

Journal of Asian Natural Products Research

ISSN: 1028-6020 (Print) 1477-2213 (Online) Journal homepage: http://www.tandfonline.com/loi/ganp20

A new sesquiterpene lactone glycoside and a new quinic acid methyl ester from Patrinia villosa

Yong-Fen Yang, Hong-Mei Ma, Gang Chen, Hai-Feng Wang, Zheng Xiang, Qing-Mei Feng, Hui-Ming Hua & Yue-Hu Pei

To cite this article: Yong-Fen Yang, Hong-Mei Ma, Gang Chen, Hai-Feng Wang, Zheng Xiang, Qing-Mei Feng, Hui-Ming Hua & Yue-Hu Pei (2016): A new sesquiterpene lactone glycoside and a new quinic acid methyl ester from Patrinia villosa, Journal of Asian Natural Products Research, DOI: <u>10.1080/10286020.2016.1173678</u>

To link to this article: <u>http://dx.doi.org/10.1080/10286020.2016.1173678</u>

Published online: 07 May 2016.

|--|

Submit your article to this journal \square

Article views: 5

View related articles 🖸

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ganp20

A new sesquiterpene lactone glycoside and a new quinic acid methyl ester from *Patrinia villosa*

Yong-Fen Yang^{a,d}, Hong-Mei Ma^c, Gang Chen^{a,d}, Hai-Feng Wang^{a,d}, Zheng Xiang^b, Qing-Mei Feng^{a,d}, Hui-Ming Hua^a and Yue-Hu Pei^a

^aSchool of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; ^bCenter of Research on Life Science and Environmental Science, Harbin University of Commerce, Harbin 150076, China; ^cCollege of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, China; ^dMinistry of Education, Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Shenyang 110016, China

ABSTRACT

A new sesquiterpene lactone glycoside (1) and a new quinic acid methyl ester (2) were isolated from *Patrinia villosa*, together with another two known compounds chlorogenic acid *n*-butyl ester (3), 3, 4-di-O-caffeoylquinic acid methyl ester (4). Their structures were established using 1D/2D-NMR spectroscopy, mass spectrometry, and comparing with spectroscopic data reported in the literature.

ARTICLE HISTORY

Received 3 January 2016 Accepted 30 March 2016

KEYWORDS

Patrinia villosa; sesquiterpene lactone glycoside; quinic acid methyl ester; NMR spectroscopy

1. Introduction

Patrinia, a genus of about 20 species [1], was recorded as a traditional medicinal in *ShenNongBenCaoJing* [2]. It has been used for the treatment of inflammation, wound healing, ascetics, and abdominal pain after childbirth for hundreds of years [3]. So far, researches on *Patrinia* were mainly focused on *Patrinia scabiosaefolia* Fisch in China, whereas both pharmaceutical and phytochemical studies on *Patrinia villosa* were barely reported. In order to study the chemical constituents of *P. villosa*, we examined the *n*-butanol extract from this plant and isolated a new sesquiterpene lactone glycoside (1), a new quinic acid methyl ester (2), along with two known compounds chlorogenic acid *n*-butyl ester (3), 3, 4-di-*O*-caffeoyl quinic acid methyl ester (4). Herein, we describe their isolation and structure characterization.

2. Results and discussion

Compound 1 was obtained as a yellow gum, with $[\alpha]_D^{20} + 29.7 (c \, 0.3, \text{MeOH})$, and its molecular formula was determined to be $C_{29}H_{38}O_{11}$ by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) in the positive ion mode, which showed a pseudomolecular ion peak at m/z 585.2311. The IR spectrum showed absorption bands for OH groups (3435 cm⁻¹), methyl groups (2960, 2874 cm⁻¹), carbonyl group (1736 cm⁻¹), and a benzyl

