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Abstract: An efficient procedure for synthesizing heteroaryl-N-di-
fluoromethyltrimethylsilanes - new nucleophilic difluoromethylene
synthons - from easily available N-bromodifluoromethylated het-
erocycles, chlorotrimethylsilane and aluminium powder in triglyme
or N-methylpyrrolidinone on a preparative scale in 71-75% isolated
yield is described. Heteroaryl-N-difluoromethyltrimethylsilanes
and benzaldehyde react under fluoride ion catalysis to give 1-(1,1-
difluor-2-hydroxy-2-phenyl-ethyl)heteroaryls, whereas for anionic
heteroaryl-N-difluoromethylation of cyclohexanone a stoichiomet-
rical mixture of heteroaryl-N-difluoromethyltrimethylsilanes and
tetramethylammonium fluoride has to be used.

Key words: heteroaryl-N-difluoromethyltrimethylsilanes, carban-
ion trapping, anionic heteroaryl-N-difluoromethylation, tetrameth-
ylammonium fluoride

Recently, the introduction of the difluoromethylene moi-
ety into organic compounds has attracted much attention
due to the biological properties exhibited by gem-difluoro
compounds as compared to their non-fluorinated ana-
logs.1 Along with the traditional fluorination methods, the
transformations of nucleophilic difluoromethylene syn-
thons, i.e. 1,1-difluoroalkylsilanes, difluoroenoxysilanes,
carbalkoxydifluoromethylene and dialkoxy phosphinyldi-
fluoromethylene zinc, copper and silicon derivatives play
a rising role in the synthesis of geminal difluoromethylene
compounds.1-7 In contrast to the extensively investigated
chemistry of the aforementioned derivatives, few is
known about heteroaryl-N-difluoromethyl anions, het-
eroarylium-N-difluoromethylides or their trimethylsilyl
derivatives. Meanwhile, the introduction of the heteroar-
yl-N-difluoromethyl moiety, i.e. imidazole-N-CF2- or
benzimidazole-N-CF2-anions, into organic or organoele-
ment compounds can induce new interesting biological
properties. Recently, tetrakis(dimethylamino)ethylene
(TDAE) was applied for the generation of heteroaryl-C-
difluoromethyl anions, which were trapped by a fivefold
excess of the carbonyl compounds.5,6 Moreover, it was
shown, that 2-alkyl-1-bromodifluoromethylbenzimida-
zoles reacted with TDAE and aromatic aldehydes used in
a threefold excess to give 2-alkyl-1-(2-aryl-1,1-difluoro-
2-hydroxyethyl)-benzimidazoles, versatile precursors in
the synthesis of the potential nonpeptide angiotensin II re-
ceptor antagonists.8

2-Alkyl-1-bromodifluoromethylbenzimidazoles8 were
prepared by a catalytic method recently disclosed by us
for the synthesis of N-bromodifluoro-and N-trifluorome-

thylated, nitrogen containing heterocycles (CH3CN as a sol-
vent and activated Zn or Cu for generating a chain
reaction).9 The above mentioned heteroaryldifluorometh-
ylation reactions, where a two- to fivefold excess of the
electrophile was used, gave only low to moderate yields of
the corresponding carbinols, limiting these protocols only to
aldehydes and preventing therefore a broad application.5,6,8

Perfluoroalkyltrimethylsilanes are already well recognized
in organic synthesis as versatile anionic perfluoroalkylat-
ing reagents.4 Heteroaryl- and heteroarylium-N-difluoro-
methyltrimethylsilanes were synthesized and studied as
stable and easy to handle precursors for the corresponding
N-difluoromethyl anionic species for the following rea-
sons: To simplify the synthetic protocol for generating the
unstable heteroaryl-N-difluoromethyl anions, to generate
the hitherto unknown heteroarylium-N-difluoromethylides
as well as to find facile reagents giving high yield in het-
eroaryl-N-difluoromethylating aldehydes or ketones.

We describe herein our results in the synthesis of the nov-
el heteroaryl-N-difluoromethyltrimethylsilanes 3a-c, of
heteroarylium-N-difluoromethyltrimethylsilanes 4a-c and
their application for high yield anionic heteroaryl- and
heteroarylium-N-difluoromethylation of benzaldehyde
and cyclohexanone.10 The key precursors in the synthesis,
namely the N-bromodifluoromethylated imidazole and
benzimidazole derivatives 2a-c,11 were prepared by modi-
fying the previously published protocol.9 We have found
conditions for the reactions of dibromodifluoromethane
with imidazolyl-and benzimidazolyl- anions in CH3CN or
DMF not requiring any catalytical activation by Zn or Cu
powder. Thus, the reaction of imidazolyl potassium gen-
erated from 1a and t-BuOK with CF2Br2 in DMF at room
temperature without a catalyst led to compound 2a in 85%
isolated yield, whereas, imidazolyl sodium under similar
reaction conditions or even upon addition of Zn powder
gave 1-bromodifluoromethylimidazole 2a in only 12%
isolated yield.

