Copper-Catalyzed Three-Component Cascade Reaction of Benzaldehyde with Benzylamine and Hydroxylamine or Aniline: Synthesis of 1,2,4-Oxadiazoles and Quinazolines

Chao Wang,^{+a} Xiyan Rui,^{+a} Dongjuan Si,^a Rupeng Dai,^a Yueyue Zhu,^a Hongmei Wen,^a Wei Li,^{a,*} and Jian Liu^{a,*}

^a School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China E-mail: liujian623@njucm.edu.cn; liwaii@126.com

⁺ Chao Wang and Xiyan Rui contributed equally.

Manuscript received: December 9, 2020; Revised manuscript received: March 2, 2021; Version of record online:

Supporting information for this article is available on the WWW under https://doi.org/10.1002/adsc.202001535

Abstract: The analogous three-component synthesis strategy for substituted 1,2,4-oxadiazole and quinazoline derivatives from readily available benzaldehyde, benzylamine and hydroxylamine or aniline has been developed. Both the cascade reaction sequences involves nucleophilic addition of C–N bond, introduction a halogen donor, nucleophilic substitution and Cu(II)-catalyzed aerobic oxidation. This synthesis methodology demonstrated good yields, broad substrate scope and oxygen as a green oxidant. Thus, this synthesis protocol provides strategies for the construction of substituted 1,2,4-oxadiazole and quinazolines from readily and simple starting materials.

Keywords: 1,2,4-oxadiazole; quinazoline; three-component; aerobic oxidation

Introduction

The nitrogen heterocycles and oxygen heterocycles are privileged scaffolds existed in numerous natural products and synthetic molecules which produce bioactivity and pharmacological activity. Because of the wide coverage of activities and unique properties, two pharmacophores, named 1,2,4-oxadiazoles and guinazolines, have been attracting much attention.^[1] The substituted 1,2,4-oxadiazole derivatives exhibited antiinflammatory, anti-depressant and anti-cancer activities, etc (Figure 1 a).^[2] For example, **Oxolamine** was described and introduced as a cough suppressant, recently Ataluren (PTC124) has been launched for the therapy of Duchenne muscular dystrophy.^[3] Besides, quinazoline-based compounds also possess a broad spectrum of pharmacological activities, including anti-inflammatory, anti-microbial, anti-malarial, anti-convulsant, antiviral and anti-cancer activities, etc (Figure 1 b).^[4] As well-known anticancer drugs Gefitinib and Erlotinib, which contained unique quinazoline scaffolds, have been approved for the treatment of non-small cell lung cancer (NSCLC).^[5]

Figure 1. Example of useful 1,2,4-oxadiazole (a) and quinazoline (b) molecules.

Previous studies reported several methods to synthesize 1,2,4-oxadiazole and quinazoline derivatives. As for the 1,2,4-oxadiazole, the traditional synthesis protocol contains two steps: 1) *O*-acylation of an amidoxime, which can be easily prepared by the reaction of activated carboxylic acid derivatives such

Adv. Synth. Catal. 2021, 363, 1–10 Wiley Online Library 1 These are not the final page numbers!

as acid chlorides, esters and anhydrides; 2) intramolecular dehydration of the O-acyl amidoxime with bases (Scheme 1 a).^[6] Recently, the 5-amino-1,2,4oxadiazole products are obtained by the insertion of cyano or isocyanide.^[7] Additionally, some works focused on transforming substrates that contained amidine/guanidinium group to 1,2,4-oxadiazole scaffold by NBS/iodobenzene diacetate (IBD)-mediated oxidative cyclization.^[8] The latest synthesis strategy uses iron (III) nitrate to mediate the 1,3-dipolarization of alkynes and nitriles, the iron (III) nitrate plays dual roles in the nitration of alkynes and the activation of nitriles.[9]

Meanwhile, the general synthesis procedure for quinazoline is the condensing of different ortho-

a). Preparation of 1,2,4-oxadiazoles

b). Preparation of quinazolines

Scheme 1. Synthetic strategies for 1,2,4-oxadiazole and quinazoline.

Adv. Synth. Catal. 2021, 363, 1-10

Wiley Online Library These are not the final page numbers! 77

Et₃N, EtOH, O₂, 80 °C, 8 h

functionalized anilines (2-carbonylaniline, [10a,b,c,d] 2aminobenzylamine^[10e,f] or 2-aminobenzonitrile^[10g,h]) with benzaldehyde, benzylamine, benzoic acid or benzonitrile (Scheme 1b). Moreover, another feasible method is the oxidative cyclization of arylamidines with I₂-mediated C-C bond, and the later one was formatted from $C(sp^3)$ -H and $C(sp^2)$ -H bonds.^[11] Other reagents such as 2-ethynylanilines, 2-alkylaminobenzonitriles, aryl diazonium salts, N-sulfinylimines, imines and amidines are identified as alternative substrates in the synthesis of various substituted quinazoline derivatives.^[12] Recently, Xie reported a Cu/Ag-catalyzed annulation of 3-aryl-2H-azirines with anthranils to provide (quinazolin-2-yl)methanone derivatives.^[13] Although the strategy showed significant advancements in terms of 1,2,4-oxadiazole and quinazoline syntheses, most of these procedures had drawbacks such as time-consuming, harsh reaction conditions, special starting materials, multi-step procedures, and expensive transition metal complexes, ligands, additives, oxidants, which significantly hindered their further application. Most importantly, there is rarely a general synthesis strategy has been reported for these two heterocyclic scaffolds under the similar reaction conditions.