© 2016 Informa UK Limited, trading as Taylor & Francis Group

	1		2		
No.	δ _H (<i>J</i> Hz)	δ_{c}	No.	$\delta_{_{ m H}}$ (J Hz)	δ_{c}
1	3.69 (dd, <i>J</i> = 6.0, 9.6 Hz)	48.8	1		72.6
2	1.95 (dd, <i>J</i> = 9.6, 18.6 Hz) 2.49~2.51 (m) ^a	28.9	2	1.99~2.01 (m)	34.7
3	5.67 (brs)	126.6	3	5.23~5.27 (m)	68.0
4		131.4	4	4.96 (dd, J = 3.6, 8.4 Hz)	70.2
5	2.27 (d, <i>J</i> = 12.6 Hz)	48.3	5	5.16~5.18 (m)	67.6
6	3.68 (t, <i>J</i> = 12.6 Hz)	79.6	6	1.97 (dd, <i>J</i> = 3.6, 14.4 Hz) 2.17 (dd, <i>J</i> = 5.6, 14.4 Hz)	36.4
7	1.49 (dddd, J = 7.2, 12.6, 3.0, 12.6 Hz)	52.2	7		173.6
8	1.35 (dddd, <i>J</i> = 3.0, 12.6, 3.6, 12.0 Hz) 1.69~1.71 (m)	22.0	8-OCH ₃	3.64 (s)	52.0
9	1.20 (dddd, <i>J</i> = 6.6, 12.6, 3.6, 12.6 Hz) 1.89~1.91 (m)	34.2	1′ª		124.0
10		40.9	2′ ^b	6.94 (d, <i>J</i> = 8.4 Hz)	130.3
11	2.27 (dq, J = 6.6, 7.2 Hz)	39.4	3′°	6.67 (d, <i>J</i> = 8.4 Hz)	115.0
12		178.7	4′ ^d		156.2
13	1.05 (d, <i>J</i> = 6.6 Hz)	12.3	5'e	6.94 (d, <i>J</i> = 8.4 Hz)	130.3
14	.77 (s)	11.7	6′ ^f	6.67 (d, <i>J</i> = 8.4 Hz)	115.0
15	4.42 (s)	66.6	7′ ^g	3.30 (brs) ^a	39.3
1′	4.17 (d, <i>J</i> = 7.6 Hz)	99.9	8′ ^h		170.4
2′	2.90 (dd, <i>J</i> = 7.6, 8.4 Hz)	73.5	1″ª		124.0
3'	3.00 (dd, <i>J</i> = 9.0, 8.4 Hz)	70.3	2′′ ^b	7.00 (d, <i>J</i> = 8.4 Hz)	130.2
4′	3.13 (dd, <i>J</i> = 8.4, 9.0 Hz)	76.9	3''c	6.68 (d, <i>J</i> = 8.4 Hz)	115.1
5'	3.69 (ddd, <i>J</i> = 1.8, 6.0, 9.0 Hz)	78.3	4′′ ^d		156.3
6′	3.41 (dd, <i>J</i> = 6.0, 11.4 Hz) 3.64 (dd, <i>J</i> = 1.8, 11.4 Hz)	61.3	5″e	7.00 (d, <i>J</i> = 8.4 Hz)	130.2
1″		124.6	6′′ ^f	6.68 (d, <i>J</i> = 8.4 Hz)	115.1
2″	7.00 (d, <i>J</i> = 8.4 Hz)	130.4	7″ ^g	3.36 (brs) ^a	39.4
3″	6.67 (d, <i>J</i> = 8.4 Hz)	115.0	8′′ ^h		170.5
4″		156.1	1'''ª		124.3
5″	6.67 (d, <i>J</i> = 8.4 Hz)	115.0	2′′′ ^ь	7.04 (d, <i>J</i> = 8.4 Hz)	130.3
6″	7.00 (d, $J = 8.4$ Hz)	130.4	3‴′′	6.70 (d, <i>J</i> = 8.4 Hz)	115.2
7″	3.49 (brs)	40.4	4‴′d		156.3
8″		170.8	5′′′′e	7.04 (d, $J = 8.4$ Hz)	115.2
4''-OH	9.30 (brs)		6‴″	6.70 (d, <i>J</i> = 8.4 Hz)	130.3
			7‴ ^g	3.40 (brs) ^a	39.5
			8′′′′ ⁿ		170.9
			4'-OHa	9.30 (brs)	
			4′′-OH⁰	9.33 (brs)	
			4'''-OH ^c	9.33 (brs)	

^aOverlapped with other signals.

