5-cyclic adenosine monophosphate (cAMP) assays, the novel series shows stimulatory effects on forskolin-induced cAMP production acting as inverse agonists.

INTRODUCTION

Interest in the potential medicinal use of cannabinoids grew recently with the discovery of two cannabinoid receptors, CB₁ and CB₂.^{1,2} The CB₁ receptor is abundantly expressed in the central nervous system (CNS) and is responsible for the psychotropic side effects. $^{3-5}$ The CB₂ receptor is mainly found in cells of the immune system, although it may be up-regulated in the CNS under pathological conditions.^{6,7} The main signal transduction pathway triggered is through G_i proteins, resulting in an inhibition of adenylate cylase activity and a decrease in cyclic AMP levels.⁸ Activation of CB₂ receptors inhibits adenylyl cyclase and activates mitogen-activated protein kinase through binding of the α -subunit of the G_{i/o} protein but does not modulate calcium or potassium conductances.^{9,10} Agonist binding to CB1 receptors, by contrast, suppresses calcium and activates inward-rectifying potassium conductances, effects associated with depression of neuronal excitability and transmitter release.^{11,12} Thus, differences in receptor distribution and signal transduction mechanisms are likely to account for the relative absence of the CNS side effects induced by CB₂ agonists. These considerations suggest that novel pharmacotherapies targeting CB₂ receptors may have considerable therapeutic potential. Agonists and partial agonists of the CB₂ receptor have been investigated for their potential utility in the treatment of inflammatory and neuropathic pain, 13-15 while

 $\begin{array}{l} {\sf R} = {\sf Ph:} \ hK_i \, {\sf CB}_2 = 2.5 \ n{\sf M}, \ hK_i \, {\sf CB}_1 > 10000 \ n{\sf M}, \ {\sf SI} > 3906 \\ {\sf R} = 2{\sf -CH}_3{\sf -Ph:} \ hK_i \, {\sf CB}_2 = 2.8 \ n{\sf M}, \ hK_i \, {\sf CB}_1 > 10000 \ n{\sf M}, \ {\sf SI} > 3496 \\ {\sf R} = 4{\sf -Cl}{\sf -Ph:} \ hK_i \, {\sf CB}_2 = 3.8 \ n{\sf M}, \ hK_i \, {\sf CB}_1 > 10000 \ n{\sf M}, \ {\sf SI} > 2597 \\ {\sf R} = {\sf Furan-2-yl:} \ hK_i \, {\sf CB}_2 = 4.9 \ n{\sf M}, \ hK_i \, {\sf CB}_1 > 10000 \ n{\sf M}, \ {\sf SI} > 2032 \\ \end{array}$

antagonists may have utility in certain inflammatory and allergic conditions.¹⁶ It has been suggested that inverse agonist may be effective for the control of immune cell mobility in arthritis and inflammatory states¹⁷ and for the treatment of osteoporosis via the inhibition of osteoclast differentiation.¹⁸ This therapeutic potential has prompted the development of several CB₂ receptor selective ligands as agonists, partial agonists, or antagonists/inverse agonists (Chart 1).

Among the selective agonists, the best known compound is R-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate 1 (<math>R-(+)-WIN 55,212-2, Chart 1). This compound displays activity at both CB₁ and CB₂ receptors, although it has been found to possess slightly higher CB₂ than CB₁ affinity.⁸ (2-Methoxynaphthalen-1-yl)(1-pentyl-1H-indol-3-yl)methanone (JWH-267) is an N-alkylindole derivative with high affinity at the CB₂ receptor that exhibited partial activity in ³⁵Slabeled guanosine 5'-O-(3-thio)triphosphate ([³⁵S]GTP γ S) binding assays.¹⁹

Fewer classes of compounds have been reported as selective antagonists or inverse agonists of the CB_2 receptor.²⁰ The prototypical selective antagonist is SR144528⁹ (2, Chart 1),

Received: February 5, 2013 Published: May 22, 2013

which is based upon a pyrazole scaffold. The 6-iodopravadoline $AM630^{21}$ (3, Chart 1) is an indole derived cannabinoid ligand that acts as a potent and selective inverse agonist at the CB₂ receptors. These compounds are thought to be CB₂ receptor inverse agonists rather than neutral antagonists because when administered by themselves, they can produce inverse cannabimimetic effects in CB₂ receptor-expressing tissues.⁸ N-(1,3-Benzodioxol-5-ylmethyl)-1,2-dihydro-7-methoxy-2-oxo-8-(pentyloxy)-3-quinolinecarboxamide (JTE-907)²² is a potent CB₂ receptor ligand endowed with high selectivity for the CB₂ receptor and inverse-agonistic properties. This compound received attention because of its anti-inflammatory properties, showing antipruritic activity in a model of dermatitis when orally administered.^{22,23}

Recently, a new class of CB₂ selective inverse agonists based on a triaryl bis-sulfone scaffold has been described. This class is represented by N-[1(S)-[4-[[4-methoxy-2-[(4-methoxy-2)]]])methoxyphenyl)sulfonyl]phenyl]sulfonyl]phenyl]ethyl]methanesulfonamide (Sch225336),²⁴ which was shown to block the recruitment of leucocytes in vivo.²⁵ Previously, within a research program to identify novel CB₂ agonists, our group designed a hybrid chemical structure that incorporated the structural features of known cannabinoid ligands. The new series of oxazinoquinolone derivatives²⁶ exemplified by N-(adamant-1-yl)-3,7-dihydro-3-ethyl-7-oxo-10-(pyrrolidin-1-yl-2H-[1,4]oxazino-[2,3,4-ij]quinoline-6-carboxamide (4, Chart 1) was synthesized and tested in binding assays, exhibiting high affinity and selectivity for the CB₂ receptor (hCB₂ K_i = 8.12 nM, hCB₁ K_i > 10000, selectivity index (SI) of >1231). The potency of the new oxazinoquinoline-6-carboxamides was measured in functional assays, revealing that the novel series behaved as CB₂ receptor full agonists.

In this context, very recently we have reported the medicinal chemistry of a series of heteroaryl-4-oxopyridine/7-oxopyrimidine derivative²⁷ as represented by trans-4,7-dihydro-1,3dimethyl-N-(4-methylcyclohexyl)-4-oxo-7-pentyl-1H-pyrazolo-[3,4-b]pyridine-5-carboxamide 5 (Chart 1), which displayed high affinity at the CB₂ receptor (hCB₂ K_i = 11.4 nM, hCB₁ K_i = 4568, SI = 401). In this study, additional CB_2 ligands were synthesized by replacing the pyrazolo ring with different heterocycles that were found to be potent CB₂ receptor ligands. Moreover, it was shown that the functionality of these ligands is

controlled by the nature of the heteroaryl function condensed with the pyridine ring. In 3,5-cyclic adenosine monophosphate (cAMP) assays, they showed a dose-dependent effect in the modulation of forskolin-induced cAMP production, revealing different behaviors as full agonists, partial agonists, and inverse agonists.

Here, we report a novel series of 7-oxopyrazolo 1,5a]pyrimidine-6-carboxamides that were found to be potent and selective CB₂ receptor ligands. Our goal was to design and synthesize the structural isomers of our previously reported pyrazolo[3,4-b]pyridine that allowed us to conduct a pharmacophore exploration and optimization effort around the heteroaryl central scaffold (Chart 2).

Chart 2. Structure Variations around the 7-Oxopyrazolo[1,5*a*]pyrimidine Scaffold

The newly synthesized pyrazolopyrimidines were tested in competition binding assays toward both rat CB_1 (rCB₁) and rat CB₂ (rCB₂) receptors expressed in native tissues (rat brain or spleen) and human CB_1 (h CB_1) and human CB_2 (h CB_2) receptors expressed in CHO cells. Affinity data (K_i, nM) were used to calculate the selectivity of newly synthesized compounds for the CB₂ receptors. All of these ligands were also examined in cyclic AMP assays on hCB₂ CHO cells, with the aim of evaluating their effect in the modulation of forskolininduced cAMP production.

Finally a molecular modeling study was performed in order to explain the structure-activity relationships observed experimentally. A series of compounds were docked into CB₁ and CB₂ receptor models, and the observed ligand-receptor interactions were examined while taking into account the sitedirected mutagenesis data available for this receptor subtype.

CHEMISTRY

Scheme 2^{a}

The synthetic routes to obtain the target 4,7-dihydro-7-oxo-4pentyl-2(3)-substituted [1,5-a] pyrimidine-6-carboxamide derivatives **10–49** are outlined in Schemes 1 and 2. All substituents are summarized in Table 1.

^aReagents: (i) diethyl ethoxymethylenemalonate, AcOH, 120 °C, 2 h; (ii) K_2CO_3 , 1-pentyl bromide, DMF, 100 °C, 16 h; (iii) NaOH 10%, MeOH, rt, 2 h; (iv) EDC, HOBt, amine, DMF, rt, 16 h *or* DIEA, HBTU, adamantan-1-yl-amine, DMF, rt, 16 h. Information on compound designations: **a**, R = Me; **b**, R = Et; **c**, R = *t*-But; **d**, R = phenyl; **e**, R = 2-Me-phenyl; **f**, R = 4-tolyl-Me-phenyl; **g**, R = 2-Clphenyl; **h**, R = 4-Cl-phenyl; **i**, R = 2,4-di-Cl-phenyl; **j**, R = 2,6-di-Clphenyl; **k**, R = furan-2-yl; **l**, R = furan-3-yl; **m**, R = thiophen-2-yl; **n**, R = 4-Me-thiophen-2-yl; **o**, R = 5-Me-thiophen-2-yl.

The starting materials, 3-(substituted)-5-aminopyrazoles, required for the synthesis of the title compounds were synthesized by the condensation of appropriate β -ketonitriles²⁸ with hydrazine monohydrate according to the literature procedure.²⁹ The aminopyrazoles (**6a–o**) were reacted smoothly with diethyl ethoxymethylenemalonate (DEEM) in glacial acetic acid to give the cyclized ethyl 2-substituted-4,7-dihydro-7-oxopyrazolo[1,5-*a*]pyrimidine-6-carboxylates (**7a–o**) in good yields. The subsequent N-alkylation with 1-pentyl bromide in the presence of K₂CO₃ was performed to yield compounds **8a–o**. Hydrolysis in 10% aqueous NaOH yielded the corresponding 4-pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxylic acids **9a–o**³⁰ that then underwent coupling reaction with appropriate amines to yield the target compounds **10–46**.

The preparation of the pyrazolopyrimidine derivatives 47-49 was accomplished by the route shown in Scheme 2, following synthetic procedures already established for the previous compounds. Bromination of pyrazolo ester 7a in position 3 led to compound 7p in high yields. Compound 7p was alkylated with 1-pentyl bromide to give 8p. Hydrolysis afforded the carboxylic acid 9p that was converted to the carboxamide 47 by coupling with 1-adamantylamine. Suzuki coupling with phenylboronic acid and 4-methoxyphenylboronic acid yielded the final compounds 48 and 49, respectively.

RESULTS AND DISCUSSION

Structure-Activity Relationships (SARs). All of the newly synthesized compounds were examined in [3H]CP-55,940 competition binding experiments for their affinity and selectivity toward the rat and human recombinant CB₁ and CB₂ receptors. The results, in terms of binding affinities for the two receptors $(K_i \text{ values})$, are reported in Table 1. While a substantial degree of sequence homology between the human and rat CB receptors is well-known, a significant divergence between the two sequences still exists.³¹ In our previous studies, we have observed significant differences in the binding affinities of specific agonists to the receptors from the two species.²⁶ This may suggest that the ligands were binding to a portion of the receptor where homology was not maintained and could portend that efficacy in a rodent model may not translate into efficacy in humans. As seen in Table 1, the measured affinity values for all of the examined compounds do not differ significantly between rat and human CB₂ receptors.

For the first group of five synthesized 7-oxopyrazolo[1,5a]pyrimidine-6-carboxamides (10–14, Table 1), the structural variations were focused on the moiety borne by the amide at the C-6 position, maintaining the methyl group at the C-2 position and the *n*-pentyl chain at the N-4 constant. As was seen previously, the compounds bearing cyclohexyl, cycloheptyl, or adamantyl moieties on the amide showed high affinity at the CB₂ receptor. The best result in terms of both activity and selectivity profiles was found with the *N*adamantan-1-ylcarboxamide chain (compound 12 hCB₂ K_i = 12.7 nM, SI = 88). The benzylcarboxamide 13 displayed modest affinity and slight selectivity for the cannabinoid receptors (hCB₂ K_i = 358 nM, hCB₁ K_i = 3290 nM, SI = 9.2). The choice of the 4-methylcyclohexylcarboxamide group in position 6 (compound 14) was based upon the binding

^aReagents: (i) Br₂, AcOH, rt, 3 h; (ii) K₂CO₃, 1-pentyl bromide, DMF, 100 °C, 16 h; (iii) NaOH, 10%, MeOH, rt, 2 h; (iv) DIEA, HBTU, adamantan-1-yl-amine, DMF, rt, 16 h; (v) (phenyl or 4-methoxyphenyl)boronic acid, Pd(PPh₃)₄, K₂CO₃, toluene, 100 °C, 16 h.

