Journal of Medicinal Chemistry

Article

Subscriber access provided by GAZI UNIV

Design, Synthesis of Novel, Potent, Selective, Orally Bio-available Adenosine A Receptor Antagonists and Their Biological Evaluation

Sujay Basu, Dinesh A Barawkar, Sachin Thorat, Yogesh D Shejul, Meena Patel, Minakshi Naykodi, Vaibhav Jain, Yogesh Salve, Vandna Prasad, Sumit Chaudhary, Indraneel Ghosh, Ganesh Bhat, Azfar Quraishi, Harish Patil, Shariq Ansari, Suraj Menon, Vishal Unadkat, Rhishikesh Thakare, Madhav S Seervi, Ashwinkumar V Meru, Siddhartha De, Ravi K Bhamidipati, Sreekanth Rouduri, Venkata P Palle, Anita Chug, and Kasim A Mookhtiar

J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.6b01584 • Publication Date (Web): 05 Jan 2017

Downloaded from http://pubs.acs.org on January 5, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Design, Synthesis of Novel, Potent, Selective, Orally Bio-available Adenosine A_{2A} Receptor Antagonists and Their Biological Evaluation

Sujay Basu*, Dinesh A. Barawkar, Sachin Thorat, Yogesh D. Shejul, Meena Patel, Minakshi Naykodi, Vaibhav Jain, Yogesh Salve, Vandna Prasad, Sumit Chaudhary, Indraneel Ghosh, Ganesh Bhat, Azfar Quraishi, Harish Patil, Shariq Ansari, Suraj Menon, Vishal Unadkat, Rhishikesh Thakare, Madhav S. Seervi, Ashwinkumar V. Meru, Siddhartha De, Ravi K. Bhamidipati, Sreekanth R. Rouduri, Venkata P. Palle, Anita Chug, Kasim A. Mookhtiar

Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India.

ABSTRACT:

Our initial structure-activity relationship studies on 7-methoxy-4-morpholino-benzothiazole derivatives featured by aryloxy-2-methylpropanamide moieties at the 2-position lead to identification of compound **25** as a potent and selective A_{2A} adenosine receptor (A_{2A} AdoR) antagonist with reasonable ADME and pharmacokinetic properties. However, poor intrinsic solubility and low to moderate oral bioavailability made this series unsuitable for further development. Further optimization using structure-based drug design approach resulted in discovery of potent and selective adenosine A_{2A} receptor antagonists bearing substituted 1-methylcyclohexyl-carboxamide groups at position 2 of the benzothiazole scaffold and endowed with better solubility and oral bioavailability. Compounds **41** and **49** demonstrated a number of positive attributes with respect to *in vitro* ADME properties. Both compounds displayed good pharmacokinetic properties with 63% and 61% oral bioavailability respectively, in rat. Further, compound **49** displayed oral efficacy in 6-OHDA lesioned rat model of Parkinson diseases.

INTRODUCTION

Adenosine, an endogenous purine nucleoside, and mediates its effect through four specific cell membrane receptors called adenosine receptors (AdoRs). These AdoRs, named A₁, A_{2A}, A_{2B}, and A₃ in human, belong to the G-protein-coupled receptors (GPCR) family.¹ AdoRs exhibit high sequence homology but differ in their affinity for adenosine and downstream signaling mechanism.²⁻³ AdoRs have been implicated in several key physiological processes, and thus offer broad therapeutic potentials including cell growth, asthma, immune system, inflammatory diseases and central nervous system (CNS) disorders, etc.⁴⁻⁶

Adenosine A_{2A} receptor (A_{2A} AdoR) is a highly distributed receptor in the CNS. It is expressed at high levels in the nigrostriatum (basal ganglia), where it co-localizes with dopamine D2 receptors on striatopallidal output neurons.⁷ Several pharmacological studies suggest that A_{2A}AdoR antagonists have potential for use in combination with existing therapies across multiple therapeutic area.⁸ Parkinson's disease (PD) is a progressive neurodegenerative movement disorder affecting approximately 1% population over the age of 65. Unfortunately, current dopamine replacement therapies for PD suffer from poor long term control and undesirable side effects, mainly dyskinesia (involuntary movements). Antagonism of A2AAdoR offers a non-dopaminergic approach to treat PD.⁹ Stimulation of A_{2A}AdoR decreases the binding affinity of dopamine for dopamine D2 receptors¹⁰ and elicits effects, opposite to dopamine D2 receptor activation at the level of second messenger system and early-gene expression.¹¹ Another potential disease modifying benefit of A2AAdoR antagonism is the prevention of development of levodopa (L-DOPA) induced dyskinesias in PD as demonstrated in rodent and monkey studies.¹² A_{2A}AdoR are expressed on several immune cell types- T lymphocytes, dendritic cells, natural killer cells. A2AdoR activation on T cells and NK cells causes immunosuppression by reducing their proliferation, cytokine production and tumor killing activity.¹³⁻¹⁴ In recent years, A_{2A}AdoR has shown exciting progress in the development of immunotherapy for the treatment of cancer¹⁵ and multiple deals emphasize commercial potential of A2AAdoR antagonists. Numerous research groups have devoted significant effort towards the discovery of selective A2AAdoR antagonists for the treatment of Parkinson's disease. Some representative examples are shown in Figure 1.¹⁶ A_{2A}AdoR antagonists are classified as xanthine and non-xanthine derivatives.¹⁷⁻¹⁹ Numerous A_{2A}AdoR antagonists have reached phase I clinical trials and beyond. Among xanthine derivatives, 1 (Istradefylline, KW-6002, Kyowa Hakko Kirin

Co Ltd.), was launched in Japan for PD.¹⁶ Several classes of non-xanthine $A_{2A}AdoR$ antagonists have been reported in literature and they are either monocyclic,²⁰⁻²¹ bicyclic²²⁻²³ or tricyclic corebased antagonists.²⁴⁻²⁶ However, the discovery of $A_{2A}AdoR$ antagonist with acceptable selectivity, physicochemical, and pharmacological properties has continued to remain challenging and consequently, majority of research has progressed towards identifying novel non-xanthine scaffolds. Hoffmann-La Roche has identified benzothiazole scaffold based **2** (SYN-115) ²⁷⁻²⁸ which is a potent, selective $A_{2A}AdoR$ antagonist with desired ADME properties namely, and is currently in phase III clinical trials.

We initiated our research with the goal to discover a novel, potent and selective $A_{2A}AdoR$ antagonist with desirable physicochemical, pharmacokinetic and pharmacological properties to provide therapeutic intervention for PD and cancer immunotherapy. Amongst $A_{2A}AdoR$ antagonists with several structural types, benzothiazole and thiazolo[5,4-c]pyridine scaffold were chosen as starting point and new analogs were discovered subsequently (Figure 2). Herein, we describe the discovery and optimization of novel potent $A_{2A}AdoR$ antagonist based on the chemical structure of **2**. After analyzing the available A_{2A} co-crystal structures with antagonists and docking pose of **2**, we decided to modify the most flexible part on right hand side of **2** with well tolerated and novel aryloxy-2-methylpropanamide or cyclohexane-carboxamide moieties (Figure 2). In the present study, a structure–activity relationship (SAR) was established via synthesis of analogues of **2** having urea linker replacement and various terminal substituents as shown in schemes 1 to 3.

Figure 1. Representative examples of A2AAdoR antagonists

Figure 2. Identification of novel aryloxy-2-methylpropanamide and cyclohexane-carboxamide.

CHEMISTRY

Scheme 1. Synthesis of 12-36^{*a*}

^{*a*} Reagents and conditions: (i) K₂CO₃, DMF, rt, 16 h; (ii) NaOH, THF/MeOH/H₂O (3:2:1), 80 °C, 16 h; (iii) EDCI, HOBt, NMM, DMF, rt.

In scheme 1, substituted ethyl 2-methyl-2-phenoxy-propanoate derivatives (8) were prepared by reaction of ethyl-2-bromoisobutyrate (6) and phenol (7) in DMF at rt in presence of K_2CO_3 . Hydrolysis of these variously substituted esters **8a-o**²⁹ under aqueous basic conditions yielded acid derivatives **9a-o**. Amide coupling of **9a-o** with **10**²⁷⁻²⁸ and **11**³⁰ afforded final compounds **12-36** in overall good yields.

Scheme 2. Synthesis of 40-43^{*a*}

^{*a*}Reagents and conditions: (i) LiOH.H₂O, THF/MeOH/H₂O (3:2:1), rt, 18 h; (ii) **10**, EDCI, HOBt, NMM, DMF, rt,18 h; (iii) NaBH₄, EtOH, 0 °C -rt, 3 h; (iv) **39**, appropriate Grignard reagents, dry THF, 0 °C - rt, 1h.

The synthesis of compounds **40-43** is outlined in scheme 2. Starting material **37**, prepared as described in literature³¹ and its hydrolysis under aqueous basic conditions yielded **38**. Amide coupling of **38** with **10** afforded compound **39**. Reduction of **39** with NaBH₄ yielded final compound **40**, with terminal secondary hydroxyl group. Compound **39**, when treated with 1.2 molar equivalents of appropriate Grignard reagents gave corresponding tertiary hydroxyl derivatives as a mixture of isomers **41-43**.

Compound **49** was synthesized as illustrated in Scheme 3. Compound **37** upon treatment with methanolic ammonia followed by hydrogenation gave corresponding amine **44**,³² which was further protected by boc-anhydride to yielded **45**. Hydrolysis of **45**, under aqueous basic conditions yielded **46**. Amide coupling of **46** with **10** using standard EDCI-HOBt method

afforded **47** which on treatment with methanolic HCl provided compound **48**. Finally, compound **49** (mixture of *cis* and *trans*) was prepared from compound **48** by reductive amination.

Scheme 3. Synthesis of 49^{*a*}

^{*a*} Reagents and conditions: (i) Methanolic NH₃, H₂, 10 % Pd/C, rt, 24 h; (ii) Boc anhydride, Et₃N, MeOH, rt , 4 h; (iii) LiOH.H₂O, THF/MeOH/H₂O (3:2:1), 60 °C,18 h; (iv) **10**, EDCI, HOBt, NMM, DMF , rt, 14h; (v) methanolic HCl, DCM, rt 24 h; (vi) acetaldehyde, NaCNBH₃, MeOH, NaOAc, rt ,24 h.

RESULTS AND DISCUSSION

Biological data and structure-activity relationships

Initially, a new series of 2-substituted benzothiazole and thiazolo[5,4-c]pyridine derivatives were prepared with the objective of identifying novel, potent and selective A_{2A} AdoR antagonists with

Journal of Medicinal Chemistry

acceptable pharmacokinetic properties. For this purpose, urea linkage of **2** was replaced by aryloxy-2-methylpropanamide moieties. The compounds were first evaluated for affinity against A_{2A}AdoR and only compounds showing A_{2A} affinity <20 nM were evaluated for binding selectivy over A₁, A_{2B} and A₃ AdoR. The data obtained is listed in Table 1. Most of the aryloxy-2-methylpropanamide derivatives, **12-24** (except **21-24**) showed good binding affinity with K_i in the range of 2.8-22 nM for human A_{2A}AdoR (hA_{2A}). Compounds **25-36** (thiazolo[5,4-c]pyridine core) also exhibited good binding affinity with K_i in the range of 3.4-55 nM for human A_{2A}AdoR. In general, compounds containing small electron withdrawing groups like -F, -di-F or electron releasing groups such as -Me, and –OMe on phenyl ring (compound **12-20**) showed good binding affinity with K_i of <22 nM for A_{2A}AdoR.

However, compounds **21-23**, with larger electron withdrawing groups such as -Cl, $-CF_3$, -CN, showed modest binding affinity of 51, 76 and 58 nM, respectively, for A_{2A}AdoR. Compound **24** with more bulkier and hydrophobic *p*-t-butyl substitution had large negative effect on the affinity, and reduce binding K_i of 500 nM for A_{2A}AdoR. Compounds **34-36** with electron releasing group had moderate A_{2A}AdoR binding affinity of 42, 55 and 42 nM, respectively. Having identified compounds with good binding affinity, potent compounds with binding K_i < 20 nM for A_{2A}AdoR were tested for adenosine receptor subtype selectivity. Compounds **12-20**, **25**, **30**, **31** and **33** had moderate to good binding selectivity, while compound **26** showed poor selectivity and compound **32** showed moderate selectivity over A₁, A_{2B} and A₃AdoR

The potent and selective compounds, selected on the basis of binding affinity were subsequently assessed for stability in liver microsomes. Most of the compounds were metabolically stable in rat liver microsomes (RLM) and human liver microsomes (HLM) (Table 1). Compounds with very low nano-molar binding affinity ($K_i < 20$ nM), good binding selectivity and metabolically

stable, were further tested for functional potency in cAMP assay using hA_{2A} -HEK293 cells (Table 1). Compound **12-18**, **20** and **25-26** showed excellent functional potency with K_i in the range of 0.95-8.3 nM. Compound **30-33** exhibited moderate functional potency with K_i in the range of 13.5-28 nM and were stable in RLM and HLM. To identify a lead, three potent, selective and metabolically stable compounds namely **12**, **17** and **25**, were shortlisted for further profiling. The data is summarized in Table 2 and 3.

Table 1. Affinity, potency, selectivity and microsomal stability of aryloxy-2-methylpropanamide

 derivatives

Compound	R	Binding K _i (nM)	$ \begin{array}{c} \text{ing} \\ \text{M} \\ \text{M} \\ \text{A}^{a} \\ \hline \text{hA}_{1}^{a} \\ \hline \text{hA}_{1}^{a} \\ \hline \text{hA}_{2B}^{a} \\ \hline \text{hA}_{3}^{a} \\ \hline \text{hA}_{3}^{a} \\ \hline \text{hA}_{2B}^{b} \\ \hline \text{hA}_{3}^{a} \\ \hline \text{hA}_{2A}^{b} \\ \hline \text{hA}_{2B}^{b} \\ \hline \text{hA}_{3}^{c} \\ \hline \text{hA}_{3}^{c} \\ \hline \text{hA}_{2A}^{b} \\ \hline \text{hA}_{2A}^{b}$	Functional <i>K</i> _i (nM)	ional MR IM) (nmol/mi			
		$hA_{2A}{}^{a}$		hA_{2A}^{b}	RLM	HLM		
12	<i>p-</i> F	13	16	0	11	4.2	0.04	0.02
13	<i>m</i> -F	2.8	52	36	20	0.95	0.1	0.08
14	<i>p</i> -CH ₃	5.4	7	14	5	8.3	0.1	0.09
15	2,4-diF	7	33	0	21	2.6	0.07	0.11
16	2,6-diF	8	37	19	10	1.0	0.09	0.16
17	3,4 - diF	6.4	38	34	28	2.4	0.09	0.07
18	3,4-diOMe	19	0	25	0	1.8	0.11	0.06

Page 11 of 50

Journal of Medicinal Chemistry

19	<i>m</i> -(2- methoxyethoxy)	22	34	38	20	nt	nt	nt
20	<i>m</i> -(1,3-benzodioxole	17	0	0	29	2.1	0.05	nt
21	<i>p</i> -Cl	51	nt	nt	nt	nt	nt	nt
22	<i>p</i> -CF ₃	76	nt	nt	nt	nt	nt	nt
23	<i>p</i> -CN	58	nt	nt	nt	nt	nt	nt
24	<i>p-tert</i> -Butyl	500				nt	nt	nt
25	<i>p</i> -F	3.4	46	24	46	6.5	< 0.04	< 0.04
26	<i>m</i> -F	14	90	42	94	4.7	< 0.02	< 0.04
27	<i>o-</i> F	21	nt	nt	nt	nt	nt	nt
28	<i>p</i> -Cl	29	nt	nt	nt	nt	nt	nt
29	<i>m</i> -CF ₃	24	nt	nt	nt	nt	nt	nt
30	2,4-diF	13	39	11	47	13.5	< 0.01	< 0.03
31	2,6-diF	15	33	42	48	26.5	0.05	0.11
32	3,4-diF	12	50	42	47	24	0.03	0.05
33	<i>m</i> -(2- methoxyethoxy)	14	38	23	41	28	0.05	0.1
34	<i>m</i> -(1,3-benzodioxole)	42	nt	nt	nt	nt	nt	nt
35	<i>p</i> -CH ₃	55	nt	nt	nt	nt	nt	nt
36	<i>m</i> -OCH ₃	42	nt	nt	nt	nt	nt	nt

nt- not tested. ^{*a*}Binding affinities were determined by using membrane preparations from HEK-293 cells overexpressing the relevant human AdoR isoform. All data points were evaluated in triplicates For K_i determination, 6 concentrations IC₅₀ curves were plotted. ^{*b*}Compounds were evaluated at 12 concentrations, each data point in triplicates (n =2). The mean K_i from two independent experiments has been reported. ^{*c*}Metabolic Rate (MR) <0.1 nmol/min/mg is considered metabolically stable. RLM: Rat liver microsomes, HLM: Human liver microsomes.

All three compounds (12, 17 and 25) showed high binding as well as functional selectivity over other AdoRs similar to that of 2 (Table 2). These compounds did not show any CYP liability

against major CYPs (data not shown) and hERG liability in binding assay (<5% inhibition at 3, 10 μ M for compound **12** and **17**; <10 % inhibition at 10, 30 μ M for compound **25**). Compound **25** was found to be stable in rat hepatocytes. Among these three compounds, **25** showed better pharmacokinetic (PK) profile compared to **12** and **17** with C_{max} of 1.1 μ M, systemic exposure AUC_(0-t) of 12 μ M.h, t_{1/2} of 5.4 h and oral bioavailability of 21% (Table 3).

Table 2. Binding affinity and functional potency of compounds 12, 17, 25 and 2

Compound -	Binding K_i (nM)			Func	Functional <i>K</i> _i (nM)			
	hA _{2A} ^a	hA_1^a	$hA_{2B}{}^a$	hA ₃ ^{<i>a</i>}	hA_{2A}^{b}	hA_1^b	hA_{2B}^{b}	
12	13	5000	10000	5000	4.2	2000	nr	
17	6.4	1100	5000	500	2.4	nr	nr	
25	3.4	500	1400	400	6.5	nr	2000	
2	11	1700	5000	5000	0.3	nt	nt	

nt-not tested, nr- no response at highest tested concentration 10 μ M. ^{*a*}Binding affinities were determined by using membrane preparations from HEK-293 cells overexpressing the relevant human AdoR isoform. Compounds were evaluated at 8 concentrations with each data point in triplicates (n = 2). ^{*b*}Compounds were evaluated at 12 concentrations, each data point in triplicates (n = 2). The mean K_i from two independent experiments has been reported.

Table 3. Pharmacokinetic profile^a of compounds **12**, **17** and 25 in male Wistar Rats

Compound	1	2	1	7	2	5
Route of administration	IV	РО	IV	РО	IV	РО
Dose (mg/kg)	3	10	3	10	3	10
$C_{max}\left(\mu M ight)$	NA	0.19 ± 0.0	NA	1.33 ± 0.5	NA	1.1 ± 0.1
$T_{max}(h)$	NA	0.5 ± 0.0	NA	0.50 ± 0.0	NA	2.75 ± 0.9
AUC _{0-t}	7.6 ± 0.6	1.5 ± 0.25	10.7 ± 2.2	6.2 ± 1.7	16.4 ± 0.6	12 ± 1.3

$(\mu M.h)$						
V _{ss} (L/Kg)	1.4 ± 0.2	NA	2.1 ± 0.44	NA	2.1 ± 0.3	NA
CL (mL/min/Kg)	15 ± 1.2	NA	10.2 ± 2.5	NA	6.6 ± 0.2	NA
t _{1/2} (h)	6.3 ± 0.6	NA	5.5 ± 0.6	NA	5.4 ± 1.0	NA
F (%)	NA	6	NA	17 ± 4.7	NA	21.7 ± 2.4

^{*a*} Values indicate mean for n = 4. NA: Not applicable; Compound **12** : IV-NMP-10%, PEG300-15%, 20 % w/v HPβ-CD in 0.1 M acetate buffer (pH 4.2) q.s; Compound **17**: IV-NMP-10%, Cr EL 10%, 0.1 M acetate buffer (pH 4.2) q.s; Compound **25**: Vehicle: IV-NMP-10%, Cr EL -10%, PEG-300- 10 %, 0.1 M Ammonium acetate buffer q.s (pH 4.2); Compound **12**, **17** and **25**: PO: Tween 80- 1%, 0.5% w/v NaCMC q.s.; NA: Not applicable

All three compounds from aryloxy-2-methylpropanamide series however showed poor oral bioavailability which could be due to poor solubility (aqueous solubility of compounds 12, 17 and 25 are $< 6 \mu$ M at various pH such 2.1, 4 and 7.4). To overcome the issue of bioavailability and solubility of these compounds, we later assessed a series of cyclohexane-carboxamide derivatives, where a more rigid linker was employed and the phenyl ring was replaced by cyclohexane, thus reducing the potential stacking interaction. Further, compounds 40-43 were prepared with polar –OH group attached to cyclohexane ring and 49 containing tertiary amine with the intention to improve solubility. Compounds 40-43 (41-43 are mixture of geometrical isomers) retained binding affinity ($K_i = 2.1 - 25$ nM) and functional potency ($K_i = 0.2 - 2.1$ nM) for A_{2A} AdoR (Table 4). Compounds 40, 41 and 49 showed single digit nano-molar binding affinity with K_i value of 5.9 nM, 8.6 nM and 2.1 nM, respectively. These compounds (40, 41 and 49) also exhibited sub-nanomolar functional potency with K_i value of 1.1 nM, 0.25 nM and 0.20 nM, respectively. These compounds were further tested for AdoR binding selectivity. Compound 41 (with tert-hydroxy group) and 49 (with tert-amine group) showed high selectivity over A₁AdoR (>300 fold) while no response was seen in A₃AdoR. Both compounds showed moderate

to high selectivity over $A_{2B}AdoR$ (>50 fold for **41** and >200 fold for **49**). Compound **40** however showed low binding selectivity over A_1AdoR ($A_1/A_{2A}=15$ fold) and $A_{2B}AdoR$ ($A_{2B}/A_{2A}=4$ fold) but high selectivity over A_3AdoR . When tested for functional selectivity, compound **40** exhibited low selectivity over A_1AdoR ($A_1/A_{2A}=38$ fold) and high selectivity over $A_{2B}AdoR$ ($A_{2B}/A_{2A}=$ 900 fold). Compounds **41** and **49** were further tested for functional selectivity and found to be highly selective against human A_1AdoR and $A_{2B}AdoR$ (Table 4).

Compound	R^1	Ι	Binding	K _i (nM)	Functional <i>K</i> _i (nM)			
		hA _{2A} ^a	hA_1^a	$hA_{2B}{}^a$	hA ₃ ^a	$hA_{2A}{}^{b}$	hA_1^{b}	$hA_{2B}^{\ \ b}$
40	Х –он	5.9	90	23	nr	1.1	41.8	1000
41	≫С≻он	8.6	2900	500	nr	0.25	nr	2000
42	Ќ∕√	25	nt	nt	nt	nt	nt	nt
43	× V _{он}	17	nt	nt	nt	2.1	nt	nt
49	×	2.1	1200	500	nr	0.20	nr	650

nt- not tested; nr- no response at highest tested concentration 30 μ M. ^{*a*}Binding affinities were determined by using membrane preparations from HEK-293 cells overexpressing the relevant human AdoR isoform. Compounds were evaluated at 8 concentrations with each data point in triplicates (n=2). ^{*b*}Compounds were evaluated in triplicates at 12 concentrations. The mean K_i from two independent experiments has been reported (n=2).

Based on the overall profile of best compounds 41 and 49 in terms of high binding as well as functional potency and selectivity, they were progressed for further profiling and the data has been summarized in Table 5. In general, this series of compounds showed high aqueous solubility across all pH. Among 41 and 49, the latter compound (49) showed high aqueous solubility across all pH (Table 5). Both the compounds were metabolically stable in RLM and HLM as well as in rat hepatocytes. Compound 41 had high permeability towards absorptive direction (A-B) in Caco-2 cells, while compound **49** showed moderate permeability in the same. In addition, both compounds did not show any major CYP and hERG liability, and were not cytototoxic (IC₅₀ >100 μ M) to HepG2 cells. Serum protein binding of the compounds 41 and 49 were found to be 87% and 76%, respectively, as determined *in vitro* in spiked samples of rat. Compounds 41 and 49 were further evaluated for PK profile before proceeding for in vivo efficacy studies. A moderate systemic clearance (~60-65% of hepatic blood flow) was observed for these compounds, in accordance with low intrinsic clearance in rat hepatocytes (Table 6). Volume of distribution of compound 41 was found to be ~ 2 fold higher, while volume of distribution of compound 49 was approximately 8 fold higher than total body water normalized to body weight of rat. Furthermore, both compounds exhibited high oral bioavailability (F =63% and 61% for compound 41 and 49, respectively). Compound 49 had much better half life than compound 41. Compound 49 displayed low brain penetration (brain/plasma AUC_{0-t} Ratio= 0.25 ± 0.08 ; Plasma AUC_{0-t} (μ M.hr)= 4.7 ± 1.7; Brain AUC_{0-t} (μ M.hr)= 1.1 ± 0.3; 10 mg/kg po, in Wistar rats, n=4).

Table 5. In vitro drug metabolism and pharmacokinetics (DMPK) of compound 41 and 49

Compound	Aqueous Solubility at pH 2.1, 4.0 and $7.4(\mu M)$	MR ^a (nmol/min/mg)		Rat hepatocyte t _{1/2} (min); % parent	Caco-2 permeability (nm/sec)	CYP P450 Inhibition (IC ₅₀ : μ M; for 1A2, 2C9, 2C19,	hERG; % Binding Inhibition at 10 and
		RLM	HLM	remaining at 60 min	(A-B)	2D6 and 3A4)	30 µM
41	139, 111, 114	<0.04	<0.04	>60; 88	122	All>25	NI, 26
49	1840, 1807, 1586	0.01	0.03	>60; 89	37	All>50	13, 18

NI- No inhibition; ^{*a*}Metabolic Rate (MR) < 0.1 nmol/min/mg is considered metabolically stable. RLM: Rat liver microsomes, HLM: Human liver microsomes

Table 6. Phamacokinetic profile^{*a*} of compounds 41 and 49 in male Wistar Rats

Compound	4	1	4	9
Route of administration	IV	РО	IV	РО
Dose (mg/kg)	3	10	3	10
$C_{max} \left(\mu M \right)$	NA	5.4 ± 1.6	NA	2.02 ± 1.1
$T_{max}(h)$	NA	0.5 ± 0.0	NA	0.63
AUC _{0-t} (µM.h)	3.7 ± 0.5	7.8 ± 2.4	2.7 ± 0.2	5.5 ± 0.6
V _{ss} (L/Kg)	1.5 ± 0.3	NA	6.1 ± 0.6	NA
CL (mL/min/Kg)	32 ± 4.2	NA	37.2 ± 3.1	NA
t _{1/2} (h)	0.6 ± 0.07	NA	2.4 ± 0.3	NA
F (%)	NA	63 ± 19	NA	61.0 ± 7.0

^{*a*}Values indicate mean for n = 4 Compound **41**: Vehicle: IV-NMP-10%, PEG-300- 15 %, 0.1 M Ammonium acetate buffer q.s (pH 4.2); Compound **49**: Vehicle: IV-NMP-10%, Cr EL -10%, 0.1 M Ammonium acetate buffer q.s (pH 4.2); Compound **41**, **49**: PO: Tween 80- 1%, 0.5% w/v NaCMC q.s. NA: Not applicable

MOLECULAR MODELING

Molecular modeling studies were carried out to understand the binding poses and intermolecular interactions of representative active molecules as well as to rationalize the observed SAR differences among the aryloxy-2-methylpropanamide series compounds. Molecular docking analysis of 2 in A_{2A}AdoR showed that it fits nicely in the adenosine binding site. Based on the docking model of 2, we identified any loxy-2-methyl propanamide and cyclohexane-carboxamide as suitable replacement for 4-hydroxy-methyl piperidine moiety as it can be altered easily without losing the key interactions and activity. Compounds 41-49 were obtained as a mixture containing both *cis* and *trans* geometric isomers. Molecular docking analysis of compounds 41 and 49 isomers revealed that both can fit nicely in the A2A binding site in a similar binding orientation. However, compounds 41 cis isomer and 49 trans isomer were having better Glide score and more intermolecular interactions as compared to their other isomeric counterpart (Figure S1, Supplementary information). Therefore, we have compared only the superior geometric isomer of the compounds with 2. Docking pose overlay of the representative active compounds (12, 41 and 49) on 2 showed that compounds binding pose and orientation are similar to that of 2 (Figure 3). Furthermore, Glide docking score of the compounds 12 (-7.99 kcal/mol), 41 (-7.58 kcal/mol) and 49 (-6.89 kcal/mol) were also comparable to that of 2 (-7.58 kcal/mol).

In detail, binding model of **2** showed that benzothiazole core was buried in the hydrophobic pocket; had pi-pi interaction with Phe168 and hydrophobic interactions with Leu249 and Ile274. Methoxy group and carbonyl group of the compound formed hydrogen bonds with Asn253 and Tyr271 side chains, respectively. Morpholine group was surrounded by a few hydrophobic groups and the top portion 4-hydroxy-methyl piperidine was exposed to solvent front as shown

in Figure 3 and 4. Individual docking poses of compounds **12**, **41** and **49** showed that they retained the intermolecular interactions similar to that of **2** (Figure 4). Interestingly, these compounds made additional interactions viz. compound **12** dimethyl groups hydrophobically interacted with Tyr271 and Leu267; hydroxyl group of compound **41** at cyclochexyl position formed hydrogen bond with Glu169; compound **49**, *t*-nitrogen had cationic-pi interaction with His264. The 2D interaction diagram for all the four compounds is provided in supplementary Figure S1. We also attempted to justify the reason behind low potency of compound **24** using our docking model, which suggested that *p*-tert-butyl of phenoxy ring could be causing steric clashes with Lys153. The most plausible reason for modest/low potency of compounds **21-24** with larger electron withdrawing groups such as -Cl, $-CF_3$, -CN and $-C(CH_3)_3$ is due to their unfavorable interactions with the polar bulk solvent.

Figure 3. Overlay of Compound 12 (Cyan), 41 (magenta) and 49 (salmon) on reference compound 2 (green) in the A_{2A} receptor (shown in cartoon representation) ligand binding pocket.

Figure 4. Docking poses of reference compound 2 and representative active compounds 12, 41 and 49 in the $A_{2A}AdoR$. Ligands are shown in magenta color and stick representation, while residues are shown in green and line representation. Protein is shown in cartoon rendering in the background.

IN VIVO EFFICACY STUDY

Compound **49** was tested for efficacy in potentiation of levodopa-induced contralateral rotations in 6-OHDA (6-hydroxydopamine) lesioned rats. Compound **49**, at 30 and 100 mg/kg, p.o, was tested in L-dopa-induced rotations in 6-OHDA lesioned rats and showed dose dependent increase in contralateral rotations, post 60 min administration. The potentiation of L-Dopa induced contralateral rotations, measured upto 2 h, with compound **49** at 100 mg/kg, p.o. was significant when compared to L-DOPA (4 mg/kg, i.p.) alone. Compound **2** (30 mg/kg, p.o.) also showed significant effect on potentiation of L-DOPA induced contralateral rotations measured up to 2 h in 6-OHDA lesioned rats as compared with L-DOPA (4 mg/kg, i.p.) alone (Figure 5).

Figure 5. Effect of compound 49 on potentiation of levodopa-induced contralateral rotations in 6-OHDA lesioned rats. The data represent Mean \pm SEM (n=6). *Significantly different as compared to L-DOPA, 4 mg/kg, IP alone group (*P < 0.05).

CONCLUSIONS

We have identified aryloxy-2-methylpropanamide and cyclohexane-carboxamide based compounds with good potency for A_{2A} AdoR and high selectivity against A_1 , A_{2B} and A_3 AdoR. These compounds showed molecular recognition interactions with A_{2A} AdoR similar to that of **2**. Several compounds showed low nano-molar activity with reasonable selectivity and ADME properties. Though the initial aryloxy-2-methylpropanamide series showed low to moderate oral-bioavailability; cyclohexane-carboxamides had better oral-bioavailability than former. Compound **49** was identified as a potent and selective A_{2A} AdoR antagonist with desirable physicochemical and drug-like properties, including high oral bioavailability. The compound on further profiling also showed *in vivo* efficacy in PD animal model where it potentiated the L-DOPA induced contralateral rotations significantly at 100 mg/kg, the compound can thus be considered as a potential lead for further exploration. Data from further optimization and evaluation of these series of compounds and their *in vivo* efficacy study will be reported in due course of time.

EXPERIMENTAL SECTION

General Chemistry - Commercial chemicals and solvents were of reagent grade and were used without further purification. Anhydrous solvents were used without further drying. The following abbreviations are used for reagent and solvents: DCM-dichloromethane; DMFdimethyl formamide; DMSO-dimethyl sulfoxide; EtOAc-ethyl acetate; EtOH-Ethanol; and MeOH-methanol. EDCI-1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, HOBt-1-Hydroxybenzotriazole, NMM-N-Methylmorpholine Globe chemie silica gel (100-200 or 230-400 mesh) was used for column chromatography. Analtech thin layer chromatography plates (20 x 20 cm, 2000 microns) were used for preparative thin layer chromatography. Proton NMR (¹H NMR) spectra were recorded on a Varian 400 spectrometer (400 MHz). Solutions were typically prepared in either deuterated dimethyl sulfoxide (DMSO- d_6), deuterated methanol (CD₃OD) or deuterated chloroform (CDCl₃). Chemical shifts are reported in δ units (parts per million) downfield from tetramethylsilane and are assigned as: singlet (s), doublet (d), doublet of doublet (dd), triplet (t), quartet (q) and multiplets (m), and broad (br). Coupling constants (J) are reported in Hertz (Hz). Mass spectra (MS) were recorded on Agilent 6110. HPLC were recorded on Agilent RRLC using Eclipse XOB-C18 (250x4.6) mm Su column and 0.05 % fumaric acid (ag.) and acetonitrile as mobile phase with flow rate of 1ml/min at 30 °C for run time of 17 min and the HPLC purity is \geq 95% unless otherwise stated.

General Procedure for the Synthesis of Compounds 12-36.

To a solution of substituted amines (**10** or **11**) (1 equiv) and intermediate **9** (1.3 equiv) in DMF (2 mL) were added 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.5 equiv), 1-hydroxybenzotriazole (1 equiv) and *N*-methylmorpholine (1.5 equiv). The reaction mixture

was stirred at room temperature for 14 h. The reaction mixture was quenched with water and the solid obtained was filtered. The crude product was purified by flash chromatography (100-200 silica gel, ethylacetate in hexane 0/100 to 50/100) to afford the products (**12-36**).

2-(4-Fluorophenoxy)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-

propanamide (12) . Off white solid; 23% yield; mp 178-179 °C; ¹H NMR (DMSO-d₆): δ 12.67 (s, 1H), 7.07-7.12 (m, 2H), 6.91-6.94 (m, 4H), 3.83 (s, 3H), 3.79 (t, J = 4.4 Hz, 4H), 3.01 (t, J = 4.4 Hz, 4H), 1.57 (s, 6H); ¹³C NMR (DMSO-d₆): δ 173.2, 157.7, 156.4, 150.6, 148.2, 140.0, 139.1, 126.7, 121.9, 115.7, 113.0, 108.1, 80.3, 66.5, 55.8, 51.4, 24.2; MS (m/z) 446.1(M + H)⁺; HPLC 98%; HRMS (C₂₂H₂₅FN₃O₄S) calulated 446.1544 (M + H)⁺; found 446.1541

2-(3-Fluorophenoxy)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-

propanamide (13). Off white solid; 23% yield; mp 170-171 °C; ¹H NMR (DMSO-d₆): δ 12.75 (bs, 1H), 7.27-7.33 (m, 1H), 6.91-6.96 (m, 2H), 6.82-6.84 (m, 1H), 6.70-6.76 (m, 2H), 3.85 (s, 3H), 3.78 (t, *J* = 4.4 Hz, 4H), 3.02 (t, *J* = 4.4 Hz, 4H), 1.62 (s, 6H); MS (*m/z*) 446.1 (M + H)⁺; HPLC 99%.

N-(4-Methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-2-(4-

methylphenoxy)propanamide (14). Off white solid; 34% yield; mp 152-153 °C; ¹H NMR (DMSO-d₆): δ 12.59 (bs, 1H), 7.05 (d, J = 8.4 Hz, 2H), 6.90-6.95 (m, 2H), 6.77 (d, J = 8.4 Hz, 2H), 3.85 (s, 3H), 3.78(t, J = 4.5 Hz, 4H), 3.02 (t, J = 4.4Hz, 4H), 2.20 (s, 3H), 1.56 (s, 6H). MS (m/z) 442.1(M + H)⁺; HPLC 99%.

2-(2,4-Difluorophenoxy)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-

propanamide (15). Off white solid (55mg, 16%) mp 83-85 °C. ¹H NMR (DMSO-d₆): δ 12.68 (bs, 1H), 7.31-7.37 (m, 1H), 7.06-7.12 (m, 1H), 7.00-7.03 (m, 1H), 6.92-6.99 (m, 2H), 3.87 (s, 3H), 3.78 (t, *J* = 4.4 Hz, 4H), 3.03 (t, *J* = 4.4 Hz, 4H), 1.55 (s, 6H); MS (*m/z*) 464.1 (M + H)⁺; HPLC 98%.

2-(2,6-Difluorophenoxy)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-

propanamide (16). Off white solid; 16% yield; mp 150-153 °C; ¹H NMR (DMSO-d₆): δ 12.54 (bs, 1H), 7.13-7.20 (m, 3H), 6.91-6.97 (m, 2H), 3.88 (s, 3H), 3.79 (t, *J* = 4.4 Hz, 4H), 3.03 (t, *J* = 4.4 Hz, 4H), 1.55 (s, 6H); MS (*m*/*z*) 464.1 (M + H)⁺; HPLC 95.66%.

2-(3,4-Difluorophenoxy)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-

propanamide (17). Off white solid; 26% yield; mp 158-159 °C; ¹H NMR (DMSO-d₆): δ 12.69 (bs, 1H), 7.01-7.10 (m, 1H), 6.87-6.92 (m, 2H), 6.72-6.74 (m, 1H), 3.84 (s, 3H), 3.76 (t, *J* = 4.4 Hz, 4H), 3.00 (t, *J* = 4.4 Hz, 4H), 1.56 (s, 6H); ¹³C NMR (DMSO-d₆): δ 172.8, 150.9, 149.0, 148.2, 145.3, 140.0, 139.0, 126.7, 117.3, 116.4, 113.1, 110.3, 108.1, 81.0, 66.5, 55.8, 51.4, 24.1; MS (*m/z*) 464.1 (M + H)⁺ HPLC 100%.

2-(3,4-Dimethoxyphenoxy)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-

propanamide (18). White solid; 12% yield; mp 157-158 °C; ¹H NMR (DMSO-d₆): δ 12.59 (s, 1H), 6.91-6.96 (m, 2H), 6.81 (d, J = 8.8 Hz, 1H), 6.67 (d, J = 2 Hz, 1H), 6.36-6.39 (m, 1H), 3.87 (s, 3H), 3.79 (t, J = 4.4 Hz, 4H), 3.67 (d, J = 3.6 Hz, 6H), 3.03 (t, J = 4.4 Hz, 4H), 1.55 (s, 6H); MS (m/z) 488.2 (M + H)⁺; HPLC 99%.

2-[3-(2-Methoxyethoxy)phenoxy]-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2methyl-propanamide (19). Off white solid; 15% yield; mp 130-132 °C; ¹H NMR (DMSO-d₆): δ 12.72 (s, 1H), 7.12-7.16 (m, 1H), 6.91-6.96 (m, 2H), 6.57-6.59 (m, 1H), 6.42-6.44 (m, 2H),

3.99 (t, J = 4.4 Hz, 2H), 3.85 (s, 3H), 3.79 (t, J = 4.4 Hz, 4H), 3.58 (t, J = 4.8 Hz, 2H), 3.24 (s,

3H), 3.02 (t, J = 4 Hz, 4H), 1.60 (s, 6H); MS (m/z) 502.1 (M + H)⁺; HPLC 100%.

2-(1,3-Benzodioxol-5-yloxy)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-

propanamide (20). White solid; 51% yield; mp 182-184 °C; ¹H NMR (DMSO-d₆): δ 12.59 (s, 1H) 6.90-6.95 (m, 2H), 6.78 (d, *J* = 8.8 Hz, 1H), 6.61 (d, *J* = 2.4Hz, 1H), 6.37 (dd, *J* = 8.8 Hz, 2.4 Hz, 1H), 5.95 (s, 2H), 3.85 (s, 3H), 3.77 (t, *J* = 4.4 Hz, 4H), 3.01 (t, *J* = 4.4 Hz, 4H), 1.51 (s, 6H); MS (*m*/*z*) 472.3 (M + H)⁺; HPLC 100%.

2-(4-Chlorophenoxy)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-

propanamide (21). Off white solid; 26% yield; mp 178-178 °C. ¹H NMR (DMSO-d₆): δ 12.74 (s, 1H), 7.33 (d, J = 9.2 Hz, 2H), 6.89-6.96 (m, 4H), 3.85 (s, 3H), 3.79 (t, J = 4 Hz, 4H), 3.02 (t, J = 4.4 Hz, 4H), 1.60 (s, 6H); MS (m/z) 462.1 (M + H)⁺; HPLC 98.65%.

N-(4-Methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-2-[4-

(trifluoromethyl)phenoxy]propanamide (22). Off white solid; 21% yield; mp 102-103 °C. ¹H NMR (DMSO-d₆): δ 13.02 (bs, 1H), 7.86 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 7.14-7.17 (m, 2H), 4.07 (s, 3H), 4.02 (t, J = 4.4 Hz, 4H), 3.93 (t, J = 4.4 Hz, 4H), 1.90 (s, 6H); MS (m/z) 496.1(M + H)⁺; HPLC 100%.

2-(4-Cyanophenoxy)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-

propanamide (23). Off white solid; 29% yield; mp 157-159 °C; ¹H NMR (DMSO-d₆): δ 12.84 (s, 1H), 7.74 (d, *J* = 8.8 Hz, 2H), 6.93-6.98 (m, 4H), 3.83 (s, 3H), 3.78 (bs, 4H), 3.02 (bs, 4H), 1.67 (s, 6H); MS (*m/z*) 453.0 (M + H)⁺; HPLC 100%.

2-(4-Tert-butylphenoxy)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-2-methyl-

propanamide (24). White solid; 23% yield; mp 229-230 °C; ¹H NMR (DMSO-d₆): δ 12.64 (s, 1H), 7.25 (d, *J* = 8.8 Hz, 2H), 6.89-6.94 (m, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H), 3.77 (t, *J*

= 4.4 Hz, 4H), 3.00 (t, J = 4.4 Hz, 4H), 1.56 (s, 6H), 1.19 (s, 9H); MS (m/z) 484.2 (M + H)⁺; HPLC 100%.

2-(4-Fluorophenoxy)-N-(7-methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2-methyl propanamide (25). Off white solid; 38% yield; mp 280-281 °C;¹H NMR (DMSO-d₆): δ 13.06 (bs, 1H), 7.89 (s, 1H), 7.08-7.12 (m, 2H), 6.91-6.95 (m, 2H), 3.90 (s, 3H), 3.76 (t, *J* = 4.4 Hz, 4H), 3.22 (t, 4H), 1.55(s, 6H); ¹³C NMR (DMSO-d₆): δ 174.2, 157.8, 150.3, 148.7, 143.4, 122.1, 116.9, 115.8, 80.3, 65.8, 57.0, 48.8, 24.1; MS (*m*/*z*) 447.3 (M + H)⁺; HPLC 99%; HRMS (C₂₁H₂₄FN₄O₄S) calulated 447.1497 (M + H)⁺; found 447.1492.

2-(3-Fluorophenoxy)-N-(7-methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2-methylpropanamide (26). Off white solid; 62% yield; mp 204-205 °C; ¹H NMR (DMSO-d₆): δ 13.12 (s, 1H), 7.91 (s, 1H), 7.28-7.34 (m, 1H), 6.86 (t, *J* = 8.4 Hz, 1H), 6.70-6.78 (m, 2H), 3.91 (s, 3H), 3.79 (bs, 4H), 3.36 (bs, 4H), 1.63 (s, 6H); MS (*m/z*) 447.1 (M + H)⁺; HPLC 99%.

2-(2-Fluorophenoxy)-N-(7-methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2-methyl-

propanamide (27). Off white solid; 63% yield; mp 188-189 °C;. ¹H NMR (DMSO-d₆): δ 10.46 (bs, 1H), 7.87 (s, 1H), 7.08-7.16 (m, 4H), 4.04 (s, 3H), 3.90 (t, *J* = 4.4 Hz, 4H), 3.48 (t, *J* = 4.4 Hz, 4H), 1.60 (bs, 6H); MS (*m/z*) 447.2 (M + H)⁺; HPLC 99%.