Multicomponent cascade reaction serves as one of the most important synthetic strategies for the green access to nitrogen heterocycles, which eliminates the purification steps of intermediates and decreases the discrete chemical steps, waste products and operation costs.^[14] Recently, the large amounts of oxidants such as organohalide, PhI(OAc)₂, benzoquinone and metal salts (Ag or Cu) are utilized to construct nitrogencontaining heterocycles through transition-metal-catalyzed C-N bond formation and annulation.[15,16,17] There is no doubt that these methods will suffer from numerous limitations in organic synthesis due to their high price, toxicity and unfriendly environmental propoerties.^[17,18] Molecular oxygen is an atom-economical, abundant, and environmental-friendly energy,^[19] nowadays some researchers report using copper-catalyzed aerobic oxidation to construct oxygen, nitrogen, and sulfur-incorporated heterocycles.^[20] Meanwhile, in 2016 Arndtsen described that the selective aerobic oxidation of amines to nitriles and imines through CuIor CuPF₆-catalyzed in different solvents.^[21] As our investigation so far, the synthesis of 1,2,4-oxadiazole and guinazoline from easily starting material benzylamine, benzaldehyde, hydroxylamine or aniline, has not yet been explored by using similar synthesis strategy. Herein, we report a new strategy of analogous three-component cascade reaction to yield 1,2,4oxadiazole and guinazoline scaffold, which possess [2 +2+1] annulation and [3+2+1] annulation via a Cu(II)-catalyzed dehydrogenative cyclization (Scheme 1 c). This three-component cascade annulation can

be developed as an access to 1,2,4-oxadiazoles and quinazolines.

Result and Discussion

The benzaldehyde (1 a), benzylamine (2 a) and hydroxylamine (3 a) are easy-access materials and all of them are widely utilized as key synthons in nitrogencontaining functional molecular synthesis. We initiate our studies by evaluating the feasibility of the threecomponent cascade reaction of the benzaldehyde (1 a), benzylamine (2 a) and hydroxylamine (3 a) for the 1,2,4-oxadiazole synthesis in the presence of CuBr₂mediated aerobic oxidation (Table 1). The threecomponent [2+2+1] cascade annulation of 1,2,4oxadiazole involves: nucleophilic addition of C–N bond, introduction of a halogen donor, nucleophilic substitution and Cu(II)-catalyzed aerobic oxidation. Therefore, the solvent plays a critical role in the threecomponent cascade transformation. The desired prod-

Table 1. Optimization of the synthesis of 1,2,4-oxadiazole $\mathbf{4a}^{[a]}$

C 1a	HO + 2a	NH ₂ + NH ₂ OH 3a	Et ₃ N, s O ₂ , T,	ligand, "X" solvent time	4a
Entry	Catalyst	Ligand	"X"	Solvent	Yield (%) ^[b]
1	CuBr ₂	pyridine	NCS ^[c]	toluene	10
2	CuBr ₂	pyridine	NCS	DMSO	Trace
3	CuBr ₂	pyridine	NCS	THF	15
4	CuBr ₂	pyridine	NCS	EtOH	40
5	CuBr ₂	pyridine	NCS	MeOH	23
6	CuBr ₂	pyridine	NCS	H ₂ O	35
7	CuBr ₂	pyridine	NCS	isopropanol	17
8	CuBr ₂	pyridine	NCS	HFIP	Trace
9	CuBr ₂	pyridine	NBS ^[d]	EtOH	45
10	CuBr ₂	pyridine	I_2	EtOH	32
11	CuBr ₂	pyridine	DBH ^[e]	EtOH	65
12	CuI	pyridine	DBH	EtOH	13
13	$Cu(OAc)_2$	pyridine	DBH	EtOH	Trace
14	CuBr ₂	bipyridine	DBH	EtOH	75
15	CuBr ₂	1,10-phen	DBH	EtOH	90
16 ^[f]	CuBr ₂	1,10-phen	DBH	EtOH	22
17 ^[g]	CuBr ₂	1,10-phen	DBH	EtOH	0

^[a] Reaction conditions: benzaldehyde (1 a, 0.5 mmol), benzylamine (2 a, 0.5 mmol), hydroxylamine (3 a, 0.5 mmol), catalyst (10 mmol%), ligand (20 mmol%), Et₃N (0.5 mmol), "X" (0.5 mmol) and solvent (4.0 mL) were stirred at 80 °C under O₂ for 8 h;

^[b] Isolated yield;

^[c] NCS = N-Chlorosuccinimide;

^[d] NBS = N-bromosuccinimide;

 $^{[e]}$ DBH = dibromohydantoin;

^[f] The reaction was carried out under air atmosphere.

^[g] The reaction was carried out under N₂ atmosphere.

Adv. Synth. Catal. 2021, 363, 1-10

Wiley Online Library

These are not the final page numbers! 77

uct 4a can be obtained in 10% yield (entry 1) when toluene was used as the solvent. While other solvents such as DMSO, THF, MeOH, isopropanol and HFIP, didn't change the reaction activities essentially (entries 2-8). Surprisingly, the isolated yield of target product 6a boosted up to 35% and 40%, respectively, once H₂O and EtOH was used as the solvent, and the EtOH is selected as the best solvent for the synthesis protocol of 1,2,4-oxadiazole. Meanwhile, the halogen donor "X" is also incorporated in the reaction process. By investigating the various halogen donor, the dibromohydantoin (DBH) is selected as the optimal halogen donor, and the yield of 4a was up to 65% (entries 9-11). The key step for cascade reaction is the Cu (II)mediated oxygen dehydrogenative coupling. Different copper salt including CuI, Cu(OAc)₂ and different ligands, for instance, pyridine, bipyridine and 1,10phenanthroline (1,10-phen) are conducted to further improve the yield of the target product 4 a (entries 12-15). As we expected, the yield of 4a is enhanced to 90% by using 1,10-phen as a ligand, whereas other catalysts (CuI, Cu(OAc)₂) are ineffective. Besides, the reaction proceed difficu without oxygen, which indicates the oxygen as an essential role in this reaction (entries 16, 17). We also explored the reaction time and reaction temperature, and the optimal reaction time was 8 hours and the reaction temperature was 80°C (See the Supporting Information for details).