^{a-h}Signals with the same column are interchangeable.

group (1636, 2922, 2852 cm⁻¹). The extensive analysis of ¹H-NMR, ¹³C-NMR, and HSQC spectra revealed the assignment of 29 carbons, including 2 methyl groups (δ 12.3 and 11.7), 4 methylene groups (δ 28.9, 22.0, 34.2, and 40.4), 2 oxygen-substituted methylene groups (δ 66.6 and 61.3), 15 methine groups (δ 48.8, 126.6, 48.3, 79.6, 52.2, 39.4, 99.9, 73.5, 70.3, 76.9, 78.3, 130.4, 115.0, 115.0, and 130.4), 1 aliphatic quaternary carbon (δ 40.9), 2 aromatic quaternary carbons (δ 124.6 and 156.1), 1 olefinic quaternary carbon (δ 131.4), and 2 carbonyl quaternary carbons (δ 178.7 and 170.8) (Table 1). Typical signals for β -D-glucopyranoside were readily recognized from the NMR spectra, and the existence of a D-glucosyl moiety was further confirmed after acid hydrolysis of **1**. In addition, the ¹H NMR spectrum (Table 1) revealed the presence of *p*-hydroxyphenylacetyl moiety [δ 3.49 (2H, brs); δ 7.00 (2H, d, *J* = 8.4 Hz); δ 6.67 (2H, d, *J* = 8.4 Hz) [**4**]. The remaining signals was similar to those of

Figure 1. Key HMBC and NOESY correlations of compound 1.

the known eudesmanolide [4,5]. Besides, long-range correlations in HMBC spectrum (Figure 1 (a)) from H-15 (δ 4.42) to C-8" (δ 170.8), C-3 (δ 126.6), and C-4 (δ 131.4) confirmed the *p*-hydroxyphenyl acetyl moiety was located at C-15 of the aglycone. Meanwhile the attachment of β -D-glucose to C-1 of eudesmanolide was deduced from the long-range correlation from H-1' to C-1 in the HMBC spectrum. The large coupling constants for H-1 with H-2 ($J_{1,2} = 9.6$ Hz), H-5 with H-6 ($J_{5,6} = 12.6$ Hz), H-6 with H-7 ($J_{6,7} = 12.6$ Hz) allowed the assignment of the relative stereochemistry for H-1 as α -oriented and that of the lactone group at C-6 and C-7 as *trans* (6β , 7α). In the NOESY experiment (Figure 1 (b)), the crosspeaks between H-5 α and H-7 α , H-6 β and H-14 β indicated that the A/B ring was *trans*-fused. In the ¹³C NMR spectrum, the carbon signal of a methyl group at δ 12.3 is typical for those of eudesmanolides with an α methyl group at C-11 [4], which was further confirmed by NOESY experiment (Figure 1 (b)), giving cross-peaks between H-7 α and H-13, H-9 α . So, the structure of 1 was characterized as 1β -O- β -D-glucopyranosyl-15-O-(*p*-hydroxylphe-nylacetyl)-5 α , 6β H-eudesma-3-en-12, 6α -olide.

Compound **2** was obtained as a light brown gum, with $[\alpha]_D^{20} - 39.6$ (*c* 0.3, MeOH). The molecular formula $C_{32}H_{32}O_{12}$ was indicated by HR-ESI-MS through $[M+Na]^+$ ion peak at m/z 631.1802. The IR spectrum of **2** displayed strong absorption bands at 3434, 2919, 1734, 1616, 1516, 1449 cm⁻¹, indicating the presence of hydroxyl, methylene, ester, and phenyl groups, respectively. The ¹H-NMR data (Table 1) revealed one methoxyl signal at δ 3.64 (3H, brs, H-8), two methylene signals at δ 1.97 (1H, dd, J = 3.6, 14.4 Hz)/2.17 (1H, dd, J = 5.6, 14.4 Hz) and δ 1.99~2.01 (2H, m); three oxygen-substituted methine signals at δ 5.23~5.27

(b)

Figure 2. Key HMBC and NOESY correlations of compound 2.

(1H, m), δ 4.96 (1H, dd, J = 3.6, 8.4 Hz), and δ 5.16~5.18 (1H, m), three pairs of aromatic protons at δ 6.67, 6.68, 6.70, 6.94, 7.00, and 7.04 (2H, d, J = 8.4 Hz), three methylene protons at δ 3.30, 3.36, and 3.40 (2H, s), combined with the long-range correlations from H-7' to C-1' (H-7" to C-1" and H-7"' to C-1"') in the HMBC spectrum (Figure 2 (a)). All those signals confirmed the presence of three same *p*-hydroxylphenylacetyl moiety. Meanwhile, the correlation from H-8 (δ 3.64) to C-7 (δ 173.6) was also observed in the HMBC spectrum, indicating the attachment of 8-OCH₃ to C-7. All remaining NMR data of 2 were almost identical to those of the known compound 3, 4, 5-tri-O-galloyquinic acid ethyl ester [6,7]. Thus, **2** was characterized as 3, 4, 5-tri-*O*-*p*-hydroxylphenylacetylquinic acid methyl ester. The relative stereochemistry was established from chemical shifts, J-coupling (Table 1) and NOESY data (Figure. 2 (b)). Among them, NOESY correlations between H-4 and H-5, H-5 and H-6ax, suggested that the 3-(4-*p*-hydroxylphenylacetyl) groups were equatorially orientated on the cyclohexane ring. The downfield shifts of the axial protons H-2 eq and H-6 eq, relative to H-2 ax and H-6 ax, were considered to be the results of deshielding effect by the carboxyl at C-1 [8]. However, the equatorial nature of the carboxyl was only tentatively assigned as the 3-(4-*p*-hydroxylphenylacetyl) moiety may have anisotropic effects as well. The large coupling constant $J_{3,4}$ = 8.4 Hz confirmed their diaxial orientation, whereas