2-(4-Chlorophenoxy)-N-(7-methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2-methylpropanamide (28). Off white solid; 21% yield; mp 179-180 °C; ¹H NMR (DMSO-d₆): δ 13.30

(bs, 1H), 7.88 (s, 1H), 7.30 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H), 3.76 (bs, 4H), 3.31 (bs, 4H), 1.58 (s, 6H); MS (m/z) 463.1 (M + H)⁺; HPLC 97%.

N-(7-methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2-methyl-2-[3-

(trifluoromethyl)phenoxy]propanamide (29). Off white solid; 60% yield; mp 210-212 °C; ¹H NMR (DMSO-d₆): δ 13.33 (bs, 1H), 8.08 (s, 1H), 7.69 (bs, 1H), 7.56 (bs, 1H), 7.45 (bs, 1H),

7.35 (bs, 1H), 4.08 (s, 3H), 3.96 (bs, 4H), 3.51 (bs, 4H), 1.81 (s, 6H); MS (*m*/*z*) 497.2 (M + H)⁺; HPLC 99%.

2-(2,4-Difluorophenoxy)-N-(7-methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2-methylpropanamide (30). Off white solid; 50% yield; mp 148-149 °C; ¹H NMR (DMSO-d₆): δ 10.42 (bs, 1H), 7.87 (s, 1H), 7.03-7.09 (m, 1H), 6.91-6.96 (m, 1H), 6.83-6.87 (m, 1H), 4.04 (s, 3H), 3.90 (t, *J* = 4.4 Hz, 4H), 3.48 (t, *J* = 4.4 Hz, 4H), 1.60 (bs, 6H); MS (*m/z*) 465.2 (M + H)⁺; HPLC 95%.

2-(2,6-Difluorophenoxy)-N-(7-methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2-methylpropanamide (31). off white solid (85 mg, 62%) mp 188-189 °C. ¹H NMR (DMSO-d₆): δ 10.08 (bs, 1H), 7.87 (s, 1H), 6.60-6.64 (m, 1H), 6.48-6.51 (m, 2H), 4.03 (s, 3H), 3.91 (t, *J* = 4.4 Hz, 4H), 3.48 (t, *J* = 4.4 Hz, 4H), 1.67 (s, 6H); MS (*m/z*) 465.2 (M + H)⁺ HPLC 99%.

2-(3,4-Difluorophenoxy)-N-(7-methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2-methylpropanamide (32). Off white solid; 8% yield; mp 169-170 °C; ¹H NMR (DMSO-d₆): δ 13.08 (bs, 1H), 7.91 (s, 1H), 7.35 (m, 1H), 7.07-7.13 (m, 1H), 6.75-6.77 (m, 1H), 3.92 (s, 3H), 3.78 (t, J = 4.0 Hz, 4H), 1.59 (s, 6H); MS (m/z) 465 (M + H)⁺; HPLC 99%.

2-[3-(2-Methoxyethoxy)phenoxy]-N-(7-methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)2-methyl-propanamide (33). Off white solid; 49% yield; mp 166-167 °C; ¹H NMR (DMSO-d₆): δ 13.07 (s, 1H), 7.91 (s, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 6.60 (d, *J* = 8.4 Hz, 1H), 6.42-6.45 (m, 2H), 4.00 (t, *J* = 4.4 Hz, 2H), 3.91 (s, 3H), 3.79 (bs, 4H), 3.59 (t, *J* = 4.4 Hz, 2H), 3.35 (bs, 4H), 3.25 (s, 3H), 1.61 (s, 6H); MS (*m*/*z*) 503.2 (M + H)⁺; HPLC 99%.

2-(1,3-Benzodioxol-5-yloxy)-N-(7-methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2methyl-propanamide (34). Off white solid; 45% yield; mp 205-206 °C; ¹H NMR (DMSO-d₆): δ 12.99 (s, 1H), 7.92 (s, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 6.63 (d, *J* = 2.0 Hz, 1H), 6.39 (dd, *J* = 2.4

Hz, 8.8 Hz, 1H), 5.98 (s, 2H), 3.93 (s, 3H), 3.79 (bs, 4H), 3.35 (bs, 4H), 1.54 (s, 6H); MS (*m*/*z*) 473.2 (M + H)⁺; HPLC 99%.

N-(7-Methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2-methyl-2-(4-

methylphenoxy)propanamide (35). Off white solid; 61% yield; mp 192-193 °C; ¹H NMR (DMSO-d₆): δ 13.05 (s, 1H), 7.91 (s, 1H), 7.07 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 3.91 (s, 3H), 3.79 (bs, 4H), 3.35 (bs, 4H), 2.21 (s, 3H), 1.57 (s, 6H); MS (m/z) 443.2 (M + H)⁺; HPLC 99%.

N-(7-Methoxy-4-morpholino-thiazolo[5,4-c]pyridin-2-yl)-2-(3-methoxyphenoxy)-2-methylpropanamide (36). Off white solid; 65% yield; mp 153-154 °C; ¹H NMR (DMSO-d₆): δ 10.27 (bs, 1H), 7.86 (s, 1H), 7.19 (t, J = 8.0 Hz, 1H), 6.69 (d, J = 8.8 Hz, 1H), 6.51-6.54 (m, 2H), 4.02 (s, 3H), 3.90 (t, J = 4.0 Hz, 4H), 3.79 (s, 3H), 3.47 (t, J = 4.0 Hz, 4H), 1.60 (s, 6H); MS (m/z) 459.2 (M + H)⁺; HPLC 99%.

1-Methyl-4-oxo-cyclohexanecarboxylic acid (38).

To a solution of ethyl 1-methyl-4-oxo-cyclohexanecarboxylate (**37**) (1 g, 5.42 mmol) in 21 ml of THF: MeOH was added a solution of lithium hydroxide (0.65g, 15.49 mmol) in 4 ml of water. The reaction mixture was stirred at room temperature for 18 h. The reaction mixture was concentrated under reduced pressure. The residue was taken in water and washed with hexane. Aqueous layer was acidified up to pH 1-2 using 3 N HCl, Extracted with ethyl acetate. The organic layer dried (Na₂SO₄) and concentrated under reduced pressure to afford the title compound **38** (0.7 g, 83 %).

¹H NMR (CDCl₃): δ 2.33-2.54 (m, 7H), 1.68-1.76 (m, 2H), 1.38 (s, 3H).

N-(4-Methoxy-7-morpholino-1,3-benzothiazol-2-yl)-1-methyl-4-oxo-

cyclohexanecarboxamide (39).

To a solution of **38** (0.5 g, 3.2 mmol), **10** (0.605 g, 2.28 mmol) in 6 ml of DMF at 0 °C were added HOBt (0.43g, 3.2 mmol) and NMM (0.8 mL, 6.84 mmol). The reaction mixture was stirred at 0 °C for 15 mins. EDCI (0.87 g, 4.5 mmol) was then added to the reaction mixture and stirred at room temperature for 18 h. The reaction mixture was quenched by addition of water and extracted with ethyl acetate. The organic layer was separated and washed with water, brine, dried over Na₂SO₄. The organic layer was concentrated under reduced pressure. The resulting crude product was purified by column chromatography (230-400 silicagel, 96% CH₂Cl₂, 4 % MeOH) to afford the title compound **39** (0.45 g, 49%).

¹H NMR (CDCl₃): δ 9.21 (bs, 1H), 6.85-6.91 (m, 2H), 4.0 (s, 3H), 3.89-3.91(m, 4H), 3.11-3.13 (m, 4H), 2.38-2.57 (m, 6H), 1.86-1.92 (m, 2H), 1.44 (s, 3H); MS (*m/z*) 404.2 (M + H)⁺

4-Hydroxy-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-1-methyl-

cyclohexanecarboxamide (40).

To a solution of **39** (0.09 g, 0.22 mmol) in 1 ml of ethanol at 0 $^{\circ}$ C was added sodium borohydride in portions and the reaction mixture stirred at room temperature for 3 h. The reaction mixture was quenched by addition of water and concentrated under reduced pressure. The residue was taken in ethyl acetate and washed with water, brine, dried over Na₂SO₄. The organic layer was concentrated under reduced pressure. The resulting crude product was purified by HPLC based purification to afford the title compound **40** as an off white solid (23 mg, 77%).

mp 111-113 °C; ¹H NMR (DMSO-d₆): δ 12.18 (bs, 1H), 6.86-6.93 (m, 2H), 4.46 (d, J = 4.8 Hz, 1H), 3.85 (s, 3H), 3.76 (bs, 4H), 3.00 (bs, 4H), 2.26-2.31 (m, 1H), 1.89 (s, 1H), 1.66-1.68 (m, 3H), 1.19-1.22 (m, 4H), 1.17 (s, 3H); MS (m/z) 406.2 (M + H)⁺; HPLC 99%.

General Procedure for the Synthesis of Compounds 41-43.

To a solution of **39** (0.074 mmol) in dry THF (2 ml) at 0 °C were added 2 to 3 eq. of desired Grignard reagents. The reaction mixture was stirred at 0 °C for 1h and then at room temperature for 1 h. The reaction mixture was then quenched with saturated ammonium chloride solution and extracted with ethyl acetate. The organic layer was separated and washed with water, brine, dried over Na₂SO₄. The organic layer was concentrated under reduced pressure. The resulting crude products were purified by HPLC based purification to afford the required compound.

4-Hydroxy-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-1,4-dimethyl-

cyclohexanecarboxamide (41). Off white solid; 8% yield; mp 138-14 °C; ¹H NMR (DMSO-d₆): δ 12.13 (bs, 1H), 6.85-6.92 (m, 2H), 4.05 (s, 1H), 3.85 (s, 3H), 3.76 (t, J = 4.4 Hz, 4H), 3.00 (t, J = 4.4 Hz, 4H), 2.02-2.05 (m, 2H), 1.54-1.60 (m, 2H), 1.41-1.43 (m, 2H), 1.23-1.26 (m, 2H), 1.01(s, 3H); ¹³C NMR (DMSO-d₆):. δ 176.4, 157.2, 148.1, 140.0, 139.0, 126.5, 112.6, 108.0, 66.5, 66.4, 55.8, 51.4, 42.5, 35.7, 30.6, 30.4; MS (m/z) 420.3 (M + H)⁺; HPLC 100%; HRMS (C₂₁H₃₀O₄N₃S) calulated 420 (M + H)⁺; found 420.1946.

4-Ethyl-4-hydroxy-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-1-methyl-

cyclohexanecarboxamide (42). Off white solid; 12% yield; mp 189-190 °C; ¹H NMR (CDCl₃): δ 6.82-6.87 (m, 2H), 3.97 (s, 3H), 3.89 (t, *J* = 4.4 Hz, 4H), 3.11 (t, *J* = 4.4 Hz, 4H), 2.15-2.19 (m, 3H), 1.52-1.62 (m, 7H), 1.32 (s, 3H),0.95 (t, *J* = 7.6 Hz, 3H); MS (*m/z*) 434.2 (M + H)⁺; HPLC 98%.

4-Hydroxy-4-isopropyl-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-1-methylcyclohexanecarboxamide (43). Light pink solid; 20% yield; mp 135-137 °C; ¹HNMR (CDCl₃):

 δ 6.83-6.88 (m, 2H), 4.00 (s, 3H), 3.89 (t, J = 4.4 Hz, 4H), 3.49 (s, 1H), 3.12 (t, J = 4.4 Hz, 4H),

2.03-2.12 (m, 2H), 1.77-1.84 (m, 3H), 1.44-1.54 (m, 4H), 1.30(s, 3H); MS (*m/z*) 448.2 (M + H)⁺; HPLC 98%.