After we optimized the reaction conditions, the scope and generality of this three-component [2+2+1] cascade annulation was initiated observing various substituted benzaldehyde derivatives (Scheme 2). Interestingly, the target product 4aa bearing o-methyl could be obtained in a high yield (82%), and the halogen functional groups involving fluorine and chlorine were well tolerated to afford the corresponding annulated products in moderate yields (4 ac: 56%; 4 ad: 61%). However, the o-NO₂ precursor generated the desired product 4 ab in only poor yield of 26%. In summary, as for the ortho-substituent, the reaction efficiency was inhibited by the strong electron-withdrawing substituent, on the contrary the reaction activity was enhanced by the electron-rich groups. A similar trend was also revealed for the meta-substituted substrates reaction efficiencies, the electron-rich groups (4 ae: 76%) performed relatively better than the electron-deficient groups (4 af: 60%; 4 ag: 67%; 4 ah: 61%). Besides, the small electron-donating substituent was beneficial to the transformation of 1,2,4-oxadiazole, as a result the yield of product 4 ai bearing pmethyl was promoted to 94%. Whereas the substrate containing a tert-butyl substituent decreased in their reaction efficiencies because of the steric hindrance phenomena (4aj: 75%). Interestingly, other electrondeficient groups involving phenyl, chlorine, fluorine and cyano group were also tolerated for this transformation, the yield of 4a was slightly decreased

asc.wiley-vch.de

⁶⁹ Reaction conditions: benzaldenyde (1, 0.5 mmol), benzylamine (2a, 0.5 mmol), hydroxylamine (3a, 0.5 mmol), CuBr₂ (10 mmol%), 1,10-phen (20 mmol%), DBH (0.5 mmol), Et₃N (0.5 mmol) and EtOH (4.0 mL) were stirred at 80 °C under O₂ for 8 h; ^[b] Isolated yield.

Scheme 2. Substrate Scope of benzaldehyde.^[a,b]

(4ak: 88%; 4al: 80%; 4an: 69%; 4am: 75% vs 4a: 90%). Furthermore, the corresponding yield of disubstituted, tri-substituted and pent-substituted substrates that were combined with various substituents were decreased (4ao: 78%; 4ap: 83%; 4aq: 67%; 4ar: 54%; 4as: 60%; 4at: 50%), indicating that the steric hindrance phenomena of plays a critical role to influence the yield of 1,2,4-oxadiazole. Other arylfunctionalized benzaldehydes were also undergoing the transformation easily, the yields of the corresponding products were ranging from 51% to 82% (4au-4ax). In summary, the benzaldehyde substrates bearing small electron-rich groups were favourable for the 1,2,4oxadiazole preparation, but the bulkier substituents were not suitable, thus the electron effect and steric hindrance both influenced the reaction efficiency.

Benzylamine 2a also contributed greatly to this reaction, and the effects of different benzylamine derivatives bearing various substituents were explored (Scheme 3). In general, *mono*-substituted benzylamine derivatives, show better yield of target product with electron-donating groups such as methyl and methoxy than those with electron-withdrawing substituents such as fluorine (4ba, 4bc vs 4bb; 4bd, 4be vs 4bf; 4bg, 4bh vs 4bi). Among these compounds, the substrates bearing p-Me and p-OMe exhibited the best reaction

^[a] Reaction conditions: benzaldehyde (**1a**, 0.5 mmol), benzylamine (**2**, 0.5 mmol), hydroxylamine (**3a**, 0.5 mmol), CuBr₂ (10 mmol%), 1,10-phen (20 mmol%), DBH (0.5 mmol), Et₃N (0.5 mmol) and EtOH (4.0 mL) were stirred at 80 °C under O₂ for 8 h; ^[b] Isolated yield.

Scheme 3. Substrate Scope of benzylamine.^[a,b]

activity (4 bg: 86%; 4 bh: 83%). Interestingly, the steric effect was also investigated while the substituents were located at the ortho-position, especially the target product 4 aj was furnished in only 53% yield while the 2,6-dimethyl benzylamine was employed. Notably, compared to the 3-F-benzylamine (4bf) and 4-Fbenzylamine substrate (4 bi), the reaction efficiency was decreased while the substrate containing a 3,4difluoro unit (4bk: 50%), and this may due to the fact that the two fluorine atoms strongly reduced the electronic density of benzene ring. Similarly, other aryl-functionalized benzylamines involving pyridine ring were also incorporated into this transformation, the yield of desired product 4bl and 4bm were 67% and 74%, respectively. In conclusion, substituted benzylamine derivatives exhibited the similar trend to the benzaldehyde substrates, that the small electrondonating group enhanced the reaction ability while the bulkier substituent was not tolerated for this transformation.

