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AbstractÐThe synthesis of enantiomerically pure C-6 substituted pyrazolo[3,4-d]pyrimidines has been performed by aromatic
nucleophilic substitution of 4-amino-6-chloro-1-phenylpyrazolo[3,4-d]pyrimidine under conditions of high pressure at ambient
temperature. Conventional synthetic conditions (re¯ux at atmospheric pressure) were unsuccessful. The S enantiomer 11 displayed
higher a�nity and selectivity for the adenosine A1 receptor than the R enantiomer 12. # 2001 Elsevier Science Ltd. All rights
reserved.

Aromatic nucleophilic substitution at the C-2 position
of the nucleoside analogue 2-chloroadenosine to give
N-alkylated-2-aminoadenosines proceeds under rela-
tively harsh conditions.1ÿ4 The general method is reac-
tion of 2-chloroadenosine with an excess of amine at
temperatures in excess of 100 �C for extended periods.
Yields are variable and generally disappointing, how-
ever, the desirable biological properties of these com-
pounds as adenosine A2A receptor agonists has
accounted for acceptance of these poor yields. The
adenosine A2A selective agonist CGS21680 (1) is a
modi®ed 2-substituted adenosine.5

Substitution at the corresponding position in phenyl-
pyrazolo[3,4-d]pyrimidines resulted in a-[4-(methyl-
amino)-1-phenylpyrazolo[3,4-d]pyrimidin-6-yl]thiol]hex-
anamide (2) which has an A1 Ki of 0.745 nM and is
selective over the adenosine A2A receptor.6 Phenyl-
pyrazolo[3,4-d]pyrimidines having potency and selectivity
for the adenosine A1 receptor have been synthesised
following the general method as shown in Scheme 1.
This synthetic scheme introduces the C-6 substituent via
alkylation of sulfur in good yield. However, attempts in
our laboratory to prepare C-6 substituted pyrazolo[3,4-
d]pyrimidines with an enantiomerically pure centre a to
the C-6 sulfur failed due to rapid racemisation, pre-
sumably due to carbanion stabilisation by both sulfur
and the carbonyl. The corresponding compounds with a
nitrogen at C-6 would be expected to be more stable.

4-Amino-6-chloro-1-phenylpyrazolo[3,4-d]pyrimidine 5
was synthesised via a two-step synthesis (Scheme 2). The
one-pot reaction for formation of 4 from 4-amino-5-
cyano-1-phenylpyrazole with benzoyl isocyanate
proceeds through a urea intermediate, debenzoylation of
this intermediate with base, followed by cyclisation.7 5-
Amino-4-cyano-1-phenylpyrazole 3 (0.500 g, 2.7mmol)
was sealed under an atmosphere of argon. A solution of
benzoyl isocyanate (0.600 g, 4.1mmol) in 10mL of dry
DMF was injected into the reaction vessel and the
reaction stirred for 12 h at 60 �C. Ammonium hydroxide
(28%, 20mL) was added to the reaction mixture, which
was then stirred for a further 12 h at 60 �C. The solvent
was removed under reduced pressure, the crude product
was recrystallised fromMe2SO and water, a�ording pure
48 in 73% yield. 4 (0.500 g, 2.20mmol), phosphorous
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oxychloride (10mL, 0.11mol) and phosphorous pen-
tachloride (2 g, 9.60mmol) were re¯uxed for 40 h under
an atmosphere of argon. Excess phosphorous oxychlor-
ide was removed by distillation under reduced pressure,
leaving behind a yellow residue that solidi®ed on cool-
ing. Ice water (20mL) was added to the solid residue
with vigorous stirring. The aqueous solution was then
extracted with diethyl ether (3 � 15mL). The ether
fractions were combined and dried over anhydrous
MgSO4, ®ltered, and the solvent removed, leaving a
yellow solid. The crude product was recrystallised from
Me2SO and water giving 5.9

Application of the conventional strategy to the nucleo-
philic aromatic substitution of the pyrimidine ring of
4-amino-6-chloro-1-phenylpyrazolo[3,4-d]pyrimidine (6)
with 2-aminopropanamide (7) proved unsuccessful
(Scheme 3). None of the substituted product was detec-
ted, even after 4 days of reaction. Synthesis at high
pressure can now be carried out safely, and the method
can be used for increasing the rates of many types of
reactions, o�ering an alternative to synthesis at high
temperatures.10,11 In particular, synthesis at high pres-
sure has been reported to increase the rate of reaction of
nucleophilic aromatic substitutions, with neutral

nucleophiles such as primary amines.5 Compound 5 was
reacted with 3 equiv of the appropriate 2-aminopropan-
amides, 6 (racemic), 7 (S enantiomer), or 8 (R enantio-
mer), in DMF with an equivalent of base under a
pressure of 15 kbar at 40 �C for 7 days (Scheme 3).12

The reaction mixtures were puri®ed by chromatography
to give the desired products 9 (racemic), 10 (S enantiomer)
and 11 (R enantiomer) each in 68% yield. Unreacted
starting material was the only other material recovered.

Scheme 2. Synthetic route to 4-amino-6-chloro-1-phenylpyrazolo[3,4-d]pyrimidine (5): (i) PhCONCO, DMF, 60 �C, 12 h; (ii) NH4OH, 60 �C, 24 h,
73% overall; (iii) POCl3, PCl5, re¯ux, 40 h, 62%.

Scheme 3. Conventional and high-pressure synthetic methodology for target compounds 10±12: (i) Conventional: DMF, DIPEA, re¯ux, 4 days;
(ii) high pressure: 15 kbar, 40 �C, DMF, DIPEA, 7 days.

Table 1. Receptor binding results for rat A1 and A2A receptorsa

Compd A1 receptor
Ki (nM)

A2A receptor
Ki (nM)

A2A Ki/A1 Ki

9 Racemic 84.0�3.4 930�135 11
10 S 49.1�3.2 648�98 13
11 R 486�32 2120�339 4

aA1 receptor binding data utilising competitive displacement of speci®c
[3H]-N6-PIA binding from A1 receptors in whole rat brain membranes.
Data are the average of at least two independent experiments per-
formed in duplicate and expressed as Ki�SEM. Kd of [

3H]-N6-PIA was
1 nM. A2A receptor binding data utilizing competitive displacement of
speci®c [3H]CGS21680 binding from A2A receptors in rat striatal
membranes. Data are the average of at least two independent experi-
ments performed in duplicate and expressed as Ki�SEM. Kd of
[3H]CGS21680 was 14.9 nM.

Scheme 1. General synthesis of 1-phenyl-4,6-disubstituted-pyrazolo[3,4-d]pyrimidines: (i) BrCHRCONH2, py; (ii) CH3I, NaOH (aq); (iii) NH3 (g),
EtOH, 110 �C, 72 h.
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These results demonstrate the utility of high pressure as
an alternative to the use of elevated temperatures.
Reaction under high pressure has made available C-6
amino substituted pyrazolo[3,4-d]pyrimidines and may
o�er a more facile route to 2-substituted purines than
current methods. The results presented in Table 1
clearly highlight the stereochemical importance of the
C-6 substituent for a�nity to adenosine receptors. The
S enantoimer 11 had 10-fold higher a�nity for the A1

receptor and 3.3-fold higher a�nity for the A2A receptor
compared to the R enantiomer 12. The S enantiomer
was also more A1 selective (13-fold) than the less potent
R enantiomer (4-fold A1 selectivity).
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