Ethyl 4-amino-1-methyl-cyclohexanecarboxylate (44).

To a solution of **37** (0.3 g, 1.62 mmol) in Methanolic ammonia (2 M, 15 ml) was added 10% Pd/C (0.3 g) at 0 $^{\circ}$ C and the reaction mixture stirred under hydrogen atmosphere for 24 h. The reaction mixture was then filtered over celite pad and catalyst washed with methanol. The filtrate obtained was concentrated under reduced pressure to afford **44** (0.3 g, 99%).

¹H NMR (CDCl₃): δ 4.09-4.17 (m, 2H), 2.62-2.80 (m, 1H), 2.16-2.22 (m, 1H), 1.96 (bs, 2H), 1.60-1.81 (m, 4H), 1.32-1.41(m, 1H), 1.14-1.27 (m, 8H); MS (*m/z*) 186.1 (M + H)⁺.

Ethyl 4-(tert-butoxycarbonylamino)-1-methyl-cyclohexanecarboxylate (45).

To a solution of 44 (0.3 g, 1.62 mmol) in 5 ml of methanol was added triethylamine (0.3 ml, 2.10 mmol) and Boc anhydride. (0.35 g, 1.62 mmol). The reaction mixture was then stirred at room temperature for 4 h. The reaction mixture was concentrated under reduced pressure. The residue was taken in CH_2Cl_2 and washed with H_2O and brine, dried over Na_2SO_4 . The organic layer was concentrated under reduced pressure to afford 45 (0.42 g, 91%).

¹H NMR (CDCl₃): δ 4.34-4.50 (m, 1H), 4.09-4.15 (m, 2H), 3.38-3.51 (m, 1H), 2.16-2.20 (m, 1H), 1.76-1.88 (m, 3H), 1.54-1.63 (m, 2H), 1.42 (d, *J* = 5.6 Hz, 9H), 1.21-1.26 (m, 4H), 1.17 (bs, 1H); 1.12-1.15 (m, 3H), MS (*m*/*z*) 230.2 (M -56)⁺.

4-(Tert-butoxycarbonylamino)-1-methyl-cyclohexanecarboxylic acid (46).

To a solution of **45** (0.41 g, 1.43mmol) in a mixture of THF:MeOH (18 ml) was added $LiOH.H_2O$ (0.18 g, 4.31 mmol) in water (4 ml). The reaction mixture was stirred at 50-60 °C for 18 h. The reaction mixture was concentrated under reduced pressure. The residue was taken in

Journal of Medicinal Chemistry

water, acidified up to pH 2 using 3 N HCl, and extracted with ethyl acetate. The organic layer was separated and washed with water, brine, dried over Na_2SO_4 . The organic layer was concentrated under reduced pressure to afford **46** (0.34 g, 92 %).

¹H NMR (CDCl₃): δ 4.34-4.50 (m, 1H), 4.09-4.15 (m, 2H), 3.38-3.51 (m, 1H), 2.16-2.20 (m, 1H), 1.76-1.88 (m, 3H); 1.54-1.63 (m, 2H); 1.42 (d, *J* = 5.6 Hz, 9H); 1.21-1.26 (m, 4H), 1.17 (bs, 1H), 1.12-1.15 (m, 3H); MS (*m*/*z*) 202.1 (M-56)⁺.

Tert-butylN-[4-[(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)carbamoyl]-4-methyl-cyclohexyl]carbamate (47).

To a solution of **46** (0.34 g, 1.28 mmol) and **10** (0.33 g, 1.28 mmol) in dry DMF (4ml), HOBt (0.17 g, 1.28 mmol) and NMM (0.42, 3.84 mmol) at 0 °C were added. The reaction mixture stirred at 0 °C for 15 min. EDCI (3.84 mmol) was then added to the reaction mixture and stirred at room temperature for 14 h. Water was added to the reaction mixture. The solid obtained was filtered and dried. The crude product obtained was purified by column chromatography (230-400 silicagel, 50% ethyl acetate: 50 % hexane) to afford the title compound to **47** (0.25 g, 34%).

¹H NMR (CDCl₃): δ 9.05 (bs, 1H), 6.85-6.88 (m, 2H), 4.51 (bs, 1H), 3.99 (s, 3 H), 3.88 (bs, 4H), 3.52 (bs, 1H), 3.11 (bs, 4H), 1.91-1.93 (m, 4H), 1.70-1.74 (m, 2H), 1.45 (s, 9H), 1.33 (s, 3H), 1.24-1.27 (m, 2H); MS (*m/z*) 505.3 (M + H)⁺.

4-Amino-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-1-methyl cyclohexane carboxamide (48).

To a solution of 47 (0.07 g, 0.138 mmol) in CH_2Cl_2 (3 mL) was added 3N methanolic HCl (5 ml). The reaction mixture was then stirred at room temperature for 14 h. The reaction mixture was concentrated under reduced pressure. The residue obtained was triturated with hexane and

dried to get pure 4-amino-N-(4-methoxy-7-morpholino-1, 3-benzothiazol-2-yl)-1-methylcyclohexanecarboxamide as HCl salt (0.05 g, 89%).

¹H NMR (DMSO-d₆): δ 12.24 (bs, 1H), 7.83-7.87 (m, 2H), 6.88-6.95 (m, 2H), 3.87 (s, 3H), 3.78 (t, *J* = 4.4 Hz, 4H), 3.01 (t, *J* = 4.4 Hz, 4H), 3.04 (bs, 1H), 1.78-1.82 (m, 5H), 1.57-1.60 (m, 3H), 1.27 (s, 3H); MS (*m*/*z*) 405.2 (M + H)⁺.

4-(Diethylamino)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-1-methyl-

cyclohexanecarboxamide (49).

To a solution of **48** (0.05g, 0.123 mmol) in methanol (1 mL) were added sodium acetate (0.021g, 0.258 mmol), catalytic amount of acetic acid, and acetaldehyde solution (0.07 g, 0.172 mmol). The reaction mixture was stirred at room temperature for 15 min and sodiumcyanoborohydride (0.014 g, 0.209 mmol) was added in single portion. The resulting reaction mixture was then stirred at room temperature for 48 h. It was then quenched by addition of water and extracted with ethyl acetate. The organic layer was separated and washed with water, brine, dried over Na₂SO₄. The organic layer was concentrated under reduced pressure. The resulting crude product was purified by HPLC based purification to afford the 4-(diethylamino)-N-(4-methoxy-7-morpholino-1,3-benzothiazol-2-yl)-1-methyl-cyclohexanecarboxamide as an off white solid, **49** (6 mg, 11%).

mp 113-116 °C; ¹HNMR (CDCl₃): δ 12.13 (bs, 1H), 6.86-6.94 (m, 2H), 3.99 (s, 3H), 3.89 (t, J = 4.0 Hz, 4H), 3.33 (bs, 2H), 3.14 (bs, 2H), 3.09 (t, J = 4.0 Hz, 4H), 2.11 (bs, 3H), 1.97 (bs, 5H), 1.42 (s, 3H), 1.39 (t, J = 6.8 Hz, 6H); ¹³C NMR (DMSO-d₆): δ 177.5, 157.2, 148.1, 140.0, 139.1, 126.4, 112.6, 108.0, 66.5, 58.0, 55.8, 51.4, 43.2, 41.6, 31.9, 23.2, 19.5, 13.2 MS (*m*/*z*) 461.3 (M + H)⁺; HPLC 96%; HRMS (C₂₄H₃₇N₄O₃S) calulated 461.2581 (M + H)⁺; found 461.2582.

BIOLOGY

Radioligand Binding for Adenosine Receptors A1, A2A, A2B and A3.

Human adenosine receptor (A1, A2A, A2B and A3) cDNA was stably transfected into HEK-293 cells (referred to as HEK-A1, HEK-A2A, HEK-A2B, HEK-A3 cells). The HEK-293 cell was obtained from ATCC. The cells monolayer was washed with PBS once and harvested in a buffer containing 150 mM NaCl, 1 mM EDTA, 50 mM Tris, pH 7.4 (10 mM EDTA, 10 mM HEPES, pH 7.4 for HEK-A₃) at 1500 rpm for 5 min at room temperature. The cell pellet was incubated in sonication buffer containing 1 mM EDTA, 5 mM Tris, pH 7.4 (1 mM EDTA, 10 mM HEPES, pH-7.4 for HEK-A₃) for 10 mins at 4 °C followed by sonication on ice for 6 min. The lysate was centrifuged at 1000 x g for 10 min at 4 $^{\circ}$ C and the pellet was discarded. The supernatant was centrifuged at 49,000 x g for 45 min at 4 °C. The resultant protein pellet was resuspended in sonication buffer supplemented with 1 U/ml adenosine deaminase (ADA, Roche) and incubated for 30 min at room temperature with constant mixing. The protein was washed twice with same buffer at 49,000 x g for 45 min at 4 °C and the final protein was stored in 50 mM Tris, pH 7.4 supplemented with 1 U/mL ADA and 10 % sucrose (1 mM EDTA, 5 mM Tris, pH 7.4, 1 U/ml ADA and 10% sucrose for HEK-A3). The protein concentration was estimated by Bradford assay and aliquots were stored at -80 °C.

The binding affinity and selectivity of test compounds was determined using radioligand binding assays. DPCPX, **5** (Preladenant), 3-Ethyl-3,9-dihydro-1-propyl-8-[1-[[3-(trifluoromethyl)phenyl]methyl]-1H-pyrazol-4-yl]-1H-purine-2,6-dione (CVT-6883)³³ and 3-Ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(\pm)-dihydropyridine-3,5-dicarboxylate (MRS-1191)³⁴ were used as internal standards. Competition radioligand binding assays were started by mixing 1 nM [³H]-DPCPX (A₁), 1 nM [2-³H]-4-(2-[7-amino-2-{2-

furyl} {1,2,4}triazolo {2,3-*a*} {1,3,5,}triazin-5-yl amino]ethyl)phenol ([³H]ZM241385) (A_{2A}),³⁵ 1.6 nM radiolabelled N-(4-Cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1Hpurin-8-yl)phenoxy]acetamide ([³H]-MRS-1754) (A_{2B})³⁶ or 2 nM [³H]-HEMADO (A₃) with various concentrations of test compounds (and the respective membranes in assay buffer containing 50 mM Tris pH 7.4, 1 mM EDTA (A₁), 50 mM Tris, pH 7.4, 10 mM MgCl₂, 1 mM EDTA, 1 U/ml ADA (A_{2A}, A₃) or 50 mM Tris pH 6.5, 5 mM MgCl₂, 1 mM EDTA (A_{2B}) supplemented with 1 U/ml ADA. The assays were incubated at room temperature for 90 min with gentle agitation, stopped by filtration using a Harvester (Molecular Devices), and washed four times with ice-cold 50 mM Tris (pH 7.4). Nonspecific binding was determined in the presence of 100 μ M NECA. The affinities of compounds (i.e., *K*₁ values) were calculated using GraphPad software.

cAMP Assay for Adenosine Receptor.