Table 1. Affinity (K_i , nM) and Selectivity Index (SI) on Rat and Human CB₁ and CB₂ Receptors of the Novel CB Compounds 10–49^{*a*}

47-49

		10 40		47 42			
			K_i (nM)				
compd	R	\mathbb{R}^1	rCB ₁ ^b	rCB ₂ ^c	hCB_1^d	hCB2 ^e	SI
WIN 55,212-2			15.3 ± 1.3	7.61 ± 0.68	12.2 ± 1.4	4.56 ± 0.45	2.68
10	Me	cyclohexyl	1578 ± 152	26 ± 2	1278 ± 110	22 ± 2	58
11	Me	cycloheptyl	642 ± 65	12.4 ± 1.1	527 ± 48	10.3 ± 1.2	51
12	Me	adamant-1-yl	1460 ± 148	15.3 ± 1.6	1118 ± 96	12.7 ± 1.3	88
13	Me	benzyl	3688 ± 386	428 ± 17	3290 ± 312	358 ± 32	9.2
14	Me	4-Me-cyclohexyl	2600 ± 310	120 ± 11	2432 ± 272	106 ± 9	23
15	Et	cyclohexyl	480 ± 40	11.5 ± 1.2	420 ± 35	10.4 ± 1.2	40
16	Et	cycloheptyl	220 ± 20	5.63 ± 0.57	200 ± 15	5.22 ± 0.45	38
17	Et	adamantyl	150 ± 12	0.96 ± 0.08	120 ± 10	0.84 ± 0.07	143
18	<i>t</i> -But	cyclohexyl	720 ± 70	14.2 ± 1.1	675 ± 54	12.3 ± 1.1	55
19	<i>t</i> -But	cycloheptyl	650 ± 60	7.52 ± 0.68	605 ± 50	7.22 ± 0.63	84
20	<i>t</i> -But	adamant-1-yl	675 ± 65	5.54 ± 0.48	612 ± 57	4.95 ± 0.42	124
21	Ph	cyclohexyl	750 ± 80	50 ± 5	702 ± 68	42 ± 4	17
22	Ph	cycloheptyl	900 ± 100	35 ± 4	825 ± 80	31 ± 3	27
23	Ph	adamant-1-yl	>10000 (40%)	2.74 ± 0.28	>10000 (43%)	2.56 ± 0.22	>3906
24	2-Me-phenyl	cyclohexyl	>10000 (30%)	48 ± 4	>10000 (16%)	40 ± 4	>250
25	2-Me-phenyl	cycloheptyl	>10000 (45%)	9.53 ± 0.92	>10000 (34%)	8.93 ± 0.86	>1119
26	2-Me-phenyl	adamant-1-yl	>10000 (30%)	3.21 ± 0.30	>10000 (22%)	2.86 ± 0.25	>3496
27	4-Me-phenyl	cyclohexyl	>10000 (25%)	62 ± 6	>10000 (20%)	57 ± 5	>175
28	4-Me-phenyl	cycloheptyl	>10000 (49%)	13.2 ± 1.7	>10000 (39%)	10.3 ± 1.1	>970
29	4-Me-phenyl	adamant-1-yl	>10000 (45%)	3.82 ± 0.39	>10000 (38%)	3.41 ± 0.32	>2932
30	2-Cl-phenyl	cyclohexyl	>10000 (40%)	52 ± 5	>10000 (34%)	47 ± 4	>212
31	2-Cl-phenyl	cycloheptyl	>10000 (42%)	12.3 ± 1.6	>10000 (35%)	10.3 ± 1.1	>970
32	2-Cl-phenyl	adamant-1-yl	>10000 (48%)	6.32 ± 0.63	>10000 (41%)	6.21 ± 0.55	>1610
33	4-Cl-phenyl	cyclohexyl	>10000 (8%)	58 ± 6	>10000 (15%)	55 ± 5	>181
34	4-Cl-phenyl	cycloheptyl	>10000 (47%)	6.53 ± 0.58	>10000 (40%)	6.31 ± 0.51	>1584
35	4-Cl-phenyl	adamant-1-yl	>10000 (10%)	4.21 ± 0.42	>10000 (13%)	3.88 ± 0.31	>2577
36	2,4-di-Cl-phenyl	cyclohexyl	>10000 (47%)	60 ± 5	>10000 (38%)	52 ± 5	>192
37	2,4-di-Cl-phenyl	cycloheptyl	>10000 (49%)	40 ± 4	>10000 (39%)	37 ± 4	>270
38	2,4-di-Cl-phenyl	adamant-1-yl	>10000 (40%)	35 ± 3	>10000 (37%)	30 ± 3	>333
39	2,6-di-Cl-phenyl	adamant-1-yl	>10000 (18%)	110 ± 10	>10000 (21%)	98 ± 8	>102
40	furan-2-yl	cyclohexyl	>10000 (30%)	10.4 ± 1.8	>10000 (21%)	9.52 ± 0.92	>1050
41	furan-2-yl	cycloheptyl	>10000 (20%)	7.23 ± 0.81	>10000 (16%)	6.57 ± 0.62	>1522
42	furan-2-yl	adamant-1-yl	>10000 (40%)	5.14 ± 0.42	>10000 (34%)	4.92 ± 0.43	>2032
43	furan-3-yl	adamant-1-yl	>10000 (17%)	12.4 ± 1.5	>10000 (19%)	10.1 ± 1.3	>990
44	thiophen-2-yl	adamant-1-yl	>10000 (22%)	7.52 ± 0.71	>10000 (26%)	6.24 ± 0.61	>1602
45	4-Me-thiophen-2-yl	adamant-1-yl	>10000 (15%)	18 ± 2	>10000 (13%)	15 ± 2	>666
46	5-Me-thiophen-2-yl	adamant-1-yl	>10000 (33%)	12.2 ± 1.8	>10000 (31%)	11.6 ± 1.7	>862
47	Br		>10000 (1%)	272 ± 25	>10000 (1%)	220 ± 18	>45
48	phenyl		>10000 (15%)	214 ± 17	>10000 (15%)	181 ± 16	>55
49	4-OCH ₃ -Ph		>10000 (5%)	434 ± 41	>10000 (4%)	350 ± 32	>28

^{*a*}The data are espressed as the mean \pm SEM of n = 4 independent experiments. The affinity values were calculated by using [³H]CP-55,940 as radioligand on ^{*b*}rat brain for CB₁ receptors, ^{*c*}rat spleen for CB₂ receptors, ^{*d*}human CB₁ CHO membranes, and ^{*e*}human CB₂ CHO membranes.

results obtained from our previously reported work on pyrazolo[3,4-*b*]pyridines, where this moiety gave the highest affinity at the CB₂ receptor. In the present series, the 4-methylcyclohexylcarboxamide moiety did not enhance affinity (14, hCB₂ $K_i = 106$ nM, hCB₁ $K_i = 2432$ nM, SI = 23) relative to the cyclohexylcarboxamide (10), possibly because of a different binding mode of the pyrazolopyrimidine derivatives.

Subsequently, the adopted strategy was to prepare analogues by introduction of structural modifications at position 2 of the pyrazolo[1,5-*a*]pyrimidine template while maintaining the cyclohexyl, cycloheptyl, and adamantyl moieties on the carboxamide to investigate their potential to bind to cannabinoid CB₁ and/or CB₂ receptors and to study their structure–affinity relationships.

4485

10-46

Extending the aliphatic chain at the C-2 position of compounds 10-12 with ethyl or *tert*-butyl moieties was investigated by preparation of compounds (15-20). These compounds showed high affinity for the CB2 receptor (15-17, 0.84-10.4 nM; 18-20, 4.95-12.3 nM) with remarkable selectivity over the CB₁ receptor (15-17, 38 < SI < 143; 18-20, 55 < SI < 124). Replacing the cyclohexyl moiety with a cycloheptyl or adamantly moiety led to an increase in affinity, as shown by compounds 16, 17, 19, and 20. In addition the highest selectivity over the CB₁ receptor was observed with the most lipophilic compounds 17 and 20 (SI of 143 and 124, respectively). Compound 17 was found to have the highest CB₂ receptor affinity among the series of 2-alkyl derivatives, with a K_i value of 0.84 nM (Figure 1A).

Figure 1. Competition curves on hCB₂ receptors of WIN 55,212-2 and selected novel CB compounds (A). Effect of the same compounds expressed as % of increase of forskolin-stimulated cAMP accumulation in hCB₂CHO cells (B). Concentration–response curves of the novel compounds 17, 19, and 23 in cAMP assays (C). Results are the mean \pm SEM (n = 4 independent experiments).

These results clearly confirmed our previous studies. To achieve good affinity and selectivity at the CB_2 receptor, the adamantyl group borne by the amide function should be retained.

Interestingly, when the 2-alkyl group was replaced with an aromatic phenyl or substituted phenyl moieties at the C-2 position, affinity for the CB_1 receptors was completely lost

(compounds 21–39) except for analogues 21 and 22 bearing the cyclohexyl and cycloheptyl carboxamide groups, respectively, that exhibited moderate affinities for the CB₁ receptor. More significantly, all of the 2-aryl derivatives displayed high affinity for the CB₂ receptor, in contrast with the results obtained with the previous pyrazolo[3,4-*b*]pyridine series where the phenyl or 4-Cl-phenyl moiety on the pyrazole led to loss of affinity at cannabinoid receptors.

As seen with the 3-alkylpyrazolo[3,4-*b*]pyridine series, introduction of an adamant-1-ylcarboxamide, as in compound **23**, improved affinity and selectivity for the CB₂ receptor in comparison to the cyclohexylamide and cycloheptylamide (**21** and **22**, respectively). In contrast, the adamant-1-ylamide in this group of compounds led to a loss of affinity for the CB₁ receptor, showing a significant increase in selectivity and suggesting a difference between the two receptor subtypes in steric tolerance at this position. In particular, the adamant-1-ylcarboxamide **23** is the most selective compound in this series with high affinity for the target receptor (hCB₂ K_i =2.56 nM, SI > 3906).

Introduction of a 2-methylphenyl group at C-2 of the pyrazolopyrimidine moiety, as with compounds 24-26, resulted in a 15- and 41-fold increase of selectivity for the cyclohexyl- and cycloheptylcarboxamide derivatives (SI > 250 and SI > 1119, respectively) relative to the analogous 2-phenyl group (compounds 21 and 22, respectively). Affinity at the CB₂ receptor was also increased by the 2-methylphenyl derivative when the amide carried a cycloheptyl moiety (compound 25 $hCB_2 K_i = 8.93 \text{ nM}$). In contrast, the adamant-1-ylcarboxamide (26) retained affinity and selectivity for the CB₂ receptor equivalent to that of the phenyl derivative 23. Moving the methyl group from the ortho to the para position of the phenyl moiety (compounds 27-29) did not induce a marked alteration in affinity at the CB₂ receptor. The most active compound was the adamantyl carboxamide **29** (hCB₂ K_i = 3.41, SI > 2932), although the cycloheptylamide 28 displayed high affinity with remarkable selectivity over the CB₁ receptor (hCB₂ $K_{\rm i} = 10.3 \text{ nM}, \text{ SI} > 970$).

We therefore investigated the impact of other phenyl substituents by introducing a chlorine atom at the ortho and para positions of the 2-phenyl moiety (compounds **30–35**, Table 1). As shown by the biological assays, these new compounds displayed affinity similar to that of the 2- and 4-methyl compounds (**24–29**). The cycloheptyl- and adamant-1-ylcarboxamide derivatives showed high affinity and selectivity for the CB₂ receptor (**31**, **32** hCB₂ $K_i = 10.3$, 6.21 nM and **34**, **35** hCB₂ $K_i = 6.31$, 3.88 nM, respectively; hCB₁ $K_i > 10000$ nM). These results suggest that electronic effects on the aromatic moiety do not significantly influence the affinity for the cannabinoid CB₂ receptor.

Disubstitution of the aryl moiety at C-2 was also examined, specifically the 2,4-dichlorophenyl (36-38) and 2,6-dichlorophenyl derivatives (39). These modifications resulted in a significant loss of affinity for the CB₂ receptors in comparison with the corresponding unsubstituted or monosubstituted phenyl compounds.

Replacement of the phenyl ring of compounds 21-23 by the bioisosteric 2- or 3-furyl groups (compounds 40-42 and 43, respectively) mainly induced a marked improvement in affinity at the CB₂ receptor, as seen with compound 42, bearing a 6-cyclohexylcarboxamide, in comparison to the parent 2-phenyl analogue 21 (hCB₂ $K_i = 9.52$ nM vs 42 nM, respectively). All of the 2-furyl compounds showed excellent affinity at the CB₂

Table 2. Effect of the Novel CB Compounds 10–49 in hCB ₂ CHO Cells on Cyclic AMP Assays at 1 and 10 μ N
--

	increase in cAMP production $(\%)^a$			increase in cAMP production $(\%)^a$		
compd	at 1 <i>µ</i> M	at 10 μM	compd	at 1 µM	at 10 µM	
WIN 55,212-2	-102 ± 9	-104 ± 8	30	37 ± 4	55 ± 5	
10	42 ± 4	54 ± 5	31	53 ± 6	69 ± 7	
11	44 ± 5	63 ± 6	32	114 ± 9	136 ± 12	
12	56 ± 6	75 ± 8	33	79 ± 9	94 ± 10	
13	38 ± 3	52 ± 4	34	121 ± 13	162 ± 14	
14	48 ± 5	67 ± 5	35	144 ± 13	183 ± 15	
15	121 ± 11	146 ± 12	36	45 ± 4	65 ± 6	
16	137 ± 13	159 ± 16	37	61 ± 5	77 ± 8	
17	173 ± 14	243 ± 22	38	87 ± 8	112 ± 10	
18	85 ± 9	115 ± 10	39	38 ± 4	62 ± 6	
19	151 ± 12	213 ± 18	40	73 ± 7	103 ± 9	
20	114 ± 11	189 ± 16	41	42 ± 4	88 ± 9	
21	92 ± 8	123 ± 11	42	107 ± 11	124 ± 13	
22	103 ± 9	134 ± 12	43	56 ± 6	92 ± 8	
23	163 ± 15	195 ± 17	44	89 ± 8	102 ± 9	
24	73 ± 6	94 ± 8	45	71 ± 6	97 ± 8	
25	107 ± 8	125 ± 10	46	38 ± 4	68 ± 5	
26	155 ± 15	184 ± 17	47	32 ± 4	48 ± 4	
27	63 ± 7	93 ± 9	48	34 ± 4	51 ± 6	
28	81 ± 7	107 ± 11	49	36 ± 4	60 ± 6	
29	138 ± 12	168 ± 16				

^{*a*}The data are espressed as the mean \pm SEM of *n* = 4 independent experiments and represent the % of increase of cAMP production in hCB₂CHO cells stimulated with forskolin (1 μ M) obtained by novel CB compounds at 1 or 10 μ M in comparison with the full agonist WIN 55,212-2 that completely inhibited the forskolin-stimulated cAMP levels.

receptor ranging from 4.92 to 9.52 nM. The 3-furyl compound 43 is substantially equivalent to derivative 42 in in terms of affinity, yet endowed with somewhat lower receptor selectivity.

Among the 2-thienyl derivatives **44**–**46** bearing an adamant-1-yl residue on the amide nitrogen, better affinity was seen with the unsubstituted thiophene derivative **44** (hCB₂ K_i = 6.24 nM, SI > 1602) compared to the 4- or 5-methylthiophene analogues (**45** or **46**, respectively) with slightly reduced the affinity at CB₂ receptor.

An overall comparison between the binding assays of 2alkylpyrazolopyrimidine and 2-aryl derivatives indicates that C-2 may be a site for enhancement in selectivity together with an apparent improvement in affinity.

We also evaluated the effect on receptor affinity and selectivity of structural modifications at the 3-position of the pyrazolopyrimidone nucleus (46–48) within the 2-methyl series. The introduction of a bromine (47, hCB₂ K_i = 220 nM), a phenyl (48, hCB₂ K_i = 181 nM), or a 4-methoxyphenyl (49, hCB₂ K_i = 350 nM) resulted in a significant decrease in affinity for CB₂ receptor when compared to the 3-unsubstituted analogue (12, hCB₂ K_i = 12.7 nM), suggesting a severe steric constraint at this position.

Functional Activity at CB₂ Receptor and SAR. The novel compounds were also evaluated in functional assays in order to study their effects on forskolin-stimulated adenylate cyclase production in hCB₂ CHO cells at 1 and 10 μ M compared to the maximal effect (set at -100%) achieved with the full CB₂ agonist WIN 55,212-2. All of the tested compounds show some level of efficacy, as evidenced by their ability to increase forskolin-induced cAMP production, thus characterizing these compounds as inverse agonists (Table 2).

Interestingly, the highest effect was achieved with the compounds 17 and 19 that were able to increase forskolininduce cAMP production by 243% and 213% at 10 μ M, respectively (Figure 1B), yet the two compounds display slightly different affinities at the CB₂ receptor ($K_i = 0.84$ and 7.22 nM, respectively). When tested in the presence of WIN 55,212-2, the novel compound 17 was able to completely abrogate the inhibitory effect of the agonist on forskolin-stimulated cAMP production, confirming its opposite effect with respect to WIN 55,212-2 (Figure 1B).