quinic acid methyl ester moiety

 $\mathbf{R} = p$ -hydroxylphenylacetyl moiety

3

Figure 3. The structures of compounds 1–4.

the smaller coupling constant ($J_{4,5} = 3.6 \text{ Hz}$) was the characteristic of an axial – equatorial splitting [9]. Consequently, the structure of **2** was established as shown in Figure 3.

3. Experimental

3.1. General experimental procedures

Optical rotations were determined using a WZZ-2A (Shanghai Base Solid Instrument Co., Ltd., Shanghai, China). UV spectra were recorded on a Shimadzu-2201 (Kyoto, Japan). The IR spectrum was obtained from a Bruker IFS-55 spectrophotometer (Karlsruhe, Germany) using KBr pellet. HR-ESI-MS data were measured on a Micro-mass Autospec-UntimaE TOF mass spectrophotometer (Waters, Massachusetts, USA). 1D- and 2D-NMR spectra were run on a Bruker AVANCE-400/-600 spectrometer (Karlsruhe, Germany). Column chromatography was performed on Silica gel G (200–300 mesh; Qingdao Haiyang Chemical Factory, Qingdao, China), flash C_{18} (Bonna-Agela Technologies incorporated company, Tianjin, China) and Sephadex LH-20 (Pharmacia, Piscataway, NJ, USA) columns. Thin-layer chromatography (TLC) was carried out using Silica gel GF254 (Qingdao Haiyang Chemical Factory, Qingdao, China) plates. Analytical HPLC was carried out on a Shimadzu LC-10AT (Kyoto, Japan) liquid chromatography and preparative HPLC separation was performed on a YMC-Pack ODS-A column (10 × 250 mm, 5 m; YMC-Pack, Kyoto, Japan), equipped with a Shimadzu LC-8A pump (Kyoto, Japan) and a Shimadzu SPD-10A UV–vis detector (Kyoto, Japan).

3.2. Plant material

Patrinia villosa Juss was purchased from Anguo City Yu Yan Fang Chinese Herbal Medicine Co., Ltd. and was identified as *Patrinia villosa*. A voucher specimen was identified by Prof. Jincai Lu of Shenyang Pharmaceutical University and has been deposited in the School of Traditional Chinese Materia Medica of Shenyang Pharmaceutical University (NO.20140713).

3.3. Extraction and isolation

The dried whole plant of *Patrinia villosa* (15 kg) was extracted three times with hot 95% EtOH (each 2 h) and the combined solution evaporated to dryness by a vacuum rotary evaporator to afford a syrup (1400 g). The crude extract was successively partitioned with petroleum ether, dichloromethane, ethyl acetate, and *n*-butanol to yield four layers of extracts. The *n*-butanol extract (349.2 g) was divided into five parts Fr. 1–Fr. 5 by flash C₁₈ column eluted with a stepwise gradient mixture of MeOH/H₂O (20:80, 40:60, 60:40, 80:20, 100:0). Fr.4 (39.5 g) was separated by silica gel column under gradient CH₂Cl₂/MeOH (100:0–0:100), to give seven sub-fractions Frs 4.1–4.7. Fr 4.4 (8.0 g) was purified via Sephadex LH-20 eluting with MeOH, to afford 11 fractions (Fr.4.4.1–Fr.E4.4.11). Fr.4.4.6 (271.9 mg) was purified by semi-preparative HPLC eluting with 45% MeOH-H₂O to yield compound **3** (23.3 mg, t_R 76.4 min) and compound **2** (26.0 mg, t_R 98.1 min), compound **4** (30.9 mg, t_R 46.0 min) was obtained from Fr. 4.4.6 by semi-preparative HPLC eluting with 41% MeOH–H₂O as the eluent. Fr. 4.4.8 was purified by semi-preparative HPLC eluting with 37% MeOH–H₂O to yield compound **1** (16.3 mg, t_R 62.5 min).