The aniline was also utilized as an essential material for the construction of the nitrogen-containing heterocycle, while the starting material hydroxylamine **3** was replaced by the aniline **5** for the first step of C=N formation, the one-step synthesis of 1,2,4-oxadiazole **4** was easily extended for the synthesis of quinazoline **6** (Table 2). We initiated our studies by repeating the optimized reaction conditions for the 1,2,4-oxadiazole synthesis, and the desired quinazoline **6** could be obtained in 22% yield (entry 1). It is potential that the solvent may significantly affect the reaction efficiency, so we screened various solvent and tried to enhanced reaction activity (entry 2–4). The

Adv. Synth. Catal. 2021, 363, 1–10 Wiley Online Library 4 These are not the final page numbers! asc.wiley-vch.de

CH 1a	⁰ + NH ₂ 2a	+ NH ₂ -	CuBr ₂ , 1,10-phen, DBH Et ₃ N, solvent O ₂ , T, time	
Entry	T (°C)	time (h)	Solvent	Yield (%) ^[b]
1	80	8	EtOH	22
2	80	8	H_2O	10
3	80	8	DMSO	35
4	80	8	Toluene	56
5	60	8	Toluene	37
6	90	8	Toluene	61
7	100	8	Toluene	67
8	110	8	Toluene	58
9	100	6	Toluene	47
10	100	10	Toluene	63
11	100	12	Toluene	76
12	100	14	Toluene	83
13	100	16	Toluene	82
14 ^[c]	100	14	Toluene	0

Table 2. Optimization of the synthesis of quinazoline 6 a.^[a]

^[a] Reaction conditions: benzaldehyde (1 a, 0.5 mmol), benzylamine (2 a, 0.6 mmol), aniline (5 a, 0.5 mmol), CuBr₂ (10 mmol%), 1,10-phen (20 mmol%), DBH (0.5 mmol), Et₃N (0.5 mmol) and solvent (4.0 mL) were stirred at T °C under O₂ for time;

^[b] Isolated yield.

vield of product 6a could promote to 56% while the toluene was used as the solvent. Encouraged by this result, lower product yield was observed at lower reaction temperature. On the contrary, enhancing the temperature helped to improve the reaction efficiency, and the optimal reaction temperature was found to be 100°C which resulted in the yield of product 6a increasing to 67% (entry 5-8). Interestingly, through the exploring of the cascade reaction time, a relative higher yield could attain to 84% when the reaction time was extended to 14 h (entry 9-13). On the contrary, the reaction activity was inhibited while the reaction was carried out under an air or N₂ environment (entry 14). Through the inspecting of other reaction conditions (Supporting Information), the optimal reaction conditions could be identified as following: the catalyst was CuBr₂, the ligand was 1,10phen, the halogen-donor was DBH, the solvent was toluene, the reaction temperature and time were 100 °C and 14 h respectively. Most importantly, the oxygen environment was critical to this three-component cascade reaction.

The optimized reaction conditions were employed for the synthesis of other quinazoline derivatives 6 by utilizing diverse libraries of benzaldehyde 1a, benzylamine 2a and aniline 5a for this three-component [3 + 2+1] annulation (Scheme 4). Generally, as for differ-

^[a] Reaction conditions: benzaldehyde (1, 0.5 mmol), benzylamine (**2a**, 0.5 mmol), aniline (**5**, 0.5 mmol), CuBr₂ (10 mmol%), 1,10-phen (20 mmol%), DBH (0.5 mmol), Et₃N (0.5 mmol) and toluene (4.0 mL) at 100°C under O₂ for 14 h; ^[b] Isolated yield.

Scheme 4. Synthesis of quinazoline derivatives.^[a,b]

ent benzaldehyde analogues, the desired quinazoline products 6aa-6af were obtained at yields ranging from 44% to 86%. The substrate with electron-rich substituents reacted smoother than the substrate with electron-deficient groups (6 aa: 69% > 6 ad: 45%; 6 ab: 69% > 6ae: 51%; 6ac: 85% > 6af: 60%). The substituents at para-position exhibited better reaction efficiency than those at ortho-position and metaposition. Besides, the benzylamine analogues with the same substituent at different positions also exhibited the similar trend that the substrate with electrondonating groups were more favourable for this transformation, and the substrate containing an electronwithdrawing substituent provided relatively lower yield for the desired product. Among these quinazoline derivatives 6ba-6bf, the reaction ability of metasubstituted compounds was better than the corresponding ortho- or para-substituted compounds regardless of electron-withdrawing or electron-donating substituents. However, as for the aniline derivatives, the transformation could only be achieved by the compounds involving electron-donating substituents such as methyl (6ca: 44%; 6cb: 35%; 6cc: 30%), and it was very difficult for substrates containing electron-withdrawing groups involving fluorine or nitro to accomplish this transformation. In summary, the electron effect was critical to this [3+2+1] annulation, the electrondonating substituents were well tolerated in the present

Adv. Synth. Catal. 2021, 363, 1–10	Wiley Online Library	5
These are not the	final page numbers!	77

^[c] The reaction was carried out under an air atmosphere or N₂ atmosphere.

reaction system, furnishing the corresponding products in good to moderate yields. However, while the substrate containing electron-withdrawing groups, the three-component cascade reaction proceeded difficulty to afford the quinazoline product.

To further verify the synthetic utility of this reaction, a gram-scale three-component [2+2+1]cascade annulation of 1,2,4-oxadiazole 4a was carried out under the standard reaction conditions (Scheme 5). To our delight, the desired 1,2,4-oxadiazole 4a was provided in 79% yield (1.75 g) while the reaction was performed on a 10 mmol scale. Similarly, this threecomponent [3+2+1] annulation of quinazoline **6a**

a). Gram-scale experiment for 1,2,4-oxadiazole synthesis

b). Gram-scale experiment for quinazoline synthesis

Scheme 5. Further Studies of the Reaction.