For the most effective compounds 17, 19, and 23, full dose– response curves were measured and EC_{50} values were determined. The obtained results that confirmed the inverse agonism activity relative to the selected compounds are presented in Figure 1C. The potencies of the novel compounds 17, 19, and 23 were 95 ± 8, 351 ± 31, and 195 ± 17 nM, respectively, confirming a good correlation with their affinity for CB₂ receptors.

Among the various compounds bearing an alkyl substituent at C-2 (compounds 10-20), when the amide substituent is held constant, there is a trend toward an ethyl substituent at C-2 being more effective than tert-butyl, which is more effective than methyl, suggesting that the size of the C-2 substituent may influence the efficacy of these inverse agonists. For instance, in the group of compounds having an adamantylamide, the C-2 ethyl compound (17) is one of the most effective compounds evaluated, showing a 243% increase in cAMP levels at 10 μ M, while the *tert*-butyl (20) and methyl (12) analogues show 189% and 75% increases, respectively, at the same concentration. A similar trend is observed among the cyclohexylamides (compounds 15, 18, and 10), while within the cycloheptylamides (compounds 19, 16, and 11) the highest effect is for the tert-butyl (19) analogue. Interestingly, within each limited series of amides, there appears to be a correlation between the observed efficacy as inverse agonists at 1 or 10 μ M and the affinity of the individual compounds for the CB₂ receptor.

F2.58

M6.55

F3 2

T3.33

A3.34

L6.59

F5 46

W5.43

M3.34

Article

Y5.39

13.26

P4 60

Y5.39

W5 43

/6 59

14.56

F

F2.58

B

L6.54

T3.33

M6.5

Figure 3. Docking of 13 (A), 23 (B), and 49 (C) into the CB₂ receptor model.

We did not observe similar trends among the compounds bearing a phenyl or substituted phenyl moiety at C-2 (21–39). The adamantylamides (23, 26, 35, and 29) are the most effective, showing 195%, 184%, 168%, and 183% increases in cAMP levels at 10 μ M, respectively. These compounds were also found to bind to the CB₂ receptor with very good affinities ($K_i < 4$ nM). Similary, the cyclohexylamides (21, 24, 33, 27, 36, and 30) show moderate effects at 10 μ M with modest affinity (40–57 nM). Among the cycloheptylamides (34, 22, 25, 28, 37, and 31) the increase in cAMP levels at 10 μ M is correlated with K_i values, while a different trend was observed only for the 2-Cl-phenyl derivative 31 that revealed a modest increase in cAMP (69%) despite its good affinity at CB₂ ($K_i = 10.3$ nM).

Molecular Modeling Studies. The synthesized ligands were docked, using AUTODOCK 4.0,³² into the CB₁ and CB₂ receptor models. Figure 2A shows the docking of compound 17 into both receptors. In the CB₁ receptor model, the pyrazolopyrimidine central scaffold and the adamantane ring interact in the lipohilic pocket mainly delimited by L3.29(193), T3.33(197), I4.56(247), A4.57(248), P4.60(251), and W5.43(279), while the *n*-pentyl chain is directed toward the sixth transmembrane domain (TM6) and interacts with L3.26(190) and V6.57(367).

In the CB₂ receptor model, the *n*-pentyl chain interacts with L3.27(108) and L6.57(269) whereas the pyrazolopyrimidine central scaffold is rotated about 90° with respect to the disposition in the CB₁ receptor model (clockwise sense from the extracellular point of view) with the formation of an H-bond with T3.33(114) and lipophilic interactions with

I3.29(110), M6.59(465), and L6.59(269). Furthermore, the adamantane ring interacts with V4.56(164), P4.60(168), Y5.39(190), W5.43(194) and feels the effect of a strong interaction with F5.46(197), which is a nonconserved residue (V282 in the CB₁ receptor). The interactions with T3.33(114) and F5.46(197), together with the different disposition of the pyrazolopyrimidine central scaffold, could be the reason for the CB₂ versus CB₁ selectivity of these ligands. Site-directed mutagenesis partially confirms our hypothesis, as mutations in the CB₂ subtype of F5.46(197) cause a substantial decrease of WIN-55,212-2 affinity.^{33,34}

The substitution of the adamantane ring with the benzylic group (see 12 vs 13) causes an important decrease of the CB₂ affinity. As shown in Figure 3A, the docking of compound 13 highlights that the benzyl group is not adapted to interact into the lipophilic pocket delimited by V4.56(164), P4.60(168), Y5.39(190), W5.43(194), and F5.46(197), causing the ligand to assume a disposition very similar to that observed for 17 in the CB₁ receptor, with the loss of the H-bond interaction with T3.33(114).

The addition of a phenyl ring in position 2 of the pyrazolopyrimidine scaffold seems to be well tollerated, as shown by the CB_2 activity of compound 23. The docking of this compound into the CB_2 receptor model highlights that 23 and 17 interact in a very similar manner, showing the same lipophilic interactions and the H-bond with T3.33(114) (see Figure 3B). With regard to the phenyl group, it interacts with F2.58(87) and is oriented toward an empty space delimited by

TM2 and TM7 that could correspond to the anandamide binding pocket. $^{\rm 35}$

Finally, the addition of a bulky group in position 3 of the pyrazolopyrimidine scaffold determines a general decrease of the CB₂ affinity. As shown in Figure 3C, the docking of compound **49** into the CB₂ receptor model highlights that, because of the steric hindrance produced by L3.26(107) and I3.29(110), the presence of a 4-methoxyphenyl group in position 3 determines a positional change of the pyrazolopyrimidine scaffold with the loss of the H-bond with T3.33(114) and the lipophilic interactions with I3.29(110) and M6.59(465).

CONCLUSION

A series of 7-oxo-4-pentylpyrazolo[1,5-a]pyrimidine-6-carboxamide derivatives was designed and synthesized as high affinity CB₂ receptor ligands, tested in radioligand binding studies, and functionally characterized in cAMP accumulation assays.

A major focus of the optimization effort was to increase selectivity of our previous series of heteroarylpyridine/ pyrimidine derivatives to avoid or reduce the potential CB₁- associated CNS adverse effects of this novel series. The best affinity values associated with high selectivity were obtained with compounds **23**, **26**, **29**, **35**, **42**, and **44** (2.56 nM < hCB₂ $K_i < 6.24$ nM, 1602 < SI < 3906) bearing an aryl group at the C-2 position and an adamant-1-yl moiety on the C-6 amide function.

The effect of novel compounds on forskolin induced elevation of cyclic adenosine monophosphate (cAMP) levels in Chinese hamster ovary (CHO) cells transfected with human CB₂ receptor was assessed. The potencies of the compounds 17, 19, and 23 were also measured in functional assays. These results reveal that the novel series behaved as CB2 receptor inverse agonists. A good correlation between receptor affinity (expressed as K_i) and efficacy (represented by % increase in cAMP levels at different concentrations of test compound) was observed; thus, the wide range of relative efficacies seen with this limited series of compounds offers the potential opportunity to more closely examine the structural requirements for delineation between neutral antagonists and potent inverse agonists. When compared to the triaryl bis-sulfones described by the Schering group, the compounds herein display similar levels of affinity and selectivity for the CB₂ receptor¹ while significantly exceeding the affinity and selectivity reported recently for the related triarylsulfonamide derivatives.¹⁸ Thus, this novel series of compounds offers an attractive starting point for further optimization, representing novel pharmacological tools to evaluate the therapeutic potential of CB₂ inverse agonists in various disease settings. To achieve these ambitious objectives, an evaluation of the systemic bioavailability and metabolic stability will be required, tasks beyond the scope of this present study.

EXPERIMENTAL SECTION

Pharmacology. Competition binding experiments were performed by using $[{}^{3}H]$ CP-55,940 (specific activity, 180 Ci/mmol) that was obtained from Perkin-Elmer Life and Analytical Sciences (U.S.). Human CB₁ and CB₂ receptors expressed in CHO cells were purchased from Perkin-Elmer Life and Analytical Sciences (U.S.). All other reagents were of analytical grade and obtained from commercial sources.

Competition Binding Experiments on CB₁ and CB₂ Receptors. To study CB₁ receptors, rat brain (male Sprague–Dawley rats, Charles River) was removed, frozen in liquid nitrogen, and stored at -80 °C until ready for use. The thawed rat brain tissue was resuspended in 50 mM Tris-HCl buffer, pH 7.4, at 4 °C. The suspension was homogenized with a Polytron, centrifuged for 10 min at 2000g, and the supernatant was centrifuged again for 20 min at 40000g. The pellet was resuspended in a buffer containing 50 mM Tris-HCl, 1 mM EDTA, 3 mM MgCl₂, 0.5% fatty acid free BSA, pH 7.4, at 30 °C.

Competition binding experiments to rat CB₁ receptors were performed using [³H]CP-55,940 (1.0 nM), a membrane suspension containing 40 μ g of protein/100 μ L, and different concentrations (1 nM to 10 μ M) of the examined compounds.³⁶

To investigate CB₂ receptors, $[{}^{3}H]$ CP-55,940 binding assay was performed by using previously frozen rat spleen (male Sprague–Dawley rats, Charles River) that was homogenized in 50 mM Tris-HCl buffer, pH 7.4, at 4 °C with a Polytron and centrifuged for 10 min at 2000g, and the supernatant was centrifuged for 20 min at 40000g. The pellet was resuspended in a buffer containing 50 mM Tris-HCl, 1 mM EDTA, 3 mM MgCl₂, 0.5% fatty acid free BSA, pH 7.4, at 30 °C. Competition binding experiments to rat CB₂ receptors were performed using $[{}^{3}H]$ CP-55,940 (0.5 nM), a membrane suspension containing 80 μ g of protein/100 μ L and different concentrations (1 nM to 10 μ M) of examined compounds.³⁶

CHO cells expressing human CB_1 and CB_2 receptors were grown adherently and maintained in Ham's F12 containing 10% fetal bovine serum, penicillin (100 U/mL), streptomycin (100 μ g/mL), and Geneticin (G418, 0.4 mg/ml) at 37 °C in 5% CO₂/95% air.^{11,37,38} For membrane preparations, the culture medium was removed and the cells were washed with PBS, then scraped off T75 flasks in ice-cold hypotonic buffer (5 mM Tris-HCl, 2 mM EDTA, pH 7.4). The cell suspension was homogenized with a Polytron and centrifuged for 10 min at 1000g, and the supernatant was then centrifuged for 30 min at 100000g. The membrane pellet was suspended in 50 mM Tris-HCl buffer, 0.5% BSA (pH 7.4) containing 5 mM MgCl₂, 2.5 mM EDTA or 1 mM EDTA for hCB₁ or hCB₂ receptor, respectively.

Competition binding experiments were performed using 0.5 nM [³H]CP-55,940 and different concentrations (1 nM to 10 μ M) of the examined compounds or a reference agonist (WIN 55,212-2) for an incubation time of 90 or 60 min at 30 °C for CB₁ or CB₂ receptors, respectively.

Bound and free radioactivities were separated by filtering the assay mixture through Whatman GF/C glass fiber filters using a Brandel cell harvester (Brandel Instruments, Unterföhring, Germany). The filter bound radioactivity was counted on a Perkin-Elmer 2810 TR scintillation counter (Perkin-Elmer Life and Analytical Sciences, U.S.).

Cyclic AMP Assay for Human CB, Receptors. CHO cells transfected with human CB₂ receptors were washed with phosphatebuffered saline, diluted trypsin and centrifuged for 10 min at 200g. The pellet containing CHO cells (1 \times 10 6 cells/assay) was suspended in 0.5 mL of incubation mixture: NaCl 150 mM, KCl 2.7 mM, NaH₂PO₄ 0.37 mM, MgSO₄ 1 mM, CaCl₂ 1 mM, HEPES 5 mM, MgCl₂ 10 mM, glucose 5 mM, pH 7.4 at 37 °C. Then 0.5 mM 4-(3-butoxy-4methoxybenzyl)-2-imidazolidinone (Ro 20-1724) as a phosphodiesterase inhibitor was added and the mixture preincubated for 10 min in a shaking bath at 37 °C.³⁹ The effect of the novel CB compounds was studied in the presence of forskolin, 1 μ M, in comparison with the well-known CB agonist WIN 55,212-2. The reaction was terminated by the addition of cold 6% trichloroacetic acid (TCA). The TCA suspension was centrifuged at 2000g for 10 min at 4 °C, and the supernatant was extracted four times with water saturated diethyl ether. The final aqueous solution was tested for cyclic AMP levels by a competition protein binding assay. Samples of cyclic AMP standard (0-10 pmol) were added to each test tube containing the incubation buffer (Trizma base 0.1 M, aminophylline 8.0 mM, 2-mercaptoethanol 6.0 mM, pH 7.4) and [³H]cyclic AMP in a total volume of 0.5 mL. The binding protein previously prepared from beef adrenals was added to the samples previously incubated at 4 °C for 150 min, and after the addition of charcoal, they were centrifuged at 2000g for 10 min. The clear supernatant was counted by using a Perkin-Elmer 2810 TR scintillation counter (Perkin-Elmer Life and Analytical Sciences, U.S.).

Data Analysis. The protein concentration was determined according to a Bio-Rad method (Bradford, 1976) with bovine albumin as reference standard. Inhibitory binding constants, $K_{i\nu}$ were calculated from the IC₅₀ values according to the Cheng and Prusoff equation:⁴⁰ $K_i = IC_{50}/(1 + [C^*]/K_D^*)$, where [C*] is the concentration of the radioligand and K_D^* its dissociation constant. A weighted nonlinear least-squares curve fitting program, LIGAND,⁴¹ was used for computer analysis of the inhibition experiments. All the data are expressed as the mean \pm SEM of n = 4 independent experiments. Statistical analysis of the data was performed using unpaired two-sided Student's *t* test.

Docking Studies. The ligands were built by means of Maestro⁴² and were then minimized in a water environment (using the generalized Born/surface area model) by means of Macromodel.⁴³ They were minimized using the conjugate gradient, the MMFFs force field, and a distance-dependent dielectric constant of 1.0 until they reached a convergence value of 0.05 kcal Å⁻¹ mol⁻¹.

The ligands were docked using AUTODOCK 4.0³² in the previously reported CB1 and CB2 receptor models⁴⁴ optimized on the basis of the recently deposited PDB structures of adenosine⁴⁵ and rhodopsine receptors.⁴⁶ AUTODOCK TOOLS⁴⁷ was used to identify the torsion angles in the ligands, to add the solvent model, and to assign partial atomic charges (Gasteiger for the ligands and Kollman for the receptors). The regions of interest used by AUTODOCK were defined by considering the previously published WIN 55,212-2 docked into the CB1 and CB2 receptor⁴⁴ as the central group of a grid of 54, 50, and 52 points in the x, y, and z directions. A grid spacing of 0.375 Å and a distance-dependent function of the dielectric constant were used for the energetic map calculations. Since the compounds can form an intramolecular H-bond and our previous study suggested that the interaction was quite strong,44 this H-bond was considered to be maintained during interaction in the binding site. For this reason, during the AUTODOCK protocol, we blocked the torsions involved in this intramolecular bond to prevent the loss of this interaction. By use of the Lamarckian genetic algorithm, the compounds were subjected to 100 runs of the AUTODOCK search using 500 000 steps of energy evaluation and default values for the other parameters. Cluster analysis was performed on the results using an rms tolerance of 1.0 Å. The cluster with the best average of estimated free energy was chosen.