3.3.1. 1β-O-β-D-Glucopyranosyl-15-O-(p-hydroxylphenylacetyl)-5α, 6βH-eudesma-3-en-12, 6α-olide (1)

Yellow gum; $[\alpha]_D^{20} + 29.7$ (*c* 0.3, MeOH); UV (MeOH) λ_{max} 202 (0.55), 224 (0.34) and 278 (0.09) nm; IR (KBr) v_{max} 3435, 2960, 2922, 2852, 2874, 1736, 1636, 1517, 1457, 1384, 1263, 1164, 1077, 990, 839, 722 and 619 cm⁻¹; ¹H and ¹³C NMR spectral data are shown in Table 1; HR-ESI-MS: *m/z* 585.2311 [M+Na]⁺ (calcd for C₂₉H₃₈O₁₁Na, 585.2312).

3.3.2. 3,4,5-Tri-O-p-hydroxylphenylacetylquinic acid methyl ester (2)

Light brown gum; $[\alpha]_D^{20} - 39.6 (c \, 0.3, \text{MeOH})$; UV (MeOH) $\lambda_{\text{max}} 203 (0.54), 224 (0.45)$ and 278 (0.13) nm; IR (KBr) $v_{\text{max}} 3434, 2919, 2851, 1734, 1616, 1516, 1449, 1384, 1219, 1129, 1023, 879, 825, 803, 619, and 522 cm⁻¹; ¹H and ¹³C NMR spectral data are shown in Table 1; HR-ESI-MS: <math>m/z$ 631.1802 [M + Na]⁺ (calcd for C₃₂H₃₂O₁₂Na, 631.1791).

3.4. Acid hydrolysis of compound 1

Compound 1 (4 mg) dissolved in MeOH (3 ml) and aqueous H_2SO_4 (2 mol/L, 3 ml) was heated at 90 °C under refluxing for 3 h. After cooling, the reaction mixture was neutralized with aqueous saturated Ba(OH)₂ and the precipitates were filtered off, then partitioned between H_2O and CHCl₃. The water phase was concentrated, and subjected to TLC using CHCl₃/MeOH/H₂O (7:3:0.5) as the mobile phase, and analyzed with authentic sample D-glucose. The absolute configuration of glucose was confirmed as D-glucose by measuring its optical rotation ($[\alpha]_D^{20} + 32.2$ (*c* 0.06, MeOH).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The paper was financially supported by National Natural Science Foundation of China [grant number 81303211]; China Postdoctoral Science Foundation [grant number 2013M540301]; A project supported by Scientific Research Fund of Liaoning Provincial Education Department [grant number L2011178]; Program for Innovative Research Team of the Ministry of Education; and Program for Liaoning Innovative Research Team in University.

References

- [1] J.Y. Peng, G.R. Fan, Y.F. Chai, and Y.T. Wu, J. Chromatogr. A. 10, 45 (2005).
- [2] C.Y. Piao, X.H. Wu, B.S. An, and X.H. Meng, Chin. J. Ethnomed. Ethnopharm. 02, 21 (2005).
- [3] J. Jeon, J. Lee, C. Kim, Y. An, and C. Choi, *Microvasc. Res.* 80, 803 (2010).
- [4] Y.F. Han, Q. Zheng, K. Gao, and Z.J. Jia, Planta Med. 71, 543 (2005).
- [5] M. Laid, M.F. Hegazy, A.A. Ahmed, K. Ali, D. Belkacemi, and S. Ohta, *Phytochem. Lett.* 1, 85 (2008).
- [6] J.P. Moore, K.L. Westall, N. Ravenscroft, J.M. Farrant, G.G. Lindsey, and W.F. Brandt, *Biochem. J.* 385, 301 (2005).
- [7] N. Bouchet, J. Levesque, B. Bodo, and J. Pousset, Pharm. Biol. 36, 63 (1998).
- [8] M.S. Buchanan, A.R. Carroll, A. Edser, J. Parisot, R. Addepalli, and R.J. Quinn, *Phytochemistry*. 66, 481 (2005).
- [9] G. Nonaka, Pure. Appl. Chem. 61, 357 (1989).