Adv. Synth. Catal. 2021, 363, 1-10

Wiley Online Library These are not the final page numbers! 77

was also proceeded smoothly on a gram-scale, we could provide the target quinazoline 6a in 68% yield (1.72 g) on a 10 mmol scale. As a result, the yield for gram-scale was lower than obtained in the small-scale.

To provide insight into the mechanism of these reactions, several control experiments were designed and performed. In the synthesis process of 1,2,4oxadiazole product 4 a, regardless of the reaction route, the benzylamine or hydroxylamine mainly nucleophilic attack the halogen donor to yield the intermediate 7a which was identified as the precursor of 1,2,4oxadiazole heterocycles 4a. When the reaction was performed in the absence of CuBr₂ and 1,10-phen (Scheme 6a), the intermediate 7a was furnished in 92% yield through the condensation and substitution of benzaldehyde 1a, benzylamine 2a and hydroxylamine **3a**. The product 1,2,4-oxadiazole was generated by eliminating two molecules of hydrogen via coppermediated O₂ dehydrogenative coupling from the intermediate 7 a. Similarly, the cascade annulation to obtain quinazoline 6a revealed the analogous reaction process, the yield of intermediate 8a was 87% in the absence of CuBr₂ and 1,10-phen (Scheme 6b). However, the reaction ceased at the stage of nucleophilic substitution of methylbenzylamine owing to the failure of Cu(II)-catalyzed aerobic dehydrogenative cyclization when replacing the benzylamine by methvlbenzylamine under standard reaction conditions (Scheme 6c), and the corresponding product 9a was obtained in 83% yield. Furthermore, the isolated intermediate 7 a and 8 a were processed an elimination reaction through Cu(II)-catalyzed aerobic dehydrogenative annulation (Scheme 6d and 6e), the yield of the corresponding 1,2,4-oxadiazole product 4a and quinazoline 6a were 97% and 85%, respectively. In addition, butylated hydroxytoluene (BHT, 2.0 equiv.) as radical scavengers was added into the reaction system under the standard conditions. As a result, 10 a was determined by HRMS, indicating that the reaction proceeded via a radical pathway (Scheme 6f).

According to the results of these experiments, and refer to some related studies that have been reported,^[22] a plausible mechanism was proposed for the present three-component [2+2+1] cascade annulation of 1,2,4-oxadiazole 4a synthesis (Scheme 7). The critical precursor of cyclization 7a was obtained through nucleophilic addition and nucleophilic substitution regardless Path A or Path B. Presumably, the 1,10phen was identified as a ligand and coordinated with CuBr₂ to provide a five-membered copper metallacycle A. Subsequently, the aerobic oxidation was proceeded by depriving the hydrogen radicals from the 7a to generate the radical intermediate **B**, which initially undergo a process of oxidating of Cu(II)-complex A through oxygen. Then proton was removed via basemediated intramolecular elimination to afford the electron-rich C=N intermediate C. Through the Cu-

© 2021 Wiley-VCH GmbH

Scheme 7. Proposed Reaction Mechanism of 1,2,4-oxadiazole Synthesis.

promoted electron transfer, the intermediate **D** was obtained. Finally, the target 1,2,4-oxadiazole product was yielded through the intramolecular addition and elimination of intermediate **D**, the reoxidation of the Cu(I)-complex to the Cu(II)-complex would be utilized for the next catalytic cycle. Besides, the mechanism of quinoline was similarly, which processed a [3+2+1] annulation through Cu(II)-mediated aerobic oxidation.

Conclusion

The 1,2,4-oxadiazole and quinazoline scaffold are two critical nitrogen-containing heterocycles, however there is no general synthesis strategy for these two heterocyclic scaffolds under a similar reaction condition. Herein, we first report analogous three-component cascade synthesis strategy for substituted 1,2,4oxadiazole and quinazoline derivatives synthesis from readily available benzaldehyde, benzylamine and hydroxylamine or aniline. Both of the reaction sequences contain nucleophilic addition of C-N bond, introduce a halogen donor, nucleophilic substitution and Cu(II)catalyzed aerobic oxidation. The building of 1,2,4oxadiazole and quinazoline possess [2+2+1] annulation and [3+2+1] annulation via a Cu(II)-catalyzed dehydrogenative cyclization respectively, which demonstrated good yields, broad substrate scope and oxygen as a green oxidant. This protocol provides efficient approach to 1,2,4-oxadiazole and quinazoline derivatives.

Experimental Section

General Procedure for the Synthesis of Oxadiazole (4 a)

Benzaldehyde 1 (0.5 mmol, 1.0 equiv.), benzylamine 2 (0.5 mmol, 1.0 equiv.), hydroxylamine 3 (0.5 mmol, 1.0 equiv.), CuBr₂ (10 mmol%), 1,10-phenanthroline (20 mmol%), DBH (0.5 mmol, 1.0 equiv.), Et₃N (0.5 mmol, 1.0 equiv.) were added into the EtOH (4 mL), the mixture was stirred at 80 °C under O₂ for 8 h. Then the mixture was cooled to room temperature, and the reaction mixture was diluted with water, extracted with ethyl acetate (10 mL*3). The organic solvent was washed with brine, dried by anhydrous Na₂SO₄ and concentrated to give the crude product. The crude product was purified by flash column chromatography on silica gel (PE/EA = 100:1).

