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A new acentric heterometallic–organic framework, [CdMg (btec)(DMF)(H2O)3] (1) (H4btec = 1,2,4,5-benzene
tetracarboxylic acid), has been solvothermally synthesized. It features a 4-connected net with typical pts topol-
ogy. To the best of our knowledge, compound 1 is the first example of Cd–Mg heterometallic organic framework
based on the H4btec ligand. Compound 1 has potential unsaturatedmetal sites after the removal of coordination
water molecules, so it shows good catalytic activity on the diethylzinc addition to benzaldehyde. The
photoluminescent property of 1 is also investigated.

© 2014 Elsevier B.V. All rights reserved.
Heterometallic-organic frameworks (HMOFs) are of great current
interest not only due to their many practical applications in lumines-
cence, magnetism, and heterogeneous catalysis [1–3], but also due to
their impressive structural diversity in architectures [4–7]. In particular,
acentric HMOFs offer many advantages on designing nonlinear optical
(NLO) materials [8,9]. Moreover, HMOF-based catalysis has become a
hot topic in recent years, but it is still in an immature phase [10]. A com-
mon structural feature of those reported HMOF-based catalysts is the
presence of coordinatively unsaturated metal sites (CUSs) as Lewis
acid sites [11,12]. CUSs can offer a promising tool in catalysis because
regular arrangements and well-defined environments of metal centers
in the pore channels induce regioselectivity and shape- or size-
selectivity towards guest molecules or reaction intermediates. In the
case of Lewis acid catalyzed reactions, the availability of CUSs is a key
requirement [13]. MOF materials with removable solvent molecules
occupying coordination sites of metals provide a versatile and conve-
nient route to produce these functional CUSs [14]. Thus, the generation
of CUSs by thermal activation is an effective approach for improving the
catalytic performance ofMOFs. SomeMOFswith CUSs, such as HKUST-1
and MIL-101 [15,16], have been successfully applied to catalyze some
organic reactions including the cyanosilylation of benzaldehyde [17]
and epoxide ring opening [18,19]. The asymmetric addition reaction of
diethylzinc with benzaldehyde is one of the convenient routes to
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produce industrial phenylpropanol, and is also a typical reaction to eval-
uate the catalytic property of new MOF [20].

In addition, templated synthesis is of great importance in the design
and syntheses of functional materials [21]. A remarkable variety of
templates which include solvents [22] and ammonium cations [23]
have been utilized in the syntheses of HMOFs. Alkylammonium cations
are perhaps the popular ones among these various templates. They
have taken critical templating roles in the syntheses of artificial zeo-
lites [24,25]. However, so far templated HMOF materials with tetra-
alkylammonium cations are rarely synthesized.

In this work, we report a new acentric heterometallic-organic
framework, [CdMg(btec)(DMF)(H2O)3] (1) (H4btec = 1,2,4,5-benzene
tetracarboxylic acid), which is solvothermally synthesized and structur-
ally characterized by single-crystal X-ray diffraction, IR spectrum and
elemental analysis. The dehydrated sample has a good catalytic activi-
ty on the reaction of diethylzinc addition to benzaldehyde, so the
unsaturated metal sites may play the key role in the reaction. The
photoluminescent property of 1 is also investigated.

Compound 1 was solvothermally synthesized with the Cd(CH3

COO)2/Mg(NO3)2/H4btec/(Et)4NBr/1,4-diazabicyclo[2.2.2]octane molar
ratio being 1:1:1:1:0.5 in mixed H2O and DMF solvent (v: v = 1: 2) at
100 °C for 2 days. Single-crystal X-ray diffraction reveals that 1 crystal-
lizes in space group of Pna2(1) [30]. As shown in Fig. 1a, the asymmetric
unit of 1 consists of one Cd(II) ion, one Mg(II) ion, one btec4− ligand,
one coordinated DMF and three coordinated H2O molecules. Cd1 is co-
ordinated by seven oxygen atoms from four carboxylate groups from
four ligands. Mg1 is octahedrally coordinated by six oxygen donors
from three waters, one DMF, and two carboxylate oxygen atoms from
two btec4− ligands. The Cd\O and Mg\O bond lengths are normal.
The Cd centers andMg centers are alternately linked by the carboxylate
groups into an infinite linear chain along the b-axis. The distances
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Fig. 1. (a) The coordination environment in compound 1with hydrogen atoms and lattice watermolecules omitted for clarity. (b) The 3-D structure of 1with two kinds of polyhedron (Cd
(blue) and Mg (pink) as a polyhedron center, respectively). (c) View of the 3-D structure of 1 (Mg ions are filtered out) along a axis. (d) The 4-connected pts topology of 1.

Fig. 2. (a) The asymmetric addition reactions of diethylzinc with benzaldehyde. (b) The
conversion of phenylpropanol with time for compound 1.
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between neighboring metal centers in the chain are 3.844(1) Å
and 5.431(3) Å, respectively. Each btec4− anion adopts the (k2)-(k2)-
(k1-k1)-(k2-μ2)-μ6-coordination mode (Chart S1). The resulting chains
are further linked by the btec4− ligands into a 3D framework (Fig. 1b).
To further understand the structure of 1, topological analysis by reduc-
ing themultidimensional structure to a simple node-and-linker netwas
performed. Apparently, the cadmium and magnesium centers can be
viewed as a node that is connected by sharing carboxylic groups, and
the betc4− can be defined as a four-connected node. The network can
be defined as a four-connected pts topology with the point symbol of
(42·84) (Fig. 1d) [26]. If the Mg ions are removed from the framework,
the remaining anionic structure of 1 is still a 3D network with identical
topology (Fig. 1c).