Chemistry. ¹H NMR spectra were recorded on a Bruker AC 200 spectrometer or a Varian Mercury Plus 400 spectrometer. Chemical shifts (δ) are given in ppm, and the spectra were recorded in appropriate deuterated solvents, as indicated. Positive ion electrospray ionization (ESI) mass spectra were recorded on a double-focusing Finnigan MAT 95 instrument with BE geometry. Melting points were determined on a Buchi-Tottoli apparatus and are uncorrected. All products reported showed ¹H NMR spectra in agreement with the assigned structures. The purity of the tested compounds was determined by combustion elemental analyses conducted by the Microanalytical Laboratory of the Department of Chemistry of the University of Ferrara, Italy, with a Yanagimoto MT-5 CHN recorder elemental analyzer. All tested compounds yielded data consistent with a purity of at least 95% compared with the theoretical values. Reaction progress and product mixtures were routinely monitored by TLC on silica gel (precoated Merck F_{254} plates), and compounds were visualized with aqueous KMnO₄. Flash chromatography was performed using 230-400 mesh silica gel and a mixture of ethyl acetate/petroleum ether or ethyl acetate/methanol as eluent. Organic solutions were dried over anhydrous Na2SO4. All chemicals and reagents were purchased from Aldrich (Sigma-Aldrich) or Lancaster (Alfa Aesar, Johnson Matthey Company).

Synthesis of Ethyl 4,7-Dihydro-7-oxo-2-(substituted)pyrazolo[1,5-*a*]pyrimidine-6-carboxylate (7a–o). General Procedure. A mixture of the appropriate 3-substituted-5-aminopyrazole (6a–o, 10 mmol), diethyl ethoxymethylenemalonate (10 mmol), and acetic acid (10 mL) was heated at reflux for 4 h. After the reaction was complete (from TLC), the solvent was evaporated, water was added, and the crude product was filtered and washed with cold ethanol.

Ethyl 4,7-Dihydro-2-methyl-7-oxopyrazolo[1,5-a]pyrimidine-6-carboxylate (7a). White solid; mp, 295 °C; yield, 75%. MS: m/z 222.2 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.98 (bs, 1H), 8.52 (s, 1H), 6.13 (s, 1H), 4.22 (q, J = 7 Hz, 2H), 2.23 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H).

Ethyl 4,7-Dihydro-2-ethyl-7-oxopyrazolo[1,5-*a*]pyrimidine-6-carboxylate (7b). White solid; mp, 291 °C (dec); yield, 70%. MS: m/z 235.8 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 12.95 (bs, 1H), 8.52 (s, 1H), 6.16 (s, 1H), 4.22 (q, J = 7 Hz, 2H), 2.67 (q, J= 7.6 Hz, 2H), 1.31–1.18 (m, 6H).

Ethyl 2-*tert*-Butyl-4,7-dihydro-7-oxopyrazolo[1,5-*a*]pyrimidine-6-carboxylate (7c). White solid; mp, >300 °C; yield, 75%. MS: m/z 264.3 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 13.07 (bs, 1H), 8.47 (s, 1H), 6.15 (s, 1H), 4.17 (q, J = 7 Hz, 2H), 1.27–1.21 (m, 12H).

Ethyl 4,7-Dihydro-7-oxo-2-phenylpyrazolo[1,5-*a*]pyrimidine-6-carboxylate (7d). White solid; mp, >300 °C; yield, 70%. MS: m/z 284.3 (M + H). ¹H NMR (400 MHz, DMSO- d_6): δ 13.08 (bs, 1H), 8.56 (s, 1H), 8.00–7.98 (m, 2H), 7.50–7.42 (m, 3H), 6.77 (s, 1H), 4.23 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 6.8 Hz, 3H).

Ethyl 4,7-Dihydro-2-(2-methylphenyl)-7-oxopyrazolo[1,5-*a*]**pyrimidine-6-carboxylate (7e).** White solid; mp, >300 °C; yield, 65%. MS: m/z 298.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 13.12 (bs, 1H), 8.59 (s, 1H), 7.64–7.62 (m, 1H), 7.34–7.29 (m, 3H), 6.56 (s, 1H), 4.24 (q, J = 7 Hz, 2H), 2.52 (s, 3H), 1.29 (t, J = 7.4 Hz, 3H).

Ethyl 4,7-Dihydro-2-(4-methylphenyl)-7-oxopyrazolo[1,5-*a*]**pyrimidine-6-carboxylate (7f).** White solid; mp, >300 °C; yield, 68%. MS: m/z 298.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 13.02 (bs, 1H), 8.56 (s, 1H), 7.88 (dd, J = 8 Hz, 2H), 7.29 (dd, J = 8Hz, 2H), 6.58 (s, 1H), 4.24 (q, J = 7 Hz, 2H), 2.36 (s, 3H), 1.29 (t, J = 7 Hz, 3H).

Ethyl 2-(2-Chlorophenyl)-4,7-dihydro-7-oxopyrazolo[1,5-*a*]**pyrimidine-6-carboxylate (7g).** White solid; mp, >300 °C; yield, 60%. MS: *m/z* 318.1 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 13.18 (bs, 1H), 8.64 (s, 1H), 7.87–7.45 (m, 4H), 6.55 (s, 1H), 4.25 (q, *J* = 7 Hz, 2H), 1.30 (t, *J* = 7.2 Hz, 3H).

Ethyl 2-(4-Chlorophenyl)-4,7-dihydro-7-oxopyrazolo[1,5-*a*]**pyrimidine-6-carboxylate (7h).** Pale white solid; mp, >300 °C; yield, 70%. MS: *m/z* 318.1 (M + H). ¹H NMR (200 MHz, DMSO*d*₆): δ 13.06 (bs, 1H), 8.57 (s, 1H), 8.03 (dd, J = 8.6 Hz, 2H), 7.54 (dd, J = 8.6 Hz, 2H), 6.81 (s, 1H), 4.24 (q, J = 7 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H).

Ethyl 2-(2,4-Dichlorophenyl)-4,7-dihydro-7-oxopyrazolo-[1,5-*a*]pyrimidine-6-carboxylate (7i). White solid; mp, >300 °C; yield, 60%. MS: m/z 353.2 (M + H). ¹H NMR (200 MHz, DMSO d_6): δ 13.18 (bs, 1H), 8.65 (s, 1H), 7.93–7.80 (m, 2H), 7.60–7.54 (m, 1H), 6.75 (s, 1H), 4.25 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7 Hz, 3H).

Ethyl 2-(2,6-Dichlorophenyl)-4,7-dihydro-7-oxopyrazolo[**1,5-***a*]**pyrimidine-6-carboxylate (7j).** White solid; mp, 197 °C; yield, 28%. MS: m/z 353.2 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 13.18 (bs, 1H), 8.64 (s, 1H), 7.60–7.56 (m, 2H), 7.21–7.16 (m, 1H), 6.41–6.37 (s, 1H), 4.25 (q, *J* = 7 Hz, 2H), 1.29 (t, *J* = 7 Hz, 3H).

Ethyl 4,7-Dihydro-2-(furan-2-yl)-7-oxopyrazolo[1,5-a]pyrimidine-6-carboxylate (7k). White solid; mp, >300 °C; yield, 80%. MS: m/z 273.9 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 13.16 (bs, 1H), 8.59 (s, 1H), 7.84 (s, 1H), 7.06-7.01 (m, 1H), 6.66-6.56 (m, 2H), 4.24 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7 Hz, 3H).

Ethyl 4,7-Dihydro-2-(furan-3-yl)-7-oxopyrazolo[**1**,5-*a*]-**pyrimidine-6-carboxylate (7l).** White solid; mp, >300 °C; yield, 50%. MS: *m/z* 273.9 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 13.16 (bs, 1H), 8.57 (s, 1H), 8.32 (s, 1H), 7.88 (m, 1H), 6.97–6.89 (m, 1H), 6.56 (s, 1H), 4.24 (q, *J* = 7 Hz, 2H), 1.29 (t, *J* = 7 Hz, 3H).

Ethyl 4,7-Dihydro-7-oxo-2-(thiophen-2-yl)pyrazolo[1,5-a]pyrimidine-6-carboxylate (7m). White solid; mp, >300 °C; yield, 70%. MS: m/z 290.2 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 13.16 (bs, 1H), 8.57 (s, 1H), 7.71–7.62 (m, 2H), 7.18–7.14 (m 1H), 6.70 (s, 1H), 4.24 (q, J = 7.Hz, 2H), 1.29 (t, J = 7 Hz, 3H).

Ethyl 4,7-Dihydro-2-(4-methylthiophen-2-yl)-7oxopyrazolo[1,5-*a*]pyrimidine-6-carboxylate (7n). White solid; mp, >300 °C; yield, 59%. MS: m/z 304.3 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 13.12 (bs, 1H), 8.56 (s, 1H), 7.52 (s, 1H), 7.20 (s, 1H), 6.65 (s, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 2.25 (s, 3H), 1.29 (t, *J* = 7 Hz, 3H).

Ethyl 4,7-Dihydro-2-(5-methylthiophen-2-yl)-7oxopyrazolo[1,5-*a*]pyrimidine-6-carboxylate (70). White solid; mp, >300 °C; yield, 23%. MS: m/z 304.3 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 13.16 (bs, 1H), 8.54 (s, 1H), 7.47 (d, J = 3.4 Hz, 1H), 6.85 (d, J = 2.8 Hz, 1H), 6.61 (s, 1H), 4.24 (q, J = 7.2 Hz, 2H), 2.49 (s, 3 H), 1.28 (t, J = 7.2 Hz, 3H).

Synthesis of Ethyl 3-Bromo-4,7-dihydro-2-methyl-7oxopyrazolo[1,5-*a*]pyrimidine-6-carboxylate (7p). A solution of bromine (38.5 mmol, 2.12 mL) in glacial acetic acid (5 mL) was added dropwise and under vigorous stirring to a mixture of ethyl 4,7-dihydro-2-methyl-7-oxopyrazolo[1,5-*a*]pyrimidine-6-carboxylate (7a, 11 mmol) in glacial acetic acid (40 mL). The reaction mixture was stirred for 3 h at room temperature. The precipitate was removed by filtration and washed with water. Yellow solid; mp, 163 °C; yield, 65%. MS: *m*/*z* 301.7 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 13.38 (bs, 1H), 8.36 (s, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 2.29 (s, 3H), 1.28 (t, *J* = 7.4 Hz, 3H).

Synthesis of Ethyl 4,7-Dihydro-7-oxo-4-pentyl-2-(substituted)-pyrazolo[1,5-*a*]pyrimidine-6-carboxylates (8a–p). General Procedure. A mixture of ethyl 4,7-dihydro-7-oxo-2-(substituted)-pyrazolo[1,5-*a*]pyrimidine-6-carboxylates (7a–o, 1.3 mmol) and K_2CO_3 (4 mmol) in dry DMF (10 mL) was heated at 100 °C. After 1 h, 1-pentyl bromide (2 mmol) was added and the mixture was stirred at 80–100 °C for 10–18 h. The solution was evaporated to dryness in vacuo and treated with water. The precipitate was collected and was purified by crystallization (ethyl acetate/hexane).

Ethyl 4,7-Dihydro-2-methyl-7-oxo-4-pentylpyrazolo[**1**,5-*a*]-**pyrimidine-6-carboxylate (8a).** White solid; mp, 93 °C; yield, 65%. MS: m/z 292.4 (M + H). ¹H NMR (400 MHz, DMSO- d_6): δ 8.63 (s, 1H), 6.41 (s, 1H), 4.23 (q, J = 7.2 Hz, 2H), 4.13 (t, J = 7.2 Hz, 2H), 2.32 (s, 3H), 1.75–1.63 (m, 2H), 1.30–1.26 (m, 7H), 0.86 (t, J = 6.8 Hz, 3H).

Ethyl 2-Ethyl-4,7-dihydro-7-oxo-4-pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxylate (8b).** White solid; mp, 106 °C; yield, 74%. MS: m/z 306.4 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.63 (s, 1H), 6.47 (s, 1H), 4.25–4.14 (m, 4H), 2.69 (q, J = 7.6 Hz, 2H), 1.81–1.72 (m, 2H), 1.32–1.20 (m, 10H), 0.86 (t, J = 6.6 Hz, 3H).

Éthyl 2-*tert***-Butyl-4,7-dihydro-7-oxo-4-pentylpyrazolo**[1,5-*a*]**pyrimidine-6-carboxylate (8c).** White solid; mp, 87 °C; yield, 80%. MS: m/z 334.5 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.62 (s, 1H), 6.56 (s, 1H), 4.25–4.11 (m, 4H), 1.79–1.68 (m, 2H), 1.31–1.24 (m, 16H), 0.86 (t, J = 6.4 Hz, 3H).

Ethyl 4,7-Dihydro-7-oxo-4-pentyl-2-phenylpyrazolo[1,5-a]pyrimidine-6-carboxylate (8d). White solid; mp, 130 °C; yield, 60%. MS: m/z 354.6 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.70 (s, 1H), 8.01–7.99 (m, 2H), 7.52–7.44 (m, 3H), 7.18 (s, 1H), 4.27–4.20 (m, 4H), 1.83–1.76 (m, 2H), 1.34–1.28 (m, 7H), 0.87 (t, J = 3.4 Hz, 3H).

Ethyl 4,7-Dihydro-2-(2-methylphenyl)-7-oxo-4pentylpyrazolo[1,5-*a***]pyrimidine-6-carboxylate (8e).** White solid; mp, 100 °C; yield, 74%. MS: m/z 368.4 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.71 (s, 1H), 7.67–7.64 (m, 1H), 7.34–7.31 (m, 3H), 6.93 (s, 1H), 4.31–4.20 (m, 4H), 2.52 (s, 3H), 1.82–1.76 (m, 2H), 1.33–1.26 (m, 7H), 0.87 (t, *J* = 6.4 Hz, 3H).

Ethyl 4,7-Dihydro-2-(4-methylphenyl)-7-oxo-4pentylpyrazolo[1,5-*a***]pyrimidine-6-carboxylate (8f).** White solid; mp, 194 °C; yield, 71%. MS: m/z 368.4 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.68 (s, 1H), 7.89 (dd, J = 8 Hz, 2H), 7.31 (dd, J = 8 Hz, 2H), 7.12 (s, 1H), 4.27–4.20 (m, 4H), 2.36 (s, 3H), 1.85–1.77 (m, 2H), 1.33–1.26 (m, 7H), 0.87 (t, J = 6.4 Hz, 3H).

Ethyl 2-(2-Chlorophenyl)-4,7-dihydro-7-oxo-4pentylpyrazolo[**1,5-***a*]**pyrimidine-6-carboxylate (8g).** White solid; mp, 91 °C; yield, 78%. MS: m/z 388.9 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.73 (s, 1H), 7.89–7.81 (m, 1H), 7.60–7.47 (m, 3H), 7.03 (s, 1H), 4.28–4.21 (m, 4H), 1.89–1.80 (m, 2H), 1.34– 1.25 (m, 7H), 0.89–0.83 (m, 3H).

Ethyl 2-(4-Chlorophenyl)-4,7-dihydro-7-oxo-4pentylpyrazolo[1,5-a]pyrimidine-6-carboxylate (8h). White solid; mp, 196–197 °C; yield, 80%. MS: m/z 388.7 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.70 (s, 1H), 8.02 (dd, J = 8.4 Hz, 2H), 7.57 (dd, J = 8.4 Hz, 2H), 7.21 (s, 1H), 4.31–4.17 (m, 4H), 1.3 (m, 2H), 1.36–1.26 (m, 7H), 0.91–0.84 (t, J = 6.6 Hz, 3H).

Ethyl 2-(2,4-Dichlorophenyl)-4,7-dihydro-7-oxo-4pentylpyrazolo[**1,5-***a*]**pyrimidine-6-carboxylate (8i).** White solid; mp, >300 °C; yield, 58%. MS: m/z 423.1 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.72 (s, 1H), 7.88–7.77 (m, 2H), 7.59–7.54 (m, 1H), 7.04 (s, 1H), 4.30–4.19 (m, 4H), 1.79 (m, 2H), 1.32–1.25 (m, 7H), 0.87–0.81 (t, J = 6.6 Hz, 3H).

Ethyl 2-(2,6-Dichlorophenyl)-4,7-dihydro-7-oxo-4pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxylate (8j). White solid; mp, >300 °C; yield, 55%. MS: m/z 423.1 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.76 (s, 1H), 7.67–7.54 (m, 3H), 6.83 (s, 1H), 4.28–4.18 (m, 4H), 1.80–1.69 (m, 2H), 1.32–1.25 (m, 7H), 0.87–0.81 (t, J = 6.4 Hz, 3H).

Ethyl 4,7-Dihydro-2-(furan-2-yl)-7-oxo-4-pentylpyrazolo-[**1,5-***a*]**pyrimidine-6-carboxylate (8k).** White solid; mp, 98–99 °C; yield, 75%. MS: m/z 344.4 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.69 (s, 1H), 7.86–7.78 (m, 1H), 7.04 (m, 1H), 6.92 (s, 1H), 6.68–6.67 (m, 1H), 4.27–4.20 (m, 4H), 1.89–1.78 (m, 2H), 1.34–1.26 (m, 7H), 0.86 (t, J = 6.6 Hz, 3H).

Ethyl 4,7-Dihydro-2-(furan-3-yl)-7-oxo-4-pentylpyrazolo-[**1,5-***a*]**pyrimidine-6-carboxylate (8l).** White solid; mp, 127–129 °C; yield, 80%. MS: m/z 344.4 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.68 (s, 1H), 8.29–8.21 (m, 1H), 7.81 (m, 1H), 6.95 (s, 1H), 6.89 (s, 1H), 4.30–4.14 (m, 4H), 1.89–1.78 (m, 2H), 1.34–1.26 (m, 7H), 0.87 (t, J = 6.2 Hz, 3H).

Ethyl 4,7-Dihydro-7-oxo-4-pentyl-2-(thiophen-2-yl)pyrazolo[1,5-*a*]pyrimidine-6-carboxylate (8m). Pale white solid; mp, 171 °C; yield, 46%. MS: m/z 360.2 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.69 (s, 1H), 7.69–7.64 (m, 2H), 7.21–7.17 (m, 1H), 7.06 (s, 1H), 4.31–4.16 (m, 4H), 1.82 (m, 2H), 1.36–1.26 (m, 7H), 0.87 (t, J = 6.6 Hz, 3H).

Ethyl 4,7-Dihydro-2-(4-methylthiophen-2-yl)-4pentylpyrazolo[1,5-a]pyrimidine-6-carboxylate (8n). Pale yellow solid; mp, 211–213 °C; yield, 90%. MS: m/z 374.1 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.68 (s, 1H), 7.50 (s, 1H), 7.23 (s, 1H), 7.02 (s, 1H), 4.27–4.15 (m, 4H), 2.26 (s, 3H), 1.81–1.75 (m, 2H), 1.35–1.24 (m, 7H), 0.87 (t, J = 6.4 Hz, 3H).

Ethyl 4,7-Dihydro-2-(5-methylthiophen-2-yl)-7-oxo-4pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxylate (80). Yellow solid; mp, 200 °C; yield, 65%. MS: m/z 374.1 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.67 (s, 1H), 7.47 (d, J = 3.4 Hz, 1H), 6.99 (s, 1H), 6.87–6.79 (m, 1H), 4.27–4.18 (m, 4H), 2.48 (s, 3H), 1.82– 1.64 (m, 2H), 1.34–1.26 (m, 7H), 0.87 (t, J = 6.6 Hz, 3H).

Ethyl 3-Bromo-4,7-dihydro-2-methyl-7-oxo-4pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxylate (8p).** White solid; mp, 163 °C; yield, 55%. MS: m/z 370.1–372.1 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.45 (s, 1H), 4.23 (q, J = 7.2 Hz, 2H), 4.15 (t, J = 7.2 Hz, 2H), 2.24 (s, 3H), 1.75–1.68 (m, 2H), 1.30–1.26 (m, 7H), 0.85 (t, J = 6.8 Hz, 3H).

Synthesis of 4,7-Dihydro-2-(substituted)-7-oxo-4pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxylic Acids (9a–p). General Procedure. The appropriate 4,7-dihydro-7-oxo-4-pentyl-2substituted-pyrazolo[1,5-*a*]pyrimidine-6-carboxylates (8a–p, 1.7 mmol) was stirred in a mixture of aqueous 10% sodium hydroxide (5 mL) and methanol (5 mL) at room temperature for 3 h. The solution was adjusted to pH 4 with aqueous 10% hydrochloric acid. The resulting precipitate was collected by filtration and washed with H_2O and cold methanol.

4,7-Dihydro-2-methyl-7-oxo-4-pentylpyrazolo[**1,5-***a*]-**pyrimidine-6-carboxylic Acid (9a).** White solid; mp, 134 °C; yield, 68%. MS: m/z 264.3 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.89 (bs, 1H), 8.80 (s, 1H), 6.53 (s, 1H), 4.19 (t, J = 7.4 Hz, 2H), 2.35 (s, 3H), 1.77–1.68 (m, 2H), 1.29–1.26 (m, 4H), 0.85 (t, J = 6.6 Hz, 3H).

4,7-Dihydro-2-ethyl-7-oxo-4-pentylpyrazolo[**1,5-a**]**pyrimidine-6-carboxylic Acid (9b).** White solid; mp, 126 °C; yield, 60%. MS: m/z 278.3 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.80 (bs, 1H), 8.77 (s, 1H), 6.59 (s, 1H), 4.20 (t, J = 7.4 Hz, 2H),

2.69–2.58 (m, 2H), 1.77–1.69 (m, 2H), 1.32–1.22 (m, 7H), 0.89– 0.82 (t, J = 6.6 Hz, 3H).

2-tert-Butyl-4,7-dihydro-7-oxo-4-pentylpyrazolo[**1,5-a**]**pyrimidine-6-carboxylic Acid (9c).** White solid; mp, 110 °C; yield, 58%. MS: m/z 306.3 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.78 (bs, 1H), 8.78 (s, 1H), 6.71 (s, 1H), 4.21 (t, J = 7.4 Hz, 2H), 1.78–1.66 (m, 2H), 1.33–1.29 (m, 13H), 0.89 (t, J = 7.4 Hz, 3H).

4,7-Dihydro-7-oxo-4-pentyl-2-phenylpyrazolo[**1,5-***a*]-**pyrimidine-6-carboxylic Acid (9d).** White solid; mp, 185 °C; yield, 58%. MS: m/z 326.1 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 12.78 (bs, 1H), 8.28 (s, 1H), 8.03–8.01 (m, 2H), 7.51–7.46 (m, 3H), 7.28 (s, 1H), 4.26 (t, J = 7.2 Hz, 2H), 1.84–1.71 (m, 2H), 1.34–1.30 (m, 4H), 0.88–0.85 (t, J = 6.8 Hz, 3H).

4,7-Dihydro-2-(2-methylphenyl)-7-oxo-4-pentylpyrazolo-[**1,5-***a*]**pyrimidine-6-carboxylic Acid (9e).** White solid; mp, 159 °C; yield, 56%. MS: m/z 340.5 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.72 (bs, 1H), 8.84 (s, 1H), 7.69–7.45 (m, 1H), 7.35–7.30 (m, 3H), 7.05 (s, 1H), 4.28 (t, J = 7.2 Hz, 2H), 2.53 (s, 3H), 1.83–1.69 (m, 2H), 1.34–1.31 (m, 4H), 0.86 (t, J = 6.6 Hz, 3H).

4,7-Dihydro-2-(4-methylphenyl)-7-oxo-4-pentylpyrazolo[**1,5-***a*]**pyrimidine-6-carboxylic Acid (9f).** White solid; mp, 215 °C; yield, 60%. MS: m/z 340.5 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.76 (bs, 1H), 8.82 (s, 1H), 7.92 (dd, J = 8.2 Hz, 2H), 7.33 (dd, J = 7.8 Hz, 2H), 7.24 (s, 1H), 4.26 (t, J = 7.4 Hz, 2H), 2.37 (s, 3H), 1.84–1.77 (m, 2H), 1.37–1.32 (m, 4H), 0.87 (t, J = 6.6 Hz, 3H).

2-(2-Chlorophenyl)-4,7-dihydro-7-oxo-4-pentylpyrazolo-[**1,5-***a*]**pyrimidine-6-carboxylic Acid (9g).** White solid; mp, 167 °C; yield, 64%. MS: m/z 360.7 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.71 (bs, 1H), 8.84 (s, 1H), 7.85–7.83 (m, 1H), 7.61–7.48 (m, 3H), 7.12 (s, 1H), 4.30 (t, J = 7.4 Hz, 2H), 1.82–1.75 (m, 2H), 1.34–1.30 (m, 4H), 0.86 (t, J = 6.4 Hz, 3H).

2-(4-Chlorophenyl)-4,7-dihydro-7-oxo-4-pentylpyrazolo-[**1,5-***a*]**pyrimidine-6-carboxylic Acid (9h).** White solid; mp, 199 °C; yield, 63%. MS: m/z 360.7 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.70 (bs, 1H), 8.82 (s, 1H), 8.04 (dd, J = 8.8 Hz, 2H), 7.59 (dd, J = 8.4 Hz, 2H), 7.30 (s, 1H), 4.26 (t, J = 7.4 Hz, 2H), 1.82– 1.73 (m, 2H), 1.35–1.32 (m, 4H), 0.86 (t, J = 6.4 Hz, 3H).

2-(2,4-Dichlorophenyi)-4,7-dihydro-7-oxo-4-pentylpyrazolo-[**1,5-***a*]**pyrimidine-6-carboxylic Acid (9i).** White solid; mp, 175 °C; yield, 47%. MS: m/z 395.1 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.65 (bs, 1H), 8.84 (s, 1H), 7.92–7.57 (m, 3H), 7.13 (s, 1H), 4.29 (t, J = 6.6 Hz, 2H), 1.81–1.71 (m, 2H), 1.33–1.30 (m, 4H), 0.86 (t, J = 6.4 Hz, 3H).

2-(2,6-Dichlorophenyl)-4,7-dihydro-7-oxo-4-pentylpyrazolo-[**1,5-***a*]**pyrimidine-6-carboxylic Acid (9j).** White solid; mp, 178–179 °C; yield, 45%. MS: m/z 395.1 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.65 (bs, 1H), 8.86 (s, 1H), 7.68–7.52 (m, 3H), 6.91 (s, 1H), 4.24 (t, J = 7.6 Hz, 2H), 1.81–1.74 (m, 2H), 1.33–1.30 (m, 4H), 0.86 (t, J = 6.6 Hz, 3H).

4,7-Dihydro-2-(furan-2-yl)-7-oxo-4-pentylpyrazolo[**1,5-***a*]**pyrimidine-6-carboxylic Acid (9k).** Pale white solid; mp, 164–166 °C; yield, 40%. MS: m/z 316.4 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.71 (bs, 1H), 8.81 (s, 1H), 7.88–7.73 (m, 1H), 7.10– 7.08 (m, 1H), 7.02 (s, 1H), 6.69 (t, J = 7.2 Hz, 1H), 4.26–4.13 (m, 2H), 1.77–1.68 (m, 2H), 1.36–1.25 (m, 4H), 0.86 (t, J = 6.4 Hz, 3H).

4,7-Dihydro-2-(furan-3-yl)-7-oxo-4-pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxylic Acid (9l). White solid; mp, 191 °C (dec); yield, 71%. MS: m/z 316.4 (M + H). ¹H NMR (200 MHz, DMSO d_6): δ 12.71 (bs, 1H), 8.81 (s, 1H), 8.34–8.33 (m, 1H), 7.83–7.75 (m, 1H), 6.99–6.89 (m, 2H), 4.23 (t, J = 7 Hz, 2H), 1.83–1.74 (m, 2H), 1.35–1.27 (m, 4H), 0.87 (t, J = 6.6 Hz, 3H).

4,7-Dihydro-7-oxo-4-pentyl-2-(thiophen-2-yl)pyrazolo[1,5*a*]**pyrimidine-6-carboxylic Acid (9m).** White solid; mp, 157 °C; yield, 94%. MS: m/z 332.1 (M + H). ¹H NMR (200 MHz, DMSO d_6): δ 12.73 (bs, 1H), 8.81 (s, 1H), 7.72–7.68 (m, 2H), 7.22–7.16 (m, 2H), 4.24 (t, J = 7 Hz, 2H), 1.83–1.69 (m, 2H), 1.34–1.27 (m, 4H), 0.87 (t, J = 6.4 Hz, 3H).

4,**7**-**D**ihydro-2-(**4**-**M**ethylthiophen-2-yl)-7-oxo-4pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxylic Acid (9n). Pale white solid; mp, 162–164 °C; yield, 40%. MS: m/z 345.6 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.71 (bs, 1H), 8.80 (s, 1H), 7.54 (s, 1H), 7.26 (s, 1H), 7.12 (s, 1H), 4.23 (t, J = 7 Hz, 2H), 2.26 (s, 3H), 1.82–1.73 (m, 2H), 1.35–1.26 (m, 4H), 0.87 (t, J = 6.6 Hz, 3H).

4,**7**-**Dihydro-2**-(**5**-**Methylthiophen-2**-**y**])-**7**-**oxo-4**-**pentylpyrazolo**[**1**,**5**-*a*]**pyrimidine-6**-**carboxylic Acid (90).** White solid; mp, 185 °C; yield, 76%. MS: m/z 345.6 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.73 (bs, 1H), 8.79 (s, 1H), 7.51 (d, J = 3.4 Hz, 1H), 7.09 (s, 1H), 6.89 (d, J = 2.8 Hz, 1H), 4.23 (t, J = 7.2 Hz, 2H), 2.49 (s, 3H), 1.82–1.76 (m, 2H), 1.34–1.21 (m, 4H), 0.87 (t, J = 6.2 Hz, 3H).

3-Bromo-4,7-dihydro-2-methyl-7-oxo-4-pentylpyrazolo[**1,5-***a*]**pyrimidine-6-carboxylic Acid (9p).** White solid; mp, 222 °C; yield, 68%. MS: m/z 342.2–344.2 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 12.71 (bs, 1H), 8.73 (s, 1H), 4.39 (t, J = 7.8 Hz, 2H), 2.32 (s, 3H), 1.79–1.77 (m, 2H), 1.35–1.32 (m, 4H), 0.87 (t, J = 6.8 Hz, 3H).