Trimethylsilylation12 of 1-bromodifluoromethyl imida-
zole and benzimidazole derivatives 2a-c (a = imidazolyl,
b = 2-phenylimidazolyl, c = 2-methylbenzimidazolyl)
with Me3SiCl was found to proceed similarly as for the
synthesis of Me3SiCF3. Both pathways, the one using
hexaethyltriamido phoshite in CH2Cl2 at -70 °C (path-
way A)13 and the "Grobe method" (Al or Zn powder in
triglyme or N-methylpyrrolidinone at 20-40 °C (pathway
B)14 led to corresponding N-bromodifluoromethyltrime-
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thylsilanes 3a-c in 71-85% isolated yields (Scheme 1, Ta-
ble 1). 

The heteroaryl-N-difluoromethyltrimethylsilanes 3a-c
were quantitatively converted into heteroarylium-N-diflu-
oromethyltrimethylsilanes 4a-c by treatment with methyl
triflate in pentane at ambient temperature. 

The anionic heteroaryl-N-difluoromethylation15 of benz-
aldehyde with 3a-c proceeds smoothly upon adding cata-
lytic quantity (0.02 mol%) of fluoride (Me4NF, TASF or

spray dried KF) to an equimolar mixture of silanes, 3a-c
in THF or monoglyme at 0 °C, warming up to ambient
temperature and stirring for 10 h at 20 °C to yield the tri-
methylsilylated difluorinated carbinols 5a-c. Desilylation
of 5a-c with aqueous HCl (15%) at ambient temperature
affords difluorinated carbinols 6a-c. The heteroarylium-
N-difluoromethyltrimethylsilanes 4a,b were used to gen-
erate the previously unknown fluorinated species, namely
heteroarylium-N-difluoromethylides. The fluoride cataly-
sed reaction of the charged silanes 4a,b with benzalde-
hyde is much faster than for neutral silanes 3a-c. The
heteroarylium-N-difluoromethylation of benzaldehyde
with compounds 4a,b proceeds upon adding 0.02 mol% of
Me4NF to an equimolar mixture of 4a,b in monoglyme at
0 °C, warming up to ambient temperature and stirring for
0.5 h at 20 °C yielding the trimethylsilylated difluorinated
carbinols 8a,b (Table 2). 

There is a striking difference in reactivity between
CF3SiMe3 and silanes 3, 4a-c in reactions with ketones. If
only a catalytic amount (0.02 mol%) of Me4NF or KF was
added to the monoglyme solution of silane 3b and cyclo-
hexanone at either 0 °C or at ambient temperature, the
main reaction product formed was 1-difluoromethyl-2-
phenyl-imidazole (99%). The target fluorinated carbinol
was observed only as an impurity (1%) in the 19F NMR
spectrum. Whereas equimolar amounts of Me4NF favor
the formation of the target carbanion addition product 7b
in 64% (70% 19F NMR) yield. Applying a onefold excess

Scheme 1

Scheme 2 i: PhCHO, Me4N+F- cat., THF or monoglyme, 0 °C-r.t., 10 h; ii: HCl (15%), r.t.; iii: 1) cyclohexanone, Me4N+F- equiv  2) H2O

Table 1 Synthesis of heteroaryl-N-difluoromethyltrimethylsilanes
3a-c14

aIsolated yield (%) based on 1-bromodifluoromethylimidazole and
benzimidazole derivatives 2a-c.
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of cyclohexanone improved the yield of 7b to 77% (83%
19F NMR) (Scheme 2, Table 2).

These results are in contrast to the reactivity of trimethyl-
silyl derivatives CF2=CFSiMe3, C6F5SiMe3 and
(EtO)2(O)PCF2SiMe3, which give carbanion addition
products only with aldehydes but not with enolizable ke-
tones.16-18 Compounds containing the Alk2NCF2 fragment
are soft fluorinating agents for alcohols.19 In contrast, due
to the electron withdrawing effect of the heterocycle, the
heteroaryl-N-CF2-substituted carbinols 6a-c, 7b, 8a,b, 9a
proved to be stable to hydrolysis.

In conclusion, we have found a simple method for synthe-
sizing  new  nucleophilic  difluoromethylene synthons, i.e.
imidazole- and benzimidazole-1-yl-difluoromethyl trime-
thylsilanes, on a preparative scale. Depending on the reac-
tion conditions, anionic heteroaryl- and heteroarylium-N-
difluoromethylation of aldehydes or enolizable ketones
can be achieved in high yields. The key-point in the het-
eroaryl-N-difluoromethylation of ketones is the use of
stoichiometric amounts of anhydrous tetramethylammo-
nium fluoride. Further studies of the scope and applicabil-
ity of these new nucleophilic synthons for heteroaryl-N-
difluoromethylation of carboxylic acid halides, esters and

Table 2 Reactions of heteroaryl-N-difluoromethyltrimethylsilanes with benzaldehyde and cyclohexanone15

a Yield of isolated product (19F NMR yield). b With 2 equiv of benzaldehyde. c With 2 equiv of cyclohexanone.
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lactones are presently under investigation in our laborato-
ries.
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