The functional activity of test compounds on human $A_{2A}AdoR$ and selectivity against adenosine receptor subtypes A_1 and A_{2B} was determined using HTRF based cAMP assay (Cisbio). Briefly, overnight seeded cultures (HEK- A_1 , HEK- A_{2A} , HEK- A_{2B}) were treated with 1 U/ml ADA for 90 min at 37 °C and 5% CO₂. Cell suspensions were treated with increasing concentrations of test compounds for 15 min followed by treatment with agonists for 15 min (1nM CPA for HEK- A_1 and 70 nM NECA for HEK- A_{2B}) or 30 min (10 nM CGS-21680 for HEK- A_{2A}) at room temperature with continuous mixing in incomplete DMEM supplemented with 1U/ml ADA. Rolipram (20 μ M) was included in the assay for A_1 and A_{2A} adenosine receptors. For functional activity of HEK- A_1 , cell suspensions were further treated with forskolin for 30 min at room temperature with constant mixing. cAMP levels were quantified using a Flex Station III

1	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
50	
52	
53	
54	
55	
56	
57	
58	
59	

(Molecular Devices) at an excitation maximum of 313 nm and emission maxima of 620 nm and

665 nm. Data was analyzed using GraphPad Prism to generate IC₅₀ and K_i .

ANIMAL CARE, TISSUE ISOLATION AND IN VIVO PROTOCOLS:

All procedures described were reviewed and approved by the Institutional Animal Ethics committee (IAEC) constituted by Committee for the Purpose of Control and Supervision on Experiments (CPCSEA) on Animals, Govt. of India.

PHARMACOKINETIC EXPERIMENTS

General:

Male Wistar rats (weighing $230 \pm 15g$) were obtained from in-house breeding facility, Advinus Therapeutics Ltd., Pune, INDIA. The rats were grouped and housed in polycarbonate cages with not more than 3 rats per cage and maintained under standard laboratory conditions (temperature 25 ± 2 °C) with dark/ light cycle (12 h). Rats were maintained on T.2014C Global 14% protein rodent maintenance diets (Harlan, Teklad diet, USA) and water ad libitum. All procedures described were reviewed and approved by the Institutional Animal Ethics committee (IAEC) constituted by Committee for the Purpose of Control and Supervision on Experiments (CPCSEA) on Animals, Govt. of India.

Pharmacokinetic experiments were carried-out in male Wistar rats following Intravenous (IV) and Per oral (PO) administration. The animals were fasted overnight before the start of experimentation but had free access to water. For IV dosing, test compounds were dissolved in different vehicles and solution formulation (dose volume: 5 mL/kg and formulation strength: 0.6 mg/mL) was administered to each rat at a dose of 3 mg/kg via tail vein. For PO and tissue distribution studies (TDS), suspension formulation (1% Tween 80, 0.5 % NaCMC qs; Dose volume: 10 mL/kg and formulation strength 1 mg/mL) was administered to each rat at a dose of 1 mg/mL.

Journal of Medicinal Chemistry

Study used serial sampling design (n=3/time point) with blood samples collected at 0.008 (IV only), 0.25, 0.5, 1, 2, 4, 6, 8 and 24 h post dose into labeled micro-centrifuge tubes containing K_2 EDTA as an anticoagulant. Separately, blood and brain samples were collected (discrete sampling) at 0.5, 2, 4 and 8 h post oral dose administration for TDS. Tissue samples were washed with phosphate buffer saline (pH 7.4), blotted dry and weighed. All samples were stored below -70 °C until bioanalysis. Blood samples were immediately centrifuged at 6000 RPM for 5 min to separate the plasma.

Tissue samples were homogenized in phosphate buffer saline by homogenizer (Polytron PT 3100, Kinematica). Aliquot of plasma (100 μ L) or tissue sample (300 μ L) was precipitated by addition of 300 μ L acetonitrile containing internal standard and vortex mixed for 1 min and centrifuged at 8000 RPM for 8 min. Finally, supernatant (100 μ L) was collected from each test sample microcentrifuge tube and transferred into HPLC vials for LC/MS/MS to determine the concentrations in plasma. Calibration standards and quality control (separate weighing) samples were prepared in blank rat plasma or brain homogenates.

Data analysis:

Plasma pharmacokinetic parameters were calculated using the non-compartmental analysis tool of WinNonlin Professional software (Version 5.2.1). Pharmacokinetic parameters were determined from individual animals in each group. The area under the plasma concentration-time curve (AUC_{0-t} & AUC_{0-inf}), elimination half-life ($T_{1/2}$), clearance (CL) and volume of distribution (V_{ss}) were calculated from intravenous group. The peak plasma concentration (C_{max}), time to achieve C_{max} (T_{max}), area under the plasma concentration-time curve (AUC_{0-t} & AUC_{0-inf}), and oral bioavailability were calculated from the oral groups.

IN VIVO EFFICACY

Potentiation of L-Dopa-Induced Rotations in 6-OHDA induced circling behavior in nigrostriatal lesioned rats -

Animals

Male Wistar rats (295-305 g) were bred at Advinus Therapeutics Pune, India. The animals were housed with free access to food and water and kept in controlled environment (temperature of 22 ± 2 °C and relative humidity of 55 \pm 5 % and 12:12 light: dark cycle).

The dose formulations were prepared freshly before administration to the respective group of animals. For the preparation of formulation, compound was weighed on weighing balance (Sartorius CPA 2245) and triturated in mortar with pestle. The compounds were mixed with 1% Tween 80 until completely miscible and 0.5% methyl cellulose (MC) was added to make up to required volume.

The animals were anesthetized by intraperitoneal administration of Ketamine (100 mg/kg, i.p.) and Xylazine (10 mg/kg, i.p.) and treated with desipramine (10 mg/kg, i.p.) 30 min before the 6-OHDA injection to block the uptake of toxin by noradrenergic terminals. The rats were subsequently placed in a stereotaxic frame, the skin over the skull was reflected, and a burr hole was drilled through the skull at the following stereotaxic coordinates: -2.2 posterior from bregma (anterior-posterior) and -1.5 lateral from bregma (medial-lateral). Subsequently, a total of 8 μ g of 6-OHDA dissolved in 4 μ l of saline containing 0.05% ascorbic acid was infused -7.8 mm ventral to the dura at a constant flow rate of 1 μ l/min using a 36-gauge needle attached to an infusion pump. Two weeks after the lesion, the rats were administered Apomorphine 0.05 mg/kg, i.p. and selected on the basis of the number of full contralateral rotations quantified by an automated rotametry system during 1h testing period. The rats that made fewer than 100 complete rotations were not included in the subsequent studies.

Compound **49** and **2** were delivered 30 min before the delivery of benserazide. L-Dopa was delivered 30 min later and placed in the rotametry chambers. The number of contralateral rotations was recorded during a 2 h test.

Data were analyzed for statistical significance using the Graphpad Prism using one-way ANOVA and post hoc Dunnett's test.

MOLECULAR MODELING

Receptor and Ligand Structure Preparation

The X-ray crystallographic chimeric protein structure of $A_{2A}AdoR$ with apocytochrome b (562) RIL in complex with small molecule antagonist ZM241385 (PDB ID: 4EIY, resolution 1.8 Å)³⁵ was considered for the purpose of molecular docking. Among the several other crystal structures in the Protein Data Bank (PDB), this structure was particularly selected due to its high resolution and better overall B-factor. A_{2A} GPCR structure was prepared by using the Protein Preparation Wizard tool implemented in Maestro interface (Maestro 10.0, Schrödinger, LLC, New York 2014) using the default parameters and standard protocol. Ligands were prepared using LigPrep module of Maestro interface by generating all possible low energy ionization and tautomeric states within the pH range 7.0 ± 2.0. For the minimization purpose in both, the preparation wizards OPLS 2005 force field was implemented.

GLIDE Docking

An interaction grid was generated for the receptor by using receptor grid generation wizard of GLIDE 6.5 by considering bound antagonist as the reference structure for defining the binding site. The centroid (XYZ coordinates: -0.62, 9.06, 16.85) of workspace ligand was used to generate the grid box. To set a docking protocol, the bound ligand was extracted from the

prepared enzyme structure. The atom and bond type of the extracted ligand were corrected using Ligprep, and was subjected to re-docking by implementing above mentioned grid parameters, and finally RMSD was determined.

After the validation of docking protocol, the set of prepared ligands were docked into the A_{2A} AdoR ligand binding site as defined above using Grid box by using GLIDE 6.5 at SP (Standard Precision) mode. The docking and scoring algorithms of GLIDE have been fully described elsewhere.³⁷⁻³⁸ All docking calculations were performed using the OPLS_2005, while keeping all other parameters at their default value. The best docking pose was selected manually for each molecule on the basis of intermolecular interactions with the key residues and Glide docking score.

ASSOCIATED CONTENT

SUPPORTING INFORMATION

Experimental procedures for synthesis of compounds **8a-o** and **9a-o** including NMR and LCMS data. Biological protocols for *in vitro* ADME experiments. Docking poses of compounds **41** and **49** geometric isomers (Figure S1). 2D interaction diagrams for the docking poses of **2**, compound **12**, **41** and **49** (Figure S2).

AUTHOR INFORMATION

Corresponding Author

*Phone: +91 20 66539600; fax: +91 20 66539620.

E-mail address: <u>sujay.basu@advinus.com</u>

ACKNOWLEDGMENTS

Authors are grateful to the senior management of the Advinus Group for its support and encouragement. Analytical departments are acknowledged for their help during this work. We thank Dr. Anup Ranade for managing intellectual property. Advinus publication no. ADV-A-036.

ABBREVIATIONS USED

EDCI, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide; HOBT, Hydroxybenzotriazole; NMM, N-Methylmorpholine; ADME, absorption, distribution, metabolism, and excretion; PK, Pharmacokinetics; DMPK, Drug metabolism and pharmacokinetics; 6-OHDA, 6-hydroxydopamine; L-DOPA, L-3,4-dihydroxyphenylalanine; PPB, rat plasma protein binding; hERG, Human ether-a-go-go-related gene; CYPs, Cytochromes P450; DPCPX, 8-Cyclopentyl-1,3-dipropylxanthine.

REFERENCES

(1) Fredholm, B. B.; Ijzerman, A. P.; Jacobson, K. A.; Klotz, K. N.; Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. *Pharmacol. Rev.* **2001**, *53*, 527-552.

(2) Moro, S.; Deflorian, F.; Bacilieri, M.; Spalluto, G. Ligand-based homology modelling as attractive tool to inspect GPCR structural plasticity. *Curr. Pharm. Des.* **2006**, *12*, 2175-2185.

(3) Fredholm, B. B.; Irenius, E.; Kull, B.; Schulte, G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. *Biochem. Pharmacol.* **2001**, *61*, 443-448.

(4) (a) Adenosine receptors in health and disease; Wilson, C. N., Mustafa, S. J., Eds.; *Handbook of Experimental Pharmacology*, Vol. 193; Springer: Berlin, 2009. (b) Fredholm, B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Aden, U.; Svenningsson, P. Adenosine receptor signaling in vitro and in vivo. *Drug Dev. Res.* **2001**, *52*, 274-282.

(5) Pinna, A. Adenosine A2A receptor antagonists in Parkinson's disease: Progress in clinical trials from the newly approved Istradefylline to drugs in early development and those already discontinued. *CNS Drugs* **2014**, *28*, 455-474.

(6) Xu, K.; Bastia, E.; Schwarzschild, M. Therapeutic potential of adenosine A2A receptor antagonists in Parkinson's disease. *Pharmacol. Ther.* **2005**, *105*, 267-310.

(7) Suzuki, F.; Shimada, J. Medicinal chemistry of adenosine receptors in brain and periphery. In *Adenosine Receptors and Parkinson's Disease*; Kase, H., Richardson, P. J., Jenner, P., Eds.; Academic Press: New York, 2000; pp 31-48.

(8) (a) Müller, C. E. A2A adenosine receptor antagonists - Future drugs for Parkinson's disease? *Drugs Future* **2000**, *25*, 1043; (b) Kurokawa, M.; Kirk, I. P.; Kirkpatrick, K. A.; Kase,

Journal of Medicinal Chemistry

H.; Richardson, P. J. Inhibition by KF17837 of adenosine A2A receptor-mediated modulation of striatal GABA and ACh release. *Br. J. Pharmacol.* **1994**, *113*, 43-48.

(9) Shook, B. C.; Jackson, P. F. Adenosine A2A receptor antagonists and Parkinson's disease. *ACS Chem. Neurosci.* 2011, *2*, 555-567.

(10) Dasgupta, S.; Ferre', S.; Kull, B.; Hedlund, P.B.; Finnman, U.B.; Ahlberg, S.; Arenas, E.;
Fredholm, B. B.; Fuxe, K. Adenosine A2A receptors modulate the binding characteristics of dopamine D2 receptors in stably cotransfected fibroblast cells. *Eur. J. Pharmacol.* 1996, *316*, 325-331.

(11) Le Moine, C.; Svenningsson, P.; Fredholm, B. B.; Bloch, B. Dopamine-adenosine interactions in the striatum and the globus pallidus: Inhibition of striatopallidal neurons through either D2 or A2A receptors enhances D1 receptor-mediated effects on c-fos expression. *J. Neurosci.* **1997**, *17*, 8038-8048.

(12) Bibbiani, F.; Oh, J. D.; Petzer, J. P.; Castagnoli, N. Jr.; Chen, J. F.; Schwarzschild, M. A.; Chase, T. N. A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson's disease. *Exp. Neurol.* **2003**, *184*, 285-294.

(13) Beavis, Paul A.; Milenkovsk, N.; Henderso, M. A.; John, L. B.; Allard, B.; Loi, S.; Kershaw, M. H.; Stag, J.; Darcy, P. K. Adenosine Receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. *Cancer Immunol. Res.* **2015**, *3*, 506-517.

(14) Leone, R. D.; Lo, Ying-Chun.; Powell, J. D. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy. *Comput. Struct. Biotechnol. J.* 2015, *13*, 265–272.

Mittal, D.; Young, A.; Stannard, K.; Yong, M.; Teng, M. W. L.; Allard, B.; Stag, J.
Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. *Cancer Res.* 2014, *74*, 3652-3658.

(16) (a) Müller, C. E.; Jacobson, K. A. Recent developments in adenosine receptor ligands and their potential as novel drugs. *Biochim. Biophys. Acta, Biomembr.* 2011, *1808*, 1290-1308. (b) Hockemeye, J.; Burbiel, J. C; Müller, C. E. Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: Potential drugs for Parkinson's disease. *J. Org. Chem.* 2004, *69*, 3308-3318. (c) Shimada, J.; Koike, N.; Nonaka, H.; Shiozaki, S.; Yanagawa, K.; Kanda, T.; Kobayashi, H.; Ichimura, M.; Nakamura, J.; Kase, H.; Suzuki, F. Adenosine A2A antagonists with potent anti-cataleptic activity. *Bioorg. Med. Chem. Lett.* 1997, *7*, 2349-2352.

(17) Müller, C. E.; Ferré, S. Blocking striatal adenosine A2A receptors: A new strategy for basal ganglia disorders. *Recent Pat. CNS Drug Discovery* **2007**, *2*, 1-21.

(18) Müller, C. E.; Ferré, S. Blocking striatal adenosine A2A receptors: A new strategy for basal ganglia disorders. *Front. CNS Drug Discovery* **2010**, *1*, 304-341.

(19) (a) Shah U., Hogson R. Recent progress in the discovery of adenosine A2A receptor antagonists for the treatment of Parkinson's disease. *Curr. Opin. Drug Discovery Dev.* 2010, 13, 466-480. (b) de Lera Ruiz, M.; Lim, Y. H.; Zheng, J. Adenosine A2A receptor as a drug discovery target. *J. Med. Chem.* 2014, 57, 3623-365.

(20) Slee, D. H.; Zhang, X.; Moorjani, M.; Lin, E.; Lanier, M. C.; Chen, Y.; Rueter, J. K.; Lechner, S. M.; Markison, S.; Malany, S.; Joswig, T.; Santos, M.; Gross, R. S.; Williams, J. P.; Castro-Palomino, J. C.; Crespo, M. I.; Prat, M.; Gual, S.; Díaz, J. L.; Wen, J.; O'Brien, Z.;

Journal of Medicinal Chemistry

(23)

Saunders, J. Identification of novel, water-soluble, 2-amino-*N-pyrimidin*- 4-yl acetamides as A2A receptor antagonists with in vivo efficacy. *J. Med. Chem.* **2008**, *51*, 400-406.

(21) Slee, D. H.; Chen, Y.; Zhang, X.; Moorjani, M.; Lanier, M. C.; Lin, E.; Rueter, J. K.; Williams, J. P.; Lechner, S. M.; Markison, S.; Malany, S.; Santos, M.; Gross, R. S.; Jalali, K.; Sai, Y.; Zuo, Z.; Yang, C.; Castro-Palomino, J. C.; Crespo, M. I.; Prat, M.; Gual, S.; Díaz, J. L.; Saunders, J. 2-Amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists: 1. Structure-activity relationships and optimization of heterocyclic substituents. *J. Med. Chem.* **2008**, *51*, 1719-1729.

(22) Vu, C. B.; Shields, P.; Peng, B.; Kumaravel, G.; Jin, X.; Phadke, D.; Wang, J.; Engber, T.; Ayyub, E.; Petter, R. C. Triamino derivatives of triazolotriazine and triazolopyrimidine as adenosine A2A receptor antagonists. *Bioorg. Med. Chem. Lett.* 2004, *14*, 4835-4838.

(a) Neustadt, B. R.; Liu, H.; Hao, J.; Greenlee, W. J.; Stamford, A. W.; Foster, C.; Arik,

L.; Lachowicz, J.; Zhang, H.; Bertorelli, R.; Fredduzzi, S.; Varty, G.; Cohen-Williams, M.; Ng,
K. Potent and selective adenosine A2A receptor antagonists: 1,2,4-Triazolo[1,5-c]pyrimidines. *Bioorg. Med. Chem. Lett.* 2009, *19*, 967-971. (b) Zhou, G.; Aslanian, R.; Gallo, G.; Khan,
T.; Kuang, R.; Purakkattle, B.; De, Ruiz M.; Stamford, A.; Ting, P.; Wu, H.; Wang, H.; Xiao,
D.; Yu, T.; Zhang, Y.; Mullins, D.; Hodgson, R. Discovery of aminoquinazoline derivatives as human A(2A) adenosine receptor antagonists. *Bioorg. Med. Chem. Lett.* 2016, *26*, 1348-1354.

(24) Francis, J. E.; Cash, W. D; Psychoyos, S.; Ghai, G.; Wenk, P.; Friedmann, R. C; Atkins, C.; Warren, V.; Furness, P.; Hyun, J. L; Stone, G. A.; Desai, M.; Williams, M. Structure-activity profile of a series of novel triazoloquinazoline adenosine antagonists. *J. Med. Chem.* 1988, *31*, 1014-1020.

(25) Neustadt, B. R; Hao, J; Lindo, N; Greenlee, W. J; Stamford, A. W; Tulshian, D.; Ongini,

E.; Hunter, J.; Monopoli, A.; Bertorelli, R.; Foster, C.; Arik, L.; Lachowicz, J.; Ng, K.; Feng, K. I. Potent, selective, and orally active adenosine A2A receptor antagonists: Arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 1376-1380.

(26) (a) Neustadt, B. R.; Hao, J.; Liu, H.; Boyle, C. D.; Chackalamannil, S.; Shah, U. G.; Stamford, A.; Harris, J. M. Preparation of pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]-pyrimidine adenosine A2A receptor antagonists. *US-20050239795*, Oct 27, **2005**.

(b) Deng, Q.; Lim, Y. H.; Anand, R.; Yu, Y.; Kim, J. H.; Zhou, W.; Zheng, J.; Tempest, P.; Levorse, D.; Zhang, X.; Greene, S.; Mullins, D.; Culberson, C.; Sherborne, B.; Parker, E. M.; Stamford, A.; Ali, A. Use of molecular modeling aided design to dial out hERG liability in adenosine A2A receptor antagonists. *Bioorg. Med. Chem. Lett.* **2015**, *25*, 2958-2962.

(27) Flohr, A.; Moreau, J. L.; Poli, S. M.; Riemer, C.; Steward, L. 4-Hydroxy-4-methylpiperidine-1-carboxyclicacid (4-methoxy-7-morpholin-4-yl-benzothiazol-2-yl)-amide. *US-*, Nov 24, **2005**,

(28) (a) Flohr, A.; Riemer, C. Substituted benzothiazoles. *WO-2006008040*, Jan 26, 2006 (b)
Flohr, A.; Riemer, C. Benzothiazole derivatives. *WO-2006008041*, Jan 26, 2006.

(29) Yao, W.; Xu, M.; Zhang, C.; Agrios, K.; Metcalf, B.; Zhuo, J. Amido compounds and their uses as pharmaceuticals. *WO-2006002349*, Jan 5, **2006**.

(30) Norcross, R. D. Thiazolopyridine. US-2005065151, Mar 24, 2005.

(31) Barr, K.; Maclean, J.; Zhang, H.; Beresis, R.; Zhang, D. 3-Cyclohexenyl substituted indole and indazole compounds as ROR gammaT inhibitors and uses thereof. *WO-2014026328*, Feb 20, 2014.

Journal of Medicinal Chemistry

(32) Lunniss, C. J.; Palmer, J. T.; Pitt, G. R. W.; Axford, L. C.; Davies, D. Benzothiazole derivatives as antibacterial agents and their preparation. *WO-2013138860*. Sep 26, **2013**.

(33) Elzein, E.; Kalla, R. V.; Li, X.; Perry, T.; Gimbel, A.; Zeng, D.; Lustig, D.; Leung,
K.; Zablocki, J.; Discovery of a novel A2B adenosine receptor antagonist as a clinical candidate
for chronic inflammatoryairway diseases. *J. Med. Chem.* 2008, 51,2267-78.

(34) Li, A. H.; Moro, S.; Melman, N.; Ji, X. D.; Jacobson, K. A.; Structure–activity relationships and molecular modeling of 3,5-Diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. *J. Med. Chem.* **1998**, 41, 3186–3201

(35) Liu, W.; Chun, E.; Thompson, A. A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G. W.; Roth, C. B.; Heitman, L. H.; IJzerman, A. P.; Cherezov, V.; Stevens, R. C. Structural basis for allosteric regulation of GPCRs by sodium ions. *Science* **2012**, *337*, 232-236.

(36) Kim, Y. C.; Ji, X.; Melman, N.; Linden, J.; Jacobson, K. A.; Anilide derivatives of an 8phenylxanthine carboxylic congener are highly potent and selective antagonists at human A_{2B} adenosine receptors. *J. Med. Chem.* **2000**, *43*, 1165–1172.

(37) Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L., Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in satabase screening. *J. Med. Chem.* **2004**, *47*, 1750-1759.

(38) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.;
Repasky, M. P.; Knoll, E. H.; Shaw, D. E.; Shelley, M.; Perry, J. K.; Francis, P.; Shenkin, P. S.,
Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking Accuracy. *J. Med. Chem.* 2004, *47*, 1739-1749.

Table of Contents Graphic