Synthesis of 4,7-Dihydro-7-oxo-4-pentyl-2-(substituted)pyrazolo[1,5-*a*]pyrimidine-6-carboxamides (10, 11, 13–16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41). General Procedure. A mixture of 4,7-dihydro-7-oxo-4-pentyl-2-(substituted)-pyrazolo[1,5-*a*]pyrimidine-6-carboxylic acids (9a–k, 9p, 0.48 mmol), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (EDC, 1.44 mmol), and 1-hydroxybenzotriazole (HOBt, 1.44 mmol) in dry DMF (5 mL), was stirred for 10 min at room temperature. The appropriate amine was added, and the mixture was stirred for 12 h at room temperature.The reaction mixture was concentrated and purified by column chromatography on silica gel.

N-**Cyclohexyl**-**4**, **7**-**dihydro-2**-**methyl**-**7**-**oxo-4**-**pentylpyrazolo**[**1**,**5**-*a*]**pyrimidine-6-carboxamide** (**10**). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 1:1, as eluent); mp, 148 °C; yield, 45%. MS: m/z 345.2 (M + H). ¹H NMR (200 MHz, CDCl₃): δ 9.11 (bd, J = 8 Hz, 1H), 8.48 (s, 1H), 5.96 (s, 1H), 4.02–3.94 (m, 3H), 2.45 (s, 3H), 1.91–1.32 (m, 16H), 0.91 (t, J = 6.6 Hz, 3H). Anal. (C₁₉H₂₈N₄O₂) C, H, N.

N-Cycloheptyl-4,7-dihydro-2-methyl-7-oxo-4pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide** (11). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 1:1, as eluent); mp, 149 °C; yield, 42%. MS: *m/z* 359.3 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.00 (bd, *J* = 8 Hz, 1H), 8.66 (s, 1H), 6.44 (s, 1H), 4.18 (t, *J* = 7 Hz, 2H), 4.02–3.90 (m, 1H), 2.34 (s, 3H), 1.84–1.41 (m, 14H), 1.39–1.28 (m, 4H), 0.85 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₀H₃₀N₄O₂) C, H, N.

N-Benzyl-4,7-dihydro-2-methyl-7-oxo-4-pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide (13).** White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 3:7, as eluent); mp, 144 °C; yield, 50%. MS: *m*/*z* 353.19 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.34 (bt, *J* = 6 Hz, 1H), 8.72 (s, 1H), 7.35–7.29 (m, SH), 6.46 (s, 1H), 4.55 (d, *J* = 6 Hz, 2H), 4.19 (t, *J* = 7.4 Hz, 2H), 2.34 (s, 3H), 1.82–1.68 (m, 2H), 1.31–1.26 (m, 4H), 0.85 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₀H₂₄N₄O₂) C, H, N.

4,7-Dihydro-2-methyl-*N***-(4-methyl-cyclohexyl)-7-oxo-4pentylpyrazolo**[**1,5-***a*]**pyrimidine-6-carboxamide** (**14**). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 3:7, as eluent); mp, 149 °C; yield, 62%. MS: *m*/*z* 359.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.11 (bd, *J* = 8 Hz, 1H), 8.68 (s, 1H), 6.45 (s, 1H), 4.22–4.08 (m, 3H), 3.81–3.64 (m, 1H), 2.34 (s, 3H), 1.99–0.81 (m, 20H). Anal. (C₂₀H₃₀N₄O₂) C, H, N.

N-Cyclohexyl-4,7-dihydro-2-ethyl-7-oxo-4-pentylpyrazolo-[1,5-*a*]pyrimidine-6-carboxamide (15). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 1:1, as eluent); mp, 157 °C; yield, 40%. MS: m/z 359.2 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 9.01 (bd, J = 7.8 Hz, 1H), 8.67 (s, 1H), 6.50 (s, 1H), 4.19 (t, J = 7.4 Hz, 2H), 3.89–3.72 (m, 1H), 2.71 (q, J = 7.6 Hz, 2H), 1.99–1.21 (m, 19H), 0.85 (t, J = 6.6 Hz, 3H). Anal. (C₂₀H₃₀N₄O₂) C, H, N.

N-Cycloheptyl-4,7-dihydro-2-ethyl-7-oxo-4-pentylpyrazolo-[1,5-*a*]pyrimidine-6-carboxamide (16). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 4:6, as eluent); mp, 116 °C; yield, 40%. MS: m/z 373.3 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 9.01 (bd, J = 7.6 Hz, 1H), 8.65 (s, 1H), 6.49 (s, 1H), 4.18 (t, J = 7.2 Hz, 2H), 4.03–3.81 (m, 1H), 2.67 (q, J = 7.6 Hz, 2H), 1.82–1.20 (m, 21H), 0.84 (t, J = 6.6 Hz, 3H). Anal. ($C_{21}H_{32}N_4O_2$) C, H, N.

2-*tert*-**Butyl**-*N*-**cyclohexyl**-4,7-**dihydro**-7-**oxo**-4-**pentylpyrazolo**[1,5-*a*]**pyrimidine**-6-**carboxamide** (18). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 3:7, as eluent); mp, 191 °C; yield, 40%. MS: *m*/*z* 387.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.01 (bd, *J* = 7.8 Hz, 1H), 8.66 (s, 1H), 6.60 (s, 1H), 4.20 (t, *J* = 7 Hz, 2H), 3.97–3.84 (m, 1H), 1.97–1.29 (m, 25H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₂H₃₄N₄O₂) C, H, N.

2-*tert*-**Butyl**-*N*-**cycloheptyl**-4,7-**dihydro**-7-**oxo**-4-**pentylpyrazolo**[1,5-*a*]**pyrimidine**-6-**carboxamide** (19). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 3:7, as eluent); mp, 186 °C; yield, 40%. MS: *m*/*z* 401.3 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.05 (bd, *J* = 8.2 Hz, 1H), 8.65 (s, 1H), 6.60 (s, 1H), 4.20 (t, *J* = 7.6 Hz, 2H), 4.11–3.91 (m, 1H), 1.83–1.76 (m, 4H), 1.55–1.28 (m, 23H), 0.86 (t, *J* = 6.4 Hz, 3H). Anal. (C₂₃H₃₆N₄O₂) C, H, N.

N-**Cyclohexyl**-**4**, **7**-**dihydro**-**7**-**oxo**-**4**-**pentyl**-**2**-**phenylpyrazolo**[**1**,**5**-*a*]**pyrimidine**-**6**-**carboxamide** (**21**). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 2:8, as eluent); mp, 156 °C; yield, 59%. MS: m/z 407.1 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.99 (bd, J = 7.2 Hz, 1H), 8.73 (s, 1H), 8.04–8.00 (m, 2H), 7.57–7.45 (m, 3H), 7.21 (s, 1H), 4.27 (t, J = 7.2 Hz, 2H), 3.93–3.77 (m, 1H), 1.87–1.31 (m, 16H), 0.87 (t, J = 6.4 Hz, 3H). Anal. (C₂₄H₃₀N₄O₂) C, H, N.

N-**C** y cloheptyl-4,7-dihydro-7-oxo-4-pentyl-2phenylpyrazolo[1,5-*a*]pyrimidine-6-carboxamide (22). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 2:8, as eluent); mp, 190 °C; yield, 55%. MS: *m*/*z* 421.4 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.04 (bd, *J* = 7.8 Hz, 1H), 8.73 (s, 1H), 8.04–7.99 (m, 2H), 7.57–7.45 (m, 3H), 7.21 (s, 1H), 4.27 (t, *J* = 6.6 Hz, 2H), 4.02–3.89 (m, 1H), 1.87–1.83 (m, 4H), 1.63–1.57 (m, 10H), 1.37–1.28 (m, 4H), 0.87 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₅H₃₂N₄O₂) C, H, N.

N-Cyclohexyl-4,7-dihydro-2-(2-methylphenyl)-7-oxo-4pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide (24).** White solid (purified by crystallization using methanol); mp, 122 °C; yield, 52%. MS: *m/z* 421.5 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.02 (bd, *J* = 7.8 Hz, 1H), 8.74 (s, 1H), 7.76–7.61 (m, 1H), 7.35–7.34 (m, 3H), 6.98 (s, 1H), 4.28 (t, *J* = 7 Hz, 2H), 3.92–3.85 (m, 1H), 2.53 (s, 3H), 1.82–1.30 (m, 16H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₅H₃₂N₄O₂) C, H, N.

N-Cycloheptyl-4,7-dihydro-2-(2-methylphenyl)-7-oxo-4pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxamide (25). White solid (purified by crystallization using methanol); mp, 147 °C; yield, 45%. MS: m/z 435.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.03 (bd, J = 7.8 Hz, 1H), 8.73 (s, 1H), 7.67 (m, 1H), 7.35–7.32 (m, 3H), 6.97 (s, 1H), 4.28 (t, J = 7 Hz, 2H), 4.03 (m, 1H), 2.54 (s, 3H), 1.85–1.27 (m, 18H), 0.86 (t, J = 6.6 Hz, 3H). Anal. (C₂₆H₃₄N₄O₂) C, H, N.

N-Cyclohexyl-4,7-dihydro-2-(4-methylphenyl)-7-oxo-4pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxamide (27). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 2:8, as eluent); mp, 190 °C; yield, 55%. MS: *m*/*z* 421.1 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.00 (bd, *J* = 7.8 Hz, 1H), 8.72 (s, 1H), 7.90 (dd, *J* = 7.8 Hz, 2H), 7.32 (dd, *J* = 7.8 Hz, 2H), 7.16 (s, 1H), 4.26 (t, *J* = 6.6 Hz, 2H), 3.97–3.83 (m, 1H), 2.37 (s, 3H), 1.86– 1.33 (m, 16H), 0.37 (t, *J* = 6 Hz, 3H). Anal. (C₂₅H₃₂N₄O₂) C, H, N.

N-Cycloheptyl-4,7-dihydro-2-(4-methylphenyl)-7-oxo-4pentylpyrazolo[1,5-*a***]pyrimidine-6-carboxamide (28).** White solid (purified by crystallization using methanol); mp, 208 °C; yield, 43%. MS: *m/z* 435.5 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.03 (bd, *J* = 7.8 Hz, 1H), 8.71 (s, 1H), 7.90 (dd, *J* = 7.8 Hz, 2H), 7.32 (dd, *J* = 7.8 Hz, 2H), 7.16 (s, 1H), 4.25 (t, *J* = 6.6 Hz, 2H), 4.15–4.07 (m, 1H), 2.37 (s, 3H), 1.85–1.31 (m, 18H), 0.87 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₆H₃₄N₄O₂) C, H, N.

2-(2-Chlorophenyl)-*N***-cyclohexyl-4,7-dihydro-7-oxo-4-pentylpyrazolo**[1,5-*a*]**pyrimidine-6-carboxamide (30).** White solid (purified by crystallization using methanol); mp, >300 °C; yield, 43%. MS: m/z 441.2 (M + H). ¹H NMR (200 MHz, DMSO-

 d_6): δ 8.98 (bd, J = 7.8 Hz, 1H), 8.77 (s, 1H), 7.96–7.82 (m, 1H), 7.65–7.61 (m, 1H), 7.52–7.48 (m, 2H), 7.07 (s, 1H), 4.30 (t, J = 7 Hz, 2H), 3.99–3.78 (m, 1H), 1.81–1.21 (m, 16H), 0.89 (t, J = 6.6 Hz, 3H). Anal. (C24H29ClN4O2) C, H, N.

2-(2-Chlorophenyl)-*N***-cycloheptyl-4**,7**-dihydro-7-oxo-4-pentylpyrazolo**[1,5-*a*]**pyrimidine-6-carboxamide (31).** White solid (purified by crystallization using methanol); mp, 117 °C; yield, 41%. MS: m/z 455.7 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.99 (bd, *J* = 7.8 Hz, 1H), 8.76 (s, 1H), 7.87–7.83 (m, 1H), 7.64–7.61 (m, 1H), 7.52–7.48 (m, 2H), 7.07 (s, 1H), 4.30 (t, *J* = 7 Hz, 2H), 4.11–4.03 (m, 1H), 1.85–1.30 (m, 18H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₅H₃₁ClN₄O₂).

2-(4-Chlorophenyl)-*N***-cyclohexyl-4**,**7-dihydro-7-oxo-4-pentylpyrazolo**[**1**,**5**-*a*]**pyrimidine-6-carboxamide** (**33**). White solid (purified by crystallization using methanol); mp, >300 °C; yield, 44%. MS: *m/z* 441.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.97 (bd, *J* = 7.6 Hz, 1H), 8.74 (s, 1H), 8.03 (dd, *J* = 8.6 Hz, 2H), 7.59 (dd, *J* = 8.6 Hz, 2H), 7.24 (s, 1H), 4.26 (t, *J* = 6.8 Hz, 2H), 3.96–3.84 (m, 1H), 1.87–1.33 (m, 16H), 0.87 (t, *J* = 6.4 Hz, 3H). Anal. (C₂₄H₂₉ClN₄O₂) C, H, N.

2-(4-Chlorophenyl)-*N***-cycloheptyl-4**,7**-dihydro-7-oxo-4-pentylpyrazolo**[1,5-*a*]**pyrimidine-6-carboxamide (34).** White solid (purified by crystallization using methanol); mp, 184 °C; yield, 41%. MS: *m*/*z* 455.6 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 9.01 (bd, *J* = 7.6 Hz, 1H), 8.73 (s, 1H), 8.03 (dd, *J* = 8.2 Hz, 2H), 7.59 (dd, *J* = 8.4 Hz, 2H), 7.24 (s, 1H), 4.25 (t, *J* = 6.8 Hz, 2H), 4.13–4.05 (m, 1H), 1.84–1.31 (m, 18H), 0.87 (t, *J* = 6.4 Hz, 3H). Anal. (C₂₅H₃₁ClN₄O₂) C, H, N.

N-Cyclohexyl-2-(2,4-dichlorophenyl)-4,7-dihydro-7-oxo-4pentylpyrazolo[1,5-*a***]pyrimidine-6-carboxamide (36).** White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 4:6, as eluent); mp, 149 °C; yield, 41%. MS: *m/z* 476.1 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.92 (bd, *J* = 8 Hz, 1H), 8.76 (s, 1H), 7.91–7.80 (m, 2H), 7.61–7.57 (m, 1H), 7.09 (s, 1H), 4.30 (t, *J* = 7.2 Hz, 2H), 3.96–3.84 (m, 1H), 1.87–1.30 (m, 16H), 0.85 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₄H₂₈Cl₂N₄O₂) C, H, N.

N-Cycloheptyl-2-(2,4-dichlorophenyl)-4,7-dihydro-7-oxo-4pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide (37).** White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 4:6, as eluent); mp, 134 °C; yield, 41%. MS: *m/z* 490.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.97 (bd, *J* = 7.8 Hz, 1H), 8.76 (s, 1H), 7.91–7.80 (m, 2H), 7.63–7.57 (m, 1H), 7.09 (s, 1H), 4.30 (t, *J* = 7.2 Hz, 2H), 4.12–4.06 (m, 1H), 1.84–1.30 (m, 18H), 0.85 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₅H₃₀Cl₂N₄O₂) C, H, N.