General Procedure for the Synthesis of Quinazoline (6 a)

Benzaldehyde 1 (0.5 mmol, 1.0 equiv.), benzylamine 2 (0.5 mmol, 1.0 equiv.), aniline 5 (0.5 mmol, 1.0 equiv.), CuBr₂ (10 mmol%), 1,10-phenanthroline (20 mmol%), DBH (0.5 mmol, 1.0 equiv.), and Et₃N (0.5 mmol, 1.0 equiv.) were added into the toluene (4 mL), the mixture was stirred at 100 °C under O₂ for 14 h. Then the reaction mixture was cooled to room temperature, and the mixture was diluted with water, extracted with ethyl acetate (10 mL *3). The organic layer was washed with a brine, dried by anhydrous Na₂SO₄ and concentrated to give the crude product. The crude product was purified by flash column chromatography on silica gel (PE/ EA = 80:1)

Acknowledgements

We gratefully acknowledge the National Science Foundation of China (No. 81573304, 81703342), Natural Science Foundation of Jiangsu (No. BK20161050), Natural Science Foundation of Nanjing University of Chinese Medicine (No. NZY81703342).

References

 For selected examples, see: a) K. Biernacki, M. Daśko, O. Ciupak, K. Kubiński, J. Rachon, S. Demkowicz, *Pharmaceuticals.* 2020, 13, doi: 10.3390/ph13060111;
 b) L. L. Xu, J. F. Zhu, X. L. Xu, J. Zhu, L. Li, M. Y. Xi, Z. Y. Jiang, M. Y. Zhang, F. Liu, M. C. Lu, Q. C. Bao, C. Zhang, J. L. Wei, X. J. Zhang, Q. D. You, H. P. Sun, J. *Med. Chem.* 2015, 58, 5419–5436; c) S. Moniot, M. Forgione, A. Lucidi, G. S. Hailu, A. Nebbioso, V. Carafa, F. Baratta, L. Altucci, N. Giacche, D. Passeri, R. Pellicciari, A. Mai, C. Steegborn, J. Med. Chem. 2017, 60, 2344–2360; d) M. E. Layton, M. J. Kelly, K. J. Rodzinak, P. E. Sanderson, S. D. Young, R. A. Bednar, A. G. DiLella, T. P. Mcdonald, H. Wang, S. D. Mosser, J. F. Fay, M. E. Cunningham, D. R. Reiss, C. Fandozzi, N. Trainor, A. N. Liang, E. V. Lis, G. R. Seabrook, M. O.

Urban, J. Yergey, K. S. Koblan, *ACS Chem. Neurosci.* 2011, 2, 352–362.

- [2] For selected examples, see: a) Ž. Jakopin, *Tetrahedron Lett.* 2018, 59, 4320–4322; b) M. Guerrero, M. Urbano, E. K. Kim, A. Gamo, S. Riley, L. Abgaryan, N. Leaf, L. J. V. Orden, S. J. Brown, J. Y. Xie, F. Porreca, M. D. Cameron, H. Rosen, *J. Med. Chem.* 2019, 62, 1761–1780; c) L. Aurelio, C. M. Pitman, A. Sexton, V. Oliver, L. Davies, R. Rebello, L. Furic, D. J. Creek, S. Pitson, B. L. Flynn, *J. Med. Chem.* 2016, 59, 965–984.
- [3] For selected examples, see: a) E. M. Welch, E. R. Barton, J. Zhuo, Y. Tomizawa, W. J. Friesen, P. Trifillis, S. Paushkin, M. Patel, C. R. Trotta, S. Hwang, R.-G. Wilde, G. Karp, J. Takasugi, G. Chen, S. Jones, H. Ren, Y. C. Moon, D. Corson, A. A. Turpoff, J. A. Campbell, M. M. Conn, A. Khan, N. G. Almstead, J. Hedrick, A. Mollin, N. Risher, M. Weetall, S. Yeh, A. A. Branstrom, J. M. Colacino, J. Babiak, W. D. Ju, S. Hirawat, V. J. Northcutt, L. L. Miller, P. Spatrick, F. He, M. Kawana, H. Feng, A. Jacobson, S. W. Peltz, H. L. Sweeney, *Nature* 2007, 447, 87; b) J. Berger, M. Li, S. Berger, M. Meilak, J. Rientjes, P. D. Currie, J. Cell. Mol. Med. 2020, 24, 6680–6689.
- [4] For selected examples, see: a) M. S. Raghu, C. B. P. Kumar, K. Y. Kumar, M. K. Prashanth, B. K. Jayanna, J. Heterocycl. Chem. 2019, 56, 2046-2051; b) F. Z. Jiang, S. Jun, L. Na, D. M. Han, B. X. Ping, J. Agric. Food Chem. 2019, 67, 11598–11606; c) T. S. Patel, J. D. Bhatt, R. B. Dixit, C. J. Chudasama, B. D. Patel, B. C. Dixit, Bio. Med. Chem. 2019, 27, 3574-3586; d) H. Georgey, N. Abdel-Gawad, S. Abbas, Molecules 2008, 13, 2557-2569; e) D. Xie, J. Shi, A. Zhang, Z. Lei, G. C. Zu, Y. Fu, X. H. Gan, L. Yin, B. Song, D. Y. Hu, Bio. Chem. 2018, 80, 433; f) J. Peng, T. Lin, W. Wang, Z. Xin, T. Zhu, Q. Gu, D. Li, J. Nat. Prod. 2013, 76, 1133-1140; g) I. Khan, A. Ibrar, W. Ahmed, A. Saeed, Eur. J. Med. Chem. 2014, 90, 124-169; h) J. Jamroskovic, M. Doimo, K. Chand, I. Obi, R. Kumar, K. Brannstrom, M. Hedenström, R. N. Das, A. Akhunzianov, M. Deiana, K. Kasho, S. S. Sato, P. L. Pourbozorgi, J. E. Mason, P. Medini, D. Öhlund, S. Wanrooij, E. Chorell, N. Sabouri, J. Am. Chem. Soc. 2020, 142, 2876-2888.
- [5] M. H. Cohen, J. R. Johnson, Y. F. Chen, R. Sridhara, R. Pazdur, *Oncologist* **2005**, *10*, 461.
- [6] For selected examples, see: a) A. Sauer, L. Wolf, N. Quoos, M. B. Rodrigues, A. L. Braga, O. E. D. Rodrigues, L. Dornelles, J. Org. Chem. 2019 (Article ID: 8589325); b) D. Suresh, K. Kanagaraj, K. Pitchumani, Tetrahedron Lett. 2014, 55, 3678–3682; c) B. Kaboudin, L. Malekzadeh, Tetrahedron Lett. 2011, 52, 6424–6426; d) B. Kaboudin, F. Saadati, Tetrahedron Lett. 2007, 48, 2829–2832; e) J. J. Lade, B. N. Patil, K. S. Vadagaonkar, A. C. Chaskar, Tetrahedron Lett. 2017, 58, 2103–2108; f) P. D. Parker, J. G. Pierce, Synthesis. 2016, 48, 1902–1909; g) F. Zhang, Y. Wang, S. Chiba, Org. Biomol. Chem. 2013, 11, 6003–6007.
- [7] For selected examples, see: a) V. Mercalli, A. Massarotti, M. Varese, M. Giustiniano, F. Meneghetti, E. Novellino,

G. C. Tron, J. Org. Chem. 2015, 80, 9652–9661; b) X. Wang, J. P. Fu, J. X. Xie, Q. H. Teng, H. T. Tang, Y. M. Pan, Org. Biomol. Chem. 2020, 18, 4936–4940; c) M. R. Kuram, W. G. Kim, K. Myung, S. Y. Hong, Eur. J. Org. Chem. 2016, 438–442.

- [8] For selected examples, see: a) Y. X. Tang, G. H. Imler, D. A. Parrish, J. M. Shreeve, Org. Lett. 2018, 20, 8039–8042; b) E. Li, M. Wang, Z. Wang, W. Q. Yu, J. B. Chang, Tetrahedron 2018, 74, 4613–4618.
- [9] Q. L. Bian, C. L. Wu, J. P. Yuan, Z. D. Shi, T. Ding, Y. W. Huang, H. Xu, Y. Q. Xu, J. Org. Chem. 2020, 85, 4058–4066.
- [10] For selected examples, see: a) Z. H. Zhang, X. N. Zhang, L. P. Mo, Y. X. Li, F. P. Ma, *Green Chem.* 2012, 14, 1502–1063; b) Y. Yan, Y. Zhang, C. Feng, Z. Zha, Z. Wang, Angew. Chem. Int. Ed. 2012, 124, 8201–8205; c) J. Zhang, C. Yu, S. Wang, C. Wan, Z. Wang, Chem. Commun. 2010, 46, 5244–5246; d) P. T. K. Arachchige, C. S. Yi, Org. Lett. 2019, 21, 3337–3341; e) C. U. Maheswari, G. S. Kumar, M. Venkateshwar, R. A. Kumar, M. L. Kantam, K. R. Reddy, Adv. Synth. Catal. 2010, 352, 341–346; f) T. Chatterjee, D. Kim, E. J. Cho, J. Org. Chem. 2018, 83, 7423–7430; g) M. Ramanathan, Y. H. Liu, S. M. Peng, S. T. Liu, Org. Lett. 2017, 19, 5840–5843; h) K. Hu, Q. Q. Zhen, J. L. Gong, T. X. Cheng, L. J. Qi, Y. L. Shao, J. X. Chen, Org. Lett. 2018, 20, 3083–3087.
- [11] For selected examples, see: a) J. P. Lin, F. H. Zhang, Y. Q. Long, Org. Lett. 2014, 16, 2822–2825; b) Z. G. Lv, B. N. Wang, Z. Y. Hu, Y. M. Zhou, W. Q. Yu, J. B. Chang, J. Org. Chem. 2016, 81, 9924–9930; c) L. Xu, H. Li, Z. Liao, K. Lou, H. Xie, H. Li, W. Wang, Org. Lett. 2015, 17, 3434–3437.
- [12] For selected examples, see: a) Y. Lv, Y. Li, T. Xiong, W. Pu, H. Zhang, K. Sun, Q. Liu, Q. Zhang, *Chem. Commun.* 2013, 49, 6439–6441; b) W. Zhang, F. Guo, F. Wang, N. Zhao, L. Liu, J. Li, Z. Wang, *Org. Biomol. Chem.* 2014, 12 5752–5756; c) X. Cheng, H. Wang, F. Xiao, G. J. Deng, *Green Chem.* 2016, 18, 5773–5776; d) Y. Ohta, Y. Tokimizu, S. Oishi, N. Fujii, H. Ohno, *Org. Lett.* 2010, 12, 3963–3965.
- [13] Y. J. Sun, H. M. Sun, Y. Wang, F. Xie, Org. Lett. 2020, 22, 6756–6759.
- [14] The principles of green and sustainable chemistry:
 a) R. A. Sheldon, *Chem. Soc. Rev.* 2012, *41*, 1437–1451;
 b) R. A. Sheldon, *Green Chem.* 2007, *9*, 1273–1283.
- [15] For selected examples, see: a) J. H. Kim, S. Greβies, F. Glorius, *Angew. Chem. Int. Ed.* 2016, *128*, 5667–5671;
 b) Q. Q. Lu, S. Greβies, S. Cembellín, F. J. R. Klauck, C. G. Daniliuc, F. Glorius, *Angew. Chem. Int. Ed.* 2017, *129*, 12954–12958.
- [16] For selected examples, see: a) B. J. Stokes, H. Dong, B. E. Leslie, A. L. Pumphrey, J. Am. Chem. Soc. 2007, 129, 7500–7501; b) J. Y. Kim, S. H. Park, J. Ryu, S. H. Cho, S. H. Kim, S. Chang, J. Am. Chem. Soc. 2012, 134, 9110–9113; c) E. N. Bess, R. J. DeLuca, D. J. Tindall, M. S. Oderinde, J. L. Roizen, J. D. Bois, M. S. Sigman, J. Am. Chem. Soc. 2014, 136, 5783–57889; d) S. H.

