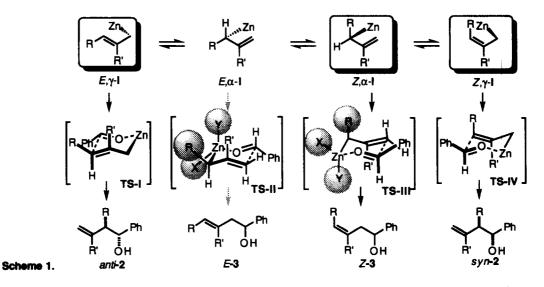


Tetrahedron Letters 39 (1998) 609-612

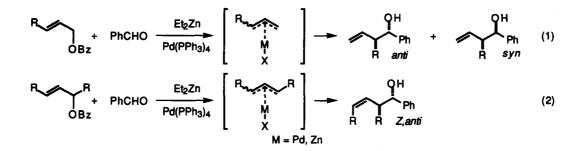
TETRAHEDRON LETTERS

Unique Regio- and Stereoselectivity In the Allylation of Benzaldehyde with 2-Substituted Allylzincs Generated by Umpolung of π -Allylpalladium


Masamichi Shimizu, Masanari Kimura, Shuji Tanaka, and Yoshinao Tamaru*

Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, 1-14 Bunnkyo, Nagasaki 852, Japan

Received 8 October 1997; revised 10 November 1997; accepted 14 November 1997


Abstract: α,β -Disubstituted allylzincs with alkoxycarbonyl as the β -substituent, generated via an umpolung of *in situ* generated π -allylpalladium by transmetallation with diethylzinc, react with benzaldehyde at the most substituted allylic terminus to provide *syn-* γ -butyrolactones 4 exclusively, while those with electron-donating Me, *i*-Pr, or OMOM as the β -substituents react at both allylic termini to give mixtures of *syn-*2, *anti-*2 and *Z-*3. α,β,γ -Trisubstituted allylzincs provide *Z*, *anti-*adducts 5 exclusively. © 1998 Elsevier Science Ltd. All rights reserved.

In view of the synthetic importance of allylation of carbonyl compounds, there has been extensive development of methodology in this area.¹ Despite numerous studies on the stereo- and regioselectivities for α - or γ -monosubstituted and α , γ -disubstituted allylating agents, there have appeared surprisingly few reports concerning the same subject for the α , β -di- and α , β , γ -trisubstituted allylating agents.² Here we disclose that the β -substituents (R') of allylzincs, depending on their electronic nature, exert pronounced effects on their reactivity and, hence, product distributions among *syn*-2, *anti*-2, *Z*-3, and *E*-3 (Scheme 1).

Recently, we have developed an efficient allylation reaction based on a unique transmetallation reaction of an *in situ* generated π -allylpalladium into allylzinc (an umpolung) with diethylzinc (eq 1 and 2, M = Pd \rightarrow Zn),³ where *trans-y*-monosubstituted benzoates reacted regioselectively at the allylic terminus bearing the highest number of substituents, showing a modest stereoselectivity to yield mixtures of *anti*- and *syn*-adducts in 2:1~ 10:1 ratios (eq 1). Additional substituents on the α -position, however, caused a dramatic change in stereoselectivity, furnishing *Z*, *anti*-adducts exclusively (eq 2).⁴

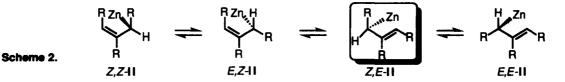
0040-4039/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4039(97)10657-8

In order to address the remarkable α -substituent effects, we examined the reaction of β -substituted allyl zinc species generated from allyl benzoates 1 in detail. Results are summarized in Table 1. We selected methyl, isopropyl, and methoxymethyl (MOM) ether as the representatives of electron-donating substituents (runs 3-8) and alkoxycarbonyls as those of electron-attracting substituents (runs 9-12). For reference, the results obtained for *trans*-(1a)³ and *cis*-crotyl benzoates (1b) are listed in runs 1 and 2.

The selective formation of *anti*-2a and *syn*-2a from *trans*-crotyl (1a) and *cis*-crotyl benzoates (1b) (runs 1,2), respectively, suggests that the allylzinc species E,γ -I and Z,γ -I (R = Me, R' = H, Scheme 1) isomerize to each other rather slowly. Comparison of two pairs of results (runs 1 and 3 and runs 2 and 4) clearly indicates that the β -methyl groups of 1c and 1d apparently suppress the isomerization between E,γ -I and Z,γ -I (R = R' = Me, *vide infra*). Unexpectedly, 1c and 1d furnished Z-3a in considerable amounts, the product being formed by the allylation at the allyic terminus with the least number of substituents via TS-III (Scheme 1). The structure of Z-3a was determined unequivocally by NOE experiments: 4.1%, 7.4% and 0% NOE's for C(3)CH₃, C(4)CH₃, and C(2)H₂, respectively, by irradiation at C(4)H. The corresponding *E*-isomer was not detected.