N-Cyclohexyl-4,7-dihydro-2-(furan-2-yl)-7-oxo-4pentylpyrazolo[**1**,**5**-*a*]**pyrimidine-6-carboxamide (40).** White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 6:4, as eluent); mp, 169 °C; yield, 44%. MS: *m/z* 397.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.94 (bd, *J* = 8 Hz, 1H) 8.72 (s, 1H), 7.88–7.87 (m, 1H), 7.06 (d, *J* = 3.4 Hz, 1H), 6.96 (s, 1H), 6.69–6.67 (m, 1H), 4.26 (t, *J* = 7.2 Hz, 2H), 3.92–3.79 (m, 1H), 1.87–1.30 (m, 16H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₂H₂₈N₄O₂) C, H, N.

N-Cycloheptyl-4,7-dihydro-2-(furan-2-yl)-7-oxo-4-pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide** (41). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 1:1, as eluent); mp, 168 °C; yield, 44%. MS: *m*/*z* 411.7 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.99 (bd, *J* = 8 Hz, 1H) 8.72 (s, 1H), 7.88–7.87 (m, 1H), 7.07 (d, *J* = 3.4 Hz, 1H), 6.96 (s, 1H), 6.68–6.67 (m, 1H), 4.26 (t, *J* = 7.2 Hz, 2H), 4.15–4.02 (m, 1H), 1.84–1.30 (m, 18H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₃H₃₀N₄O₂) C, H, N.

Synthesis of *N*-Adamantan-1-yl-4,7-dihydro-7-oxo-4-pentyl-2-(substituted)-pyrazolo[1,5-*a*]pyrimidine-6-carboxamides (12, 17, 20, 23, 26, 29, 32, 35, 38, 39, 42–47). General Procedure. To a stirred solution of the desired 4,7-dihydro-7-oxo-4pentyl-2-(substituted)-pyrazolo[1,5-*a*]pyrimidine-6-carboxylic acid (9a–p, 1.00 mmol) in dry DMF (15 mL) was added diisopropylethylamine (5.42 mmol). The resulting solution was stirred at room temperature for 10 min before adding HBTU (*o*-benzotriazol-1-yl- $N_iN_iN'_iN'$ -tetramethyluronium hexafluorophosphate) (1.45 mmol) and stirring for an additional 3 h at room temperature. 1-Adamantylamine (1.45 mmol) was then added, and the solution was stirred for 24 h. The solvent was evaporated under reduced pressure, and the residue was dissolved in ethyl acetate and successively washed with aqueous saturated sodium bicarbonate, water, and brine. The combined organic layers were dried over sodium sulfate and concentrated under vacuum. The residue was purified by column chromatography or crystallization.

N-Adamantan-1-yl-4,7-dihydro-2-methyl-7-oxo-4pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide** (12). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 1:1, as eluent); mp, 168 °C; yield, 44%. MS: *m*/*z* 397.4 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.85 (bd, 1H), 8.61 (*s*, 1H), 6.43 (*s*, 1H), 4.16 (*t*, *J* = 6.6 Hz, 2H), 2.34 (*s*, 3H), 2.05 (*s*, 9H), 1.82– 1.67 (m, 8H), 1.29–1.27 (m, 4H), 0.85 (*t*, *J* = 6.2 Hz, 3H). Anal. (C₂₃H₃₂N₄O₂) C, H, N.

N-Adamantan-1-yl-2-ethyl-4,7-dihydro-7-oxo-4**pentylpyrazolo**[1,5-*a*]**pyrimidine-6-carboxamide** (17). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 1:1, as eluent); mp, 149 °C; yield, 45%. MS: *m*/*z* 411.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.86 (bs, 1H), 8.61 (s, 1H), 6.49 (s, 1H), 4.17 (t, *J* = 7 Hz, 2H), 2.71 (q, *J* = 7.6 Hz, 2H), 2.05 (s, 9H), 1.81–1.66 (m, 8H), 1.28–1.21 (m, 7H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₄H₃₄N₄O₂) C, H, N.

N-Adamantan-1-yl-2-*tert*-butyl-4,7-dihydro-7-oxo-4pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxamide (20). White solid (purified by crystallization using methanol); mp, 168 °C; yield, 40%. MS: m/z 439.3 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.80 (bs, 1H), 8.60 (s, 1H), 6.59 (s, 1H), 4.17 (t, J = 7.6 Hz, 2H), 2.04 (s, 9H), 1.82–1.67 (m, 8H), 1.32–1.29 (m, 13H), 0.86 (t, J = 7.4 Hz, 3H). Anal. (C₂₆H₃₈N₄O₂) C, H, N.

N-Adamantan-1-yl-4,7-dihydro-7-oxo-4-pentyl-2phenylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide** (23). White solid (purified by flash chromatography, using ethyl acetate as eluent); mp, 206 °C; yield, 48%. MS: m/z 459.2 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.87 (bs, 1H), 8.68 (s, 1H), 8.03–7.98 (m, 2H), 7.52–7.45 (m, 3H), 7.20 (s, 1H), 4.25 (t, J = 7.2 Hz, 2H), 2.06 (m, 9H), 1.83–1.80 (m, 2H), 1.68 (s, 6H), 1.35–1.28 (m, 4H), 0.87 (t, J = 6.4 Hz, 3H). Anal. (C₂₈H₃₄N₄O₂) C, H, N.

N-Adamantan-1-yl-4,7-dihydro-2-(2-methylphenyl)-7-oxo-4pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide** (26). White solid (purified by crystallization using methanol); mp, 240 °C (dec); yield, 43%. MS: *m/z* 473.8 (M + H). ¹H NMR (200 MHz, DMSO*d*₆): δ 8.67 (bs, 1H), 8.69 (s, 1H), 7.73–7.62 (m, 1H), 7.35–7.28 (m, 3H), 6.96 (s, 1H), 4.26 (t, *J* = 7.2 Hz, 2H), 2.53 (s, 3H), 2.06 (s, 9H), 1.93–1.68 (m, 8H), 1.34–1.31 (m, 4H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₉H₃₆N₄O₂) C, H, N.

N-Adamantan-1-yl-4,7-dihydro-2-(4-methylphenyl)-7-oxo-4pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide (29).** White solid (purified by crystallization using methanol); mp, 258 °C; yield, 50%. MS: *m/z* 473.8 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.86 (bs, 1H), 8.64 (s, 1H), 7.88 (dd, *J* = 7.8 Hz, 2H), 7.30 (dd, *J* = 7.8 Hz, 2H), 7.13 (s, 1H), 4.22 (t, *J* = 7.2 Hz, 2H), 2.35 (s, 3H), 2.05 (s, 9H), 1.91–1.66 (m, 8H), 1.30 (m, 4H), 0.85 (t, *J* = 6 Hz, 3H). Anal. (C₂₉H₃₆N₄O₂) C, H, N.

N-Adamantan-1-yl-2-(2-chlorophenyl)-4,7-dihydro-7-oxo-4pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxamide (32). White solid (purified by crystallization using methanol); mp, 300 °C; yield, 42%. MS: *m*/*z* 493.9 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.82 (bs, 1H), 8.71 (s, 1H), 7.85–7.83 (m, 1H), 7.63–7.60 (m, 1H), 7.52–7.47 (m, 2H), 7.06 (s, 1H), 4.28 (t, *J* = 7.2 Hz, 2H), 2.07 (s, 9H), 1.92–1.68 (m, 8H), 1.34–1.30 (m, 4H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₈H₃₃ClN₄O₂) C, H, N.

N-Adamantan-1-yl-2-(4-chlorophenyl)-4,7-dihydro-7-oxo-4pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxamide (35). White solid (purified by crystallization using methanol); mp, 226 °C; yield, 42%. MS: *m*/*z* 493.9 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.85 (bs, 1H), 8.68 (s, 1H), 8.02 (dd, *J* = 8.6 Hz, 2H), 7.59 (dd, *J* = 8.4 Hz, 2H), 7.23 (s, 1H), 4.23 (t, *J* = 6.6 Hz, 2H), 2.06 (s, 9H), 1.92− 1.68 (m, 8H), 1.31−1.25 (m, 4H), 0.87 (t, *J* = 6 Hz, 3H). Anal. (C₂₈H₃₃ClN₄O₂) C, H, N. *N*-Adamantan-1-yl-2-(2,4-dichlorophenyl)-4,7-dihydro-7oxo-4-pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxamide (38). White solid (purified by flash chromatography, using ethyl acetate/ petroleum ether, 3:7, as eluent); mp, 230 °C; yield, 41%. MS: *m/z* 527.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.80 (bs, 1H), 8.72 (s, 1H), 7.91–7.80 (m, 2H), 7.62–7.58 (m, 1H), 7.09 (s, 1H), 4.28 (t, *J* = 6.6 Hz, 2H), 2.06 (s, 9H), 1.93–1.68 (m, 8H), 1.34–1.30 (m, 4H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. ($C_{28}H_{32}Cl_2N_4O_2$) C, H, N.

N-Adamantan-1-yl-2-(2,6-dichlorophenyl)-4,7-dihydro-7oxo-4-pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxamide (39). White solid (purified by flash chromatography, using ethyl acetate/ petroleum ether, 3:7, as eluent); mp, 209 °C; yield, 57%. MS: *m/z* 527.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.76 (bs, 1H), 8.73 (s, 1H), 7.66–7.52 (m, 3H), 6.84 (s, 1H), 4.24 (t, *J* = 7.2 Hz, 2H), 2.04 (s, 9H), 1.95–1.78 (m, 2H), 1.66 (s, 6H), 1.35–1.23 (m, 4H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. ($C_{28}H_{32}Cl_2N_4O_2$).

N-Adamantan-1-yl-4,7-dihydro-2-(furan-2-yl)-7-oxo-4pentylpyrazolo[**1**,**5**-*a*]**pyrimidine-6-carboxamide** (**42**). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 4:6, as eluent); mp, 199 °C; yield, 44%. MS: m/z 449.3 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.83 (bs, 1H), 8.67 (s, 1H), 7.88–7.87 (m, 1H), 7.05 (d, J = 3 Hz, 1H), 6.95 (s, 1H), 6.69–6.67 (m, 1H), 4.24 (t, J = 7.2 Hz, 2H), 2.06 (s, 9H), 1.67 (m, 8H), 1.33– 1.30 (m, 4H), 0.86 (t, J = 6.6 Hz, 3H). Anal. (C₂₆H₃₂N₄O₂) C, H, N.

N-Adamantan-1-yl-4,7-dihydro-2-(furan-3-yl)-7-oxo-4pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide** (43). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 4:6, as eluent); mp, 241 °C; yield, 53%. MS: *m*/*z* 449.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.86 (bs, 1H) 8.66 (s, 1H), 8.30 (s, 1H), 7.84–7.81 (m, 1H), 6.96–6.94 (m, 1H), 6.91 (s, 1H), 4.20 (t, *J* = 7.2 Hz, 2H), 2.06 (s, 9H), 1.67 (m, 8H), 1.34–1.28 (m, 4H), 0.86 (t, *J* = 6.6 Hz, 3H). Anal. (C₂₆H₃₂N₄O₂) C, H, N.

N-Adamantan-1-yl-4,7-dihydro-7-oxo-4-pentyl-2-(thiophen-2-yl)pyrazolo[1,5-*a*]**pyrimidine-6-carboxamide (44).** White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 4:6, as eluent); mp, >300 °C; yield, 64%. MS: *m/z* 465.4 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.84 (bs, 1H) 8.66 (s, 1H), 7.71–7.66 (m, 2H), 7.22–7.17 (m, 1H), 7.09 (s, 1H), 4.22 (t, *J* = 7 Hz, 2H), 2.06 (s, 9H), 1.93–1.68 (m, 8H), 1.36–1.31 (m, 4H), 0.87 (t, *J* = 6.4 Hz, 3H). Anal. (C₂₆H₃₂N₄O₂S) C, H, N.

N-Adamantan-1-yl-4,7-dihydro-2-(4-methylthiophen-2-yl)-7-oxo-4-pentylpyrazolo[**1,5-***a*]**pyrimidine-6-carboxamide (45).** White solid (purified by flash chromatography, using ethyl acetate/ petroleum ether, 4:6, as eluent); mp, 217 °C; yield, 58%. MS: *m/z* 479.3 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.84 (bs, 1H) 8.65 (s, 1H), 7.52 (s, 1H), 7.24 (s, 1H), 7.03 (s, 1H), 4.21 (t, *J* = 6.6 Hz, 2H), 2.26 (s, 3H), 2.06 (s, 9H), 1.92–1.67 (m, 8H), 1.34–1.31 (m, 4H), 0.87 (t, *J* = 6.2 Hz, 3H). Anal. (C₂₇H₃₄N₄O₂S) C, H, N.

N-Adamantan-1-yl-4,7-dihydro-2-(5-methylthiophen-2-yl)-7-oxo-4-pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxamide (46). White solid (purified by flash chromatography, using ethyl acetate/ petroleum ether, 4:6, as eluent); mp, 234 °C (dec); yield, 48%. MS: m/z 479.4 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.85 (bs, 1H) 8.64 (s, 1H), 7.48 (d, J = 3.8 Hz, 1H), 7.01 (s, 1H), 6.95 (d, J = 3.6 Hz, 1H), 4.21 (t, J = 6.6 Hz, 2H), 2.49 (s, 3H), 2.06 (s, 9H), 1.92– 1.67 (m, 8H), 1.34–1.30 (m, 4H), 0.87 (t, J = 6.4 Hz, 3H). Anal. (C₂₇H₃₄N₄O₂S) C, H, N.

N-Adamantan-1-yl-3-bromo-4,7-dihydro-2-methyl-7-oxo-4pentylpyrazolo[1,5-*a*]**pyrimidine-6-carboxamide** (47). White solid (purified by flash chromatography, using ethyl acetate/petroleum ether, 3:7, as eluent); mp, 222 °C; yield, 45%. MS: *m/z* 474.2–476.2 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.70 (bs, 1H) 8.62 (s, 1H), 4.44 (t, *J* = 7.8 Hz, 2H), 2.32 (s, 3H), 2.05 (s, 9H), 1.85–1.71 (m, 2H), 1.67 (s, 6H), 1.36–1.30 (m, 4H), 0.87 (t, *J* = 7.2 Hz, 3H). Anal. (C₂₃H₃₁BrN₄O₂) C, H, N.

Synthesis of N-Adamantan-1-yl-4,7-dihydro-2-methyl-7oxo-4-pentyl-[3-phenyl or 3-(4-methoxyphenyl)]pyrazolo[1,5*a*]pyrimidine-6-carboxamide (48 or 49). A suspension of Nadamantyl-3-bromo-4,7-dihydro-2-methyl-7-oxo-4-pentylpyrazolo[1,5*a*]pyrimidine-6-carboxamide (47, 0.3 mmol), arylboronic acid (0.95 mmol), and K₂CO₃ (0.45 mmol) in toluene (5.5 mL) was thoroughly

deaerated and stirred under argon. Tetrakis(triphenylphosphine)palladium(0) (0.04 mmol) was then added, and the mixture was heated at 100 $^{\circ}$ C for 16 h. The solvent was removed under reduced pressure, and the residue was dissolved in ethyl acetate and successively washed with aqueous saturated sodium bicarbonate, water, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography on silica gel, eluting with ethyl acetate/ petroleum ether, 3:7.