Adv. Synth. Catal. 2021, 363, 1–10 Wiley Online Library 8 These are not the final page numbers! © 2021 Wiley-VCH GmbH

Park, J. Kwak, K. Shin, J. Ryu, Y. Park, S. Chang, J. Am. Chem. Soc. 2014, 136, 2492–2502; e) K. Shin, H. Kim,
S. Chang, Acc. Chem. Res. 2015, 48, 1040–1052; f) A.
Das, A. G. Maher, J. Telse, D. C. Powers, J. Am. Chem. Soc. 2018, 140, 10412–10416; g) T. Gogula, J. Q. Zhang,
H. B. Zou, Org. Lett. 2019, 21, 5933–5937; h) S.
Samanta, S. Mondal, D. Ghosh, A. Hajra, Org. Lett.
2019, 21, 4905–4909; i) X. Wang, J. Zhang, D. Chen, B.
Wang, X. Yang, Y. Ma, M. Szostak, Org. Lett. 2019, 21, 7038–7043.

- [17] Y. Yang, W. B. Dong, Y. S. Guo, R. M. Rioux, Green Chem. 2013, 15, 3170–3175.
- [18] For selected examples, see: a) G. Liu, G. Yin, L. Wu, Angew. Chem. Int. Ed. 2008, 120 4811–4814; b) K. H. Ng, A. S. C. Chan, W. Y. Yu, J. Am. Chem. Soc. 2010, 132, 12862–12864; c) B. Xiao, T. J. Gong, J. Xu, Z. J. Liu, L. Liu, J. Am. Chem. Soc. 2011, 133, 1466–1474; d) E. J. Yoo, S. Ma, T. S. Mei, K. S. L. Chan, J. Q. Yu, J. Am. Chem. Soc. 2011, 133, 7652–7655; e) Z. Dong, G. Dong, J. Am. Chem. Soc. 2013, 135, 18350–18355; f) P. Wang, G. Li, P. Jain, M. E. Farmer, J. He, P. Shen, J. Q. Yu, J. Am. Chem. Soc. 2016, 138, 14092–14099; g) B. S. Zhang, Y. Li, Z. Zhang, Y. An, Y. H. Wen, X. Y. Gou, S. Q. Quan, X. G. Wang, Y. M. Liang, J. Am. Chem. Soc. 2019, 141, 9731–9738.

- [19] S. S. Stahl, Science 2005, 309, 1824-1826.
- [20] For some selected examples about copper-catalyzed reactions using molecular oxygen as oxidant in recent years, see: a) Y. Yang, W. Dong, Y. Guo, R. M. Rioux, *Green Chem.* 2013, *15*, 3170–3175; b) H. He, Z. Wang, W. Bao, *Adv. Synth. Catal.* 2010, *352*, 2905–2912; c) S. Guo, -B. Qian, Y. Xie, C. Xia, H. Huang, *Org. Lett.* 2011, *13*, 522–525; d) J. Jover, F. Maseras, *Chem. Commun.* 2013, *49*, 10486–10488; e) K. V. N. Esguerra, Y. Fall, L. Petitjean, J. P. Lumb, *J. Am. Chem. Soc.* 2014, *136*, 7662–7668; f) C. Y. Liu, Y. Li, J. Y. Ding, D. W. Dong, F. S. Han, *Chem. Eur. J.* 2014, *20*, 2373–2379; g) Q. Wu, Y. Luo, A. Lei, J. You, *J. Am. Chem. Soc.* 2016, *138*, 2885–2888.
- [21] B. Xu, E. M. Hartigan, G. Feula, Z. Huang, J. P. Lumb, B. A. Arndtsen, *Angew. Chem. Int. Ed.* 2016, 55, 15802– 15806.
- [22] For selected examples, see: a) W. Guo, J. Liao, D. Liu, J. Li, F. Ji, W. Wu, H. Jiang, *Angew. Chem. Int. Ed.* 2017, 56, 1289–1293; b) H. Chen, S. Sanjaya, Y. F. Wang, S. Chiba, *Org. Lett.* 2013, 15, 212–215; c) X. Y. Wang, X. Qiu, J. L. Wei, J. Z. Liu, S. Song, W. Wang, N. Jiao, *Org. Lett.* 2018, 20, 2632–2636; d) A. E. Wendlandt, S. S. Stahl, *J. Am. Chem. Soc.* 2014, 136, 11910–11913.

FULL PAPER

Copper-Catalyzed Three-Component Cascade Reaction of Benzaldehyde with Benzylamine and Hydroxylamine or Aniline: Synthesis of 1,2,4-Oxadiazoles and Quinazolines

Adv. Synth. Catal. 2021, 363, 1-10

C. Wang, X. Rui, D. Si, R. Dai, Y. Zhu, H. Wen, W. Li*, J. Liu*