The other allylating agents with electron-donating isopropyl and MOM ether groups at the β -position showed more or less similar reactivity (runs 6-8). In these cases, however, 3b-d, all possessing Z-stereochemistry, were obtained in much higher proportions.

 β -Alkoxycarbonyl groups, on the other hand, provided syn-2 exclusively which, under the reaction conditions, spontaneously cyclized to give rise to α -methylene- γ -butyrolactone derivatives (syn-4a, b, runs 9-12, Table 1).⁷


These contrasting β -substituent effects may be rationalized as follows. Electron-donating β -substituents may enhance the reactivity of all the allyl zinc intermediates involved, especially that of the α -substituted Z, α -I and E, α -I, since the α -substituent of E, γ -I and Z, γ -I may sterically hinder the reaction with aldehyde. The formation of Z-3 as the major product (runs 6-8) or in the amounts comparable to syn- and anti-2 (runs 3-5) may be attributed to the transition state III, which is free from gauche repulsion between R and the ligands X and Y on Zn that the transition state II, leading to E-3, suffers from.⁴ The reaction of Z, α -I with benzaldehyde may interrupt the isomerization between E, γ -I and Z, γ -I; hence, a good stereochemical correlation between the starting materials and the products results, i.e., the selective formation of anti-2 from E-1 via TS-I and of syn-2 from Z-1 via TS-IV (runs 3,4,6). Electron-attracting β -substituents, on the other hand, render all the allylzinc intermediates less reactive and a complete equilibrium among them may have been established before the addition to benzaldehyde takes place. Hence, only the thermodynamically most stable Z, γ -I may become responsible for the allylation to provide syn-2 (and hence syn-4) exclusively.

We next examined the allylation of benzaldehyde with α, β, γ -trisubstituted allyl benzoates 1m-p. The results are summarized in Table 2. Interestingly, all the reactions, irrespective of the difference in

run	benzoate 1	time (h)	structure of products	product ratio anti-2:syn-2:Z-3	% yield ^e
1p	OBz 1a	2	Ph anti-2a OH syn-2a	2.4 : 1 : 0	94
2	OBz 1b	5	anti-2a syn-2a I QH I QH i QH	1:3.6:0	7 9
3	OBz 1 c	72	anti-2b syn-2b Z-3a	4.1 : 1 : 3.1	82
4	OBz 1d	71	anti-2b syn-2b Z-3a	1:9.0:1.5	92
5	OBz 1e	25	anti-2b syn-2b Z-3a	1.3 : 1.4 : 1	82
6	OBz 1f E: Z = 3:1	72	Pr OH Ph anti-2c Ph syn-2c Z-3b	2.9 : 1 : 4.9	61
7	MOM-O OBz 1g	24	MOM-O OH MOM-O OH MOM-O OH Me $anti-2d^{f}$ Me $syn-2d^{f}$ Me Z-3c	3.0 : 1 : 4.0	72
8	MOM-O Ph OBz 1 h	24	MOM-0 OH MOM-0 OH MOM-0 OH Ph anti-2e Ph syn-2e Ph Z-3d	1:1:3.0	90
9	OBz 1	4	Ph Me syn-4a	0:1:0	47
10	CO2R 1jd	3	$\mathbf{R} = t \cdot \mathbf{B} \mathbf{u}$	0:1:0	57
11			R = Et	0:1:0	25
12	OBz 11d	3	Ph syn-4b $R = Me$	0:1:0	22

Table 1. Allylation of Benzaldehyde with α , β - and β , γ -Disubstituted Allylic Benzoates^a

a) Reaction conditions: 1 (1.2 mmol), benzaldehyde (1.0 mmol), Et₂Zn (2.4 mmol), Pd(PPh)₄ (0.05 mmol) in THF (5 ml) at rt under N₂. b) Taken from ref. 3. c) The alcohol was prepared according to the reference procedure.⁵ d) The alcohol was prepared according to the reference procedure.⁶ e) Yield refers to the combined isolated yield. All products were properly characterized by IR, ¹H NMR (400 MHz), ¹³C NMR (100 MHz), and HRMS spectra (or by elemental analysis). f) Tentative assignment based on $J_{H1-H2} = 8.8$ (*anti-2d*) and 2.2 Hz (*syn-2d*) (CDCl₃).