N-Adamantyl-4,7-dihydro-2-methyl-7-oxo-4-pentyl-3phenylpyrazolo[**1**,**5**-*a*]**pyrimidine-6-carboxamide** (**48**). White solid; mp, 236 °C; yield, 35%. MS: m/z 473.4 (M + H). ¹H NMR (200 MHz, DMSO- d_6): δ 8.84 (bs, 1H) 8.58 (s, 1H), 7.47–7.43 (m, SH), 3.87 (t, J = 7.8 Hz, 2H), 2.12 (s, 3H), 2.06 (s, 9H), 1.67 (s, 6H), 1.41–1.23 (m, 2H), 1.12–0.92 (m, 2H), 0.71–0.63 (m, SH). Anal. (C₂₉H₃₆N₄O₂) C, H, N.

N-Adamantyl-4,7-dihydro-3-(4-methoxyphenyl)-2-methyl-7oxo-4-pentylpyrazolo[1,5-*a*]pyrimidine-6-carboxamide (49). White solid; mp, 222 °C (dec); yield, 38%. MS: *m/z* 503.5 (M + H). ¹H NMR (200 MHz, DMSO-*d*₆): δ 8.82 (bs, 1H), 8.55 (s, 1H), 7.33 (dd, *J* = 8.6 Hz, 2H), 7.02 (dd, *J* = 8.8 Hz, 2H), 3.99–3.82 (m, 2H), 3.79 (s, 3H), 2.10 (s, 3H), 2.04 (s, 9H), 1.66 (s, 6H), 1.39–1.25 (m, 2H), 1.19–1.04 (m, 2H), 0.70–0.63 (m, 5H). Anal. (C₃₀H₃₈N₄O₃) C, H, N.

ASSOCIATED CONTENT

Supporting Information

Table 1 organized in ascending order by selectivity index (SI) of the novel CB compounds **10–49**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*For M.A.T.: phone, 39-(0)532455926; fax, 39-(0)53245593; e-mail, tbj@unife.it. For P.G.B.: phone, 39-(0)532455921; fax, 39-(0)532455953; e-mail, Baraldi@unife.it.

Present Address

[#]A.R.M.: Alta Vetta Pharmaceutical Consulting, LLC, 3 Skipwith Court, Durham, North Carolina 27707.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank King Pharmaceuticals, Inc., Research and Development (4000 Centre Green Way, Suite 300, Cary, North Carolina 27513), for financial support.

ABBREVIATIONS USED

CHO, Chinese hamster ovary; DEEM, diethylethoxymethylene malonate; SI, selectivity index; EDC, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride; HOBt, hydroxybenzotriazole; HBTU, *O*-benzotriazole-*N*,*N*,*N'*,*N'*-tetramethyluronium hexafluorophosphate

REFERENCES

(1) Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Young, A. C.; Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. *Nature* **1990**, *346*, 561–564.

(2) Gerard, C. M.; Mollereau, C.; Vassart, G.; Parmentier, M. Molecular cloning of a human cannabinoid receptor which is also expressed in testis. *Biochem. J.* **1991**, *279*, 129–134.

(3) Adams, I. B.; Martin, B. R. Cannabis: pharmacology and toxicology in animals and humans. *Addiction* **1996**, *91*, 1585–1614.

(4) Pertwee, R. G.; Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Di Marzo, V.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. *Pharmacol. Rev.* **2010**, *62*, 588–631.

(5) Freund, T. F.; Katona, I.; Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. *Physiol. Rev.* 2003, *83*, 1017–1066.
(6) Patel, K. D.; Davison, J. S.; Pittman, Q. J.; Sharkey, K. A. Cannabinoid CB(2) receptors in health and disease. *Curr. Med. Chem.* 2010, *17*, 1393–1410.

(7) Benito, C.; Tolón, R. M.; Pazos, M. R.; Núñez, E.; Castillo, A. I.; Romero, J. Cannabinoid CB₂ receptors in human brain inflammation. *Br. J. Pharmacol.* **2008**, *153*, 277–285.

(8) Howlett, A. C.; Barth, F. I.; Cabral, G.; Casellas, P.; Devane, W. A.; Felder, C. C.; Herkenham, M.; Mackie, K.; Martin, B. R. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. *Pharmacol. Rev.* **2002**, *54*, 161–202.

(9) Rinaldi-Carmona, M.; Barth, F.; Millan, J.; Derocq, J. M.; Casellas, P.; Congy, C.; Oustric, D.; Sarran, M.; Bouaboula, M.; Calandra, B.; Portier, M.; Shire, D.; Breliere, J. C.; Le Fur, G. L. SR144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. *J. Pharmacol. Exp. Ther.* **1998**, *284*, 644–650.

(10) Bouaboula, M.; Poinot-Chazel, C.; Marchand, J.; Canat, X.; Bourrie, B.; Rinaldi-Carmona, M.; Calandra, B.; Le Fur, G.; Casellas, P. Signaling pathway associated with stimulation of CB_2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. *Eur. J. Biochem.* **1996**, 237, 704–711.

(11) Felder, C. C.; Joyce, K. E.; Briley, E. M.; Mansouri, J.; Mackie, K.; Blond, O.; Lai, Y.; Ma, A. L.; Mitchell, R. L. Comparison of the pharmacology and signal transduction of the human cannabinoid CB_1 and CB_2 receptors. *Mol. Pharmacol.* **1995**, *48*, 443–450.

(12) Guindon, J.; Hohmann, A. G. Cannabinoid CB_2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. *Br. J. Pharmacol.* **2008**, *153*, 319–334.

(13) Quartilho, A.; Mata, H. P.; Ibrahim, M. M.; Vanderah, T. W.; Porreca, F.; Makriyannis, A.; Malan, T. P. J. Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors. *Anesthesiology* **2003**, *99*, 955–960.

(14) Ibrahim, M. M.; Deng, H.; Zvonok, A.; Cockayne, D. A.; Kwan, J.; Mata, H. P.; Vanderah, T. W.; Lai, J.; Porreca, F.; Makriyannis, A.; Malan, T. P., Jr. Activation of the CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. *Proc. Natl. Acad. Sci. U.S.A.* 2003, 100, 10529–10533.

(15) Vincenzi, F.; Targa, M.; Corciulo, C.; Aghazadeh Tabriz, M.; Merighi, S.; Gessi, S.; Saponaro, G.; Baraldi, P. G.; Borea, P. A.; Varani, K. Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. *Pain* **2013**, *154*, 864– 873.

(16) Ashton, J. C.; Glass, M. The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. *Curr. Neuropharmacol.* **2007**, *5*, 73–80.

(17) Lunn, C. A.; Reich, E. P.; Fine, J. S.; Lavey, B.; Kozlowski, J. A.; Hipkin, R. W.; Lundell, D. J.; Bober, L. Biology and therapeutic potential of cannabinoid CB2 receptor inverse agonists. *Br. J. Pharmacol.* **2008**, 153, 226–239.

(18) Yang, P.; Wang, L.; Feng, R.; Almehizia, A. A.; Tong, Q.; Myint, K.-Z.; Ouyang, Q.; Alqarni, M. A.; Wang, L.; Xie, X.-Q. Novel triaryl sulfonamide derivatives as selective cannabinoid receptor 2 inverse agonists and osteoclast inhibitors: discovery, optimization, and biological evaluation. *J. Med. Chem.* **2013**, *56*, 2045–2058.

(19) Huffman, J. W.; Zengin, G.; Wu, M. J.; Lu, J.; Hynd, G.; Bushell, K.; Thompson, A. L.; Bushell, S.; Tartal, C.; Hurst, D. P.; Reggio, P. H.; Selley, D. E.; Cassidy, M. P.; Wiley, J. L.; Martin, B. R. Structure– activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. *Bioorg. Med. Chem.* **2005**, *13*, 89–112. (20) Muccioli, G. G.; Lambert, D. M. Current knowledge on the antagonists and inverse agonists of cannabinoid receptors. *Curr. Med. Chem.* **2005**, *12*, 1361–1394.

(21) Ross, R. A.; Brockie, H. C.; Stevenson, L. A.; Murphy, V. L.; Templeton, F.; Makriyannis, A.; Pertwee, R. G. Agonist–inverse agonist characterization at CB_1 and CB_2 cannabinoid receptors of L759633, L759656 and AM630. *Br. J. Pharmacol.* **1999**, *126*, 665–672.

(22) Iwamura, H.; Suzuki, H.; Ueda, Y.; Kaya, T.; Inaba, T. In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB_2 receptor. *J. Pharmacol. Exp. Ther.* **2001**, *296*, 420–425.

(23) Maekawa, T.; Nojima, H.; Kuraishi, Y.; Aisaka, K. The cannabinoid CB_2 receptor inverse agonist JTE-907 suppresses spontaneous itchassociated responses of NC mice, a model of atopic dermatitis. *Eur. J. Pharmacol.* **2006**, 542, 179–183.

(24) Lavey, B. J.; Kozlowski, J. A.; Hipkin, R. W.; Gonsiorek, W.; Lundell, D. J.; Piwinski, J. J.; Narula, S.; Lunn, C. A. Triaryl bissulfones as a new class of cannabinoid CB_2 receptor inhibitors: identification of a lead and initial SAR studies. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 783–786.

(25) Lunn, C. A.; Reich, E. P.; Fine, J. S.; Lavey, B.; Kozlowski, J. A.; Hipkin, R. W.; Lundell, D. J.; Bober, L. Biology and therapeutic potential of cannabinoid CB₂ receptor inverse agonists. *Br. J. Pharmacol.* **2008**, 153, 226–239.

(26) Baraldi, P. G.; Saponaro, G.; Moorman, A. R.; Romagnoli, R.; Preti, D.; Baraldi, S.; Ruggiero, E.; Varani, K.; Targa, M.; Vincenzi, F.; Borea, P. A.; Aghazadeh Tabrizi, M. 7-Oxo-[1,4]oxazino[2,3,4*ij*]quinoline-6-carboxamides as selective CB(2) cannabinoid receptor ligands: structural investigations around a novel class of full agonists. *J. Med. Chem.* **2012**, *55*, 6608–6623.

(27) Aghazadeh Tabrizi, M.; Baraldi, P. G.; Saponaro, G.; Moorman, A.; Romagnoli, R.; Preti, D.; Baraldi, S.; Corciulo, C.; Vincenzic, F.; Borea, P. A.; Varani, K. Design, synthesis, and pharmacological properties of new heteroarylpyridine/ heteroarylpyrimidine derivatives as CB2 cannabinoid receptor partial agonists. *J. Med. Chem.* **2013**, *56*, 1098–1112.

(28) Ji, Y.; Trenkle, W. C.; Vowles, J. V. A high-yielding preparation of β -ketonitriles. *Org. Lett.* **2006**, *8*, 1161–1163.

(29) Ochiai, H.; Ishida, A.; Ohtani, T.; Kusumi, K.; Kishikawa, K.; Yamamoto, S.; Takeda, H.; Obata, T.; Nakai, H.; Toda, M. Discovery of new orally active phosphodiesterase (PDE4) inhibitors. *Chem. Pharm. Bull.* **2004**, *52*, 1098–1104.

(30) Chu, I.; Lynch, B. M. Synthesis and biological evaluation of xanthine oxidase inhibitors. Pyrazolo[3,4-*d*]pyrimidines and pyrazolo-[3,4-*b*]pyridines. *J. Med. Chem.* **1975**, *18*, 161–165.

(31) Griffin, G.; Tao, Q.; Abood, M. E. Cloning and pharmacological characterization of the rat CB2 cannabinoid receptor. *J. Pharmacol. Exp. Ther.* **2000**, 292, 886–894.

(32) Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. *J. Comput. Chem.* **1998**, *19*, 1639–1662.

(33) Song, Z. H.; Slowey, C. A.; Hurst, D. P.; Reggio, P. H. The difference between the CB(1) and CB(2) cannabinoid receptors at position 5.46 is crucial for the selectivity of WIN55212-2 for CB(2). *Mol. Pharmacol.* **1999**, *56*, 834–840.

(34) Manera, C.; Tuccinardi, T.; Martinelli, A. Indoles and related compounds as cannabinoid ligands. *Mini-Rev. Med. Chem.* **2008**, *8*, 370–387.

(35) McAllister, S. D.; Rizvi, G.; Anavi-Goffer, S.; Hurst, D. P.; Barnett-Norris, J.; Lynch, D. L.; Reggio, P. H.; Abood, M. E. An aromatic microdomain at the cannabinoid CB(1) receptor constitutes an agonist/inverse agonist binding region. *J. Med. Chem.* **2003**, *46*, 5139–5152.

(36) Rinaldi-Carmona, M.; Barth, F.; Congy, C.; Martinez, S.; Oustric, D.; Pério, A.; Poncelet, M.; Maruani, J.; Arnone, M.; Finance, O.; Soubrié, P.; Le Fur, G. SR147778 [5-(4-bromophenyl)-1-(2,4dichlorophenyl)-4-ethyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide], a new potent and selective antagonist of the CB₁ cannabinoid receptor: biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther. 2004, 310, 905–914.

(37) MacLennan, S. J.; Reynen, P. H.; Kwan, J.; Bonhaus, D. W. Evidence for inverse agonism of SR141716A at human recombinant cannabinoid CB_1 and CB_2 receptors. *Br. J. Pharmacol.* **1998**, *124*, 619–622.

(38) Merighi, S.; Simioni, C.; Gessi, S.; Varani, K.; Borea, P. A. Binding thermodynamics at the human cannabinoid CB_1 and CB_2 receptors. *Biochem. Pharmacol.* **2010**, *79*, 471–477.

(39) Varani, K.; Merighi, S.; Gessi, S.; Klotz, K. N.; Leung, E.; Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, P.; Borea, P. A. $[{}^{3}H]$ -MRE3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A₃ adenosine receptors. *Mol. Pharmacol.* **2000**, *57*, 968–975.

(40) Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099–108.

(41) Munson, P. J.; Rodbard, D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. *Anal. Biochem.* **1980**, *107*, 220–239.

(42) Maestro, version 9.0; Schrödinger Inc: Portland, OR, 2009.

(43) Macromodel, version 9.7; Schrödinger Inc: Portland, OR, 2009.

(44) Tuccinardi, T.; Ferrarini, P. L.; Manera, C.; Ortore, G.; Saccomanni, G.; Martinelli, A. Cannabinoid CB_2/CB_1 selectivity. Receptor modeling and automated docking analysis. *J. Med. Chem.* **2006**, *49*, 984–994.

(45) Lebon, G.; Warne, T.; Edwards, P. C.; Bennett, K.; Langmead, C. J.; Leslie, A. G.; Tate, C. G. Agonist-bound adenosine A_{2A} receptor structures reveal common features of GPCR activation. *Nature* **2011**, 474, 521–525.

(46) Choe, H. W.; Kim, Y. J.; Park, J. H.; Morizumi, T.; Pai, E. F.; Krauss, N.; Hofmann, K. P.; Scheerer, P.; Ernst, O. P. Crystal structure of metarhodopsin II. *Nature* **2011**, 471, 651–655.

(47) Sanner, M. F. Python: a programming language for software integration and development. *J. Mol. Graphics Modell.* **1999**, *17*, 57–61.