The phase puritywas identified by powder X-ray diffraction (PXRD).
The major peak positions of the PXRD pattern of the bulk solids of 1
matched well with those of the simulated pattern obtained from
single-crystal data, indicating the phase purity of the sample (Fig. S3).
TGA of 1 indicates that the weight loss of about 11.5% between 119
and 200 °C corresponds to the full liberation of coordinated water
molecules, which corresponds well to the molecular formula of com-
pound 1. After 300 °C, a sharp decomposition of the framework is
assigned to coordinated DMF molecules and btec4− ligands (Fig. S4),
which indicates that 1 has good thermal stability. Besides, compound
1 also exhibits high chemistry stability in n-hexane, DMF and water.
As shown in Fig. S6, the IR spectrum of 1 indicated that the strong and
sharp band at 1618 cm−1 can be attributed as characteristic absorption
bands of the carboxylate groups. The UV–vis diffuse absorption spectra
of 1 and thermal treated sample of 1 (under 200 °C), which clearly
indicate their absorption edges, are about 348 nm and 426 nm, respec-
tively as shown in Fig. S5. The calculation results show that their energy
gaps are 3.56 ev and 2.91 ev, respectively [27].

To evaluate the catalytic activity of compound 1, we used the
diethylzinc addition to benzaldehyde as a test reaction (Fig. 2a). Activated
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catalyst 1 (24 mg) dried under vacuum at 200 °C for 2 h was placed in
a 25 ml Schlenk flask and then vacuumized for 10 min. The n-hexane
(2 ml) solvent was added via syringe under nitrogen. After the
mixture stirred for 30 min, benzaldehyde (0.25 ml) and diethylzinc
(in n-hexane, 0.75 ml) were added. The new mixture was stirred
under nitrogen at 25 °C. In a certain time interval, a small amount of
solution was taken out and quenched with saturated NH4Cl solution
and ethyl acetate. The composition of the reaction mixture was deter-
mined by gas chromatograph (GC) analysis (Fig. S3). We can observe
racemic phenylpropanol (R- and S-) with the same yield in the prod-
ucts. After 24 h, the reaction led to a 48.6% conversion of benzaldehyde
and it is basically stopped (Fig. 2b). The PXRD pattern of 1 after catalysis
is consistent with that of the as-synthesized sample, which reveals the
good chemical stability of 1 (Fig. S3). Besides, several parallel experi-
ments have been carried out by using themetal salt, free organic ligand,
as well as the mixture of metal salts and organic ligand under the sim-
ilar reaction conditions, which showed nearly no catalytic effect
(Fig. S2). We may draw the conclusion that the unsaturated metal
sites in compound 1 may play the key role in the catalytic reaction.
The cycle catalytic experiment has also been carried out, but the conver-
sion of benzaldehyde is very low (Fig. S2). The weak recycling perfor-
mance of the catalytic activity should be attributed to the idea that
active metal sites might be coordinated by water molecules coming
from air and the reactants.

Considering the excellent photoluminescent properties of some
Cd(II)-carboxylate MOFs, solid-state luminescent properties of 1 and
H4btec have been investigated at room temperature. As shown in
Fig. 3, the H4btec displays a broad emission with peak at 512 nm
which can be assigned to the π–π* transition. Compared with free
ligand, the emission of 1 has a stronger blue-shifted emission with a
maximum emission at around 440 nm, which should be assigned to
the ligand-to-metal charge-transfer (LMCT) band [28,29]. Lumines-
cence properties of MOFs can be dramatically affected by the coordina-
tion environment of metal centers, arrangement of luminophores,
species of guest molecules, and so forth. Thus, the luminescent behavior
of thermal treated sample (200 °C for 2 h) was also studied. The emis-
sion spectrum of the thermal treated sample exhibits a similar pattern
emission but with great enhancement relative to compound 1. This
phenomenon suggests that the solvent molecules are effective non-
radiative relaxers to quench luminescence.

In this communication, an experiment is carried out under the
similar synthesis conditions without (Et)4NBr, but we fail to obtain
compound 1. Thus we speculate that (Et)4NBr may play the role in the
reaction as structure directing agent (SDA). In summary, a new acentric
Fig. 3. The emission spectra of 1 and free ligand in the solid state at room temperature
(blue: free ligand; black: sample; red: thermal treated sample of 1 (200 °C for 2 h).
heterometallic-organic framework with 4-connected pts topology
has been successfully synthesized. It showed catalytic activity on the
diethylzinc addition to benzaldehyde. The strong fluorescent emission
of 1 may make it a potentially useful photoactive material.
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on F2 by full-matrix, least-squares methods using the SHELXL-97 program pack-
age [31].

http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0110
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0110
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0110
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0165
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0165
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0165
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0120
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0120
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0120
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0125
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0125
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0150
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0150
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0130
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0130
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0130
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0135
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0135
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0155
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0155
http://refhub.elsevier.com/S1387-7003(14)00031-8/rf0155

	An effective approach for constructing acentric heterometallic-organic
framework with catalytic activity

	Acknowledgments
	Appendix A. Supplementary data
	References