stereochemistry (runs 1,2) and substitution pattern (runs 3,4) of the starting benzoates, gave uniformly Z, anti-

products 5 exclusively. These results suggest that only Z, E-II (Scheme 2), among the four possible kinds of allylzinc species, is responsible for the allylation. Among these, E, E-II and E, Z-II may be excluded, since they expose the substituent R attached to the carbon bearing Zn to a gauche repulsive interaction with the X, Y ligands on Zn in a transition state for the reaction with benzaldehyde (cf. TS-II, Scheme 1). The allyl zinc species Z, Z-II may also be ruled out owing to a severe A(1,3)-strain between C(1)R and C(3)R.⁸

run	allyl benzoates	time (h)	% isolated yield of products ^b
1	OBz 1m	100	он <i>Z, anti-5</i> а: 91
2	OBz 1n (<i>E:Z</i> = 1:2.6)	88	Z, anti-5a: 55
3	OBz 10	6	Ph Z, anti-5b: 30 Ph Z, anti-5c: 42
4	Photo OBz 1p	30	Z,anti-5b: 27 Z,anti-5c: 25

Table 2. Allylation of Benzaldehyde with α, β, γ -Trisubstituted Allylic Benzoates^a

a) Reaction conditions: allyl benzoates (1.2 mmol), benzaldehyde (1.0 mmol), Et_2Zn (2.4 mmol), Pd(PPh_3)₄ (0.05 mmol) in THF (5 ml) at rt under N₂. b) All products were properly characterized by IR, ¹H NMR (400 MHz), ¹³C NMR (100 MHz), and HRMS spectra (or by elemental analysis).

REFERENCES AND NOTES

- a) Roush, W. R. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I.; Heathcock, C. H. Ed.; Pergamon, 1991, Vol. 2. Chapter 1.1.
 b) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207 - 2293.
- a) Mikami, K.; Kawamoto, K.; Loh, T.-P.; Nakai, T. J. Chem. Soc. Chem. Commun. 1990, 1161 1163.
 b) Hodgson, D. M.; Wells, C. Tetrahedron Lett. 1992, 33, 4761 4762. c) Takahara, J. P.; Masuyama, Y.; Kurusu, Y. J. Am. Chem. Soc. 1992, 114, 2577 2586. d) Jain, N. F.; Takenaka, N.; Panek, S. J. ibid 1996, 118, 12475 12476.
- a) Yasui, K.; Goto, Y.; Yajima, T.; Taniseki, Y.; Fugami, K.; Tanaka, A.; Tamaru, Y. Tetrahedron Lett.
 1993, 34, 7619 7622. b) Tamaru, Y.; Goto, S.; Tanaka, A.; Shimizu, M.; Kimura, M. Angew. Chem. Int. Ed. Engl. 1996, 35, 878 - 880.
- 4. Tamaru, Y. Tanaka, A.; Yasui, K.; Goto, S.; Tanaka, S. Angew. Chem. Int. Ed. Engl. 1995, 34, 787 789.
- 5. Tamao, K.; Nakagawa, Y.; Ito, Y. Org. Synth. 1996, 73, 94 109.
- a) Hoffmann, H. M. R.; Rabe, J. Helv. Chim. Acta 1984, 67, 413 415. b) Wang, S.-Z.; Yamamoto, K.; Yamada, H.; Takahashi, T. Tetrahedron 1992, 48, 2333 2348.
- The chemistry of β-alkoxycarbonylcrotyl metals has been documented relatively well: a) Semmelhack, M. F.; Yamashita, A.; Tomesch, J. C.; Hirotsu, K. J. Am. Chem. Soc. 1978, 100, 5565 5567. b) Okuda, Y.; Nakatsukasa, S.; Oshima, K.; Nozaki, H. Chem. Lett. 1985, 481 484. c) Nishitani, K.; Yamakawa, K. Tetrahedron Lett. 1987, 28, 655 658. d) Masuyama, Y.; Nimura, Y.; Kurusu, Y. ibid. 1991, 32, 225 228. e) Sidduri, A.; Rozema, M. J.; Knochel, P. J. Org. Chem. 1993, 58, 2694 2713. f) Panek, J. S.; Liu, P. ibid. 1997, 38, 5127 5130.
- 8. This work was financially supported by Grant-in-Aid for Scientific Research on Priority Area No. 08245104 from the Ministry of Education, Science, Sports and Culture, of the Japanese Government.