

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 1376-1380

Potent, selective, and orally active adenosine A_{2A} receptor antagonists: Arylpiperazine derivatives of pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidines

Bernard R. Neustadt,^{a,*} Jinsong Hao,^a Neil Lindo,^a William J. Greenlee,^a Andrew W. Stamford,^a Deen Tulshian,^a Ennio Ongini,^b John Hunter,^a Angela Monopoli,^b Rosalia Bertorelli,^b Carolyn Foster,^a Leyla Arik,^a Jean Lachowicz,^a Kwokei Ng^a and Kung-I Feng^a

^aDepartments of Chemical Research, CNS Pharmacology, Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA ^bSchering-Plough Research Institute, San Raffaele Science Park, 20132 Milan, Italy

> Received 11 October 2006; revised 20 November 2006; accepted 30 November 2006 Available online 3 December 2006

Abstract—Antagonism of the adenosine A_{2A} receptor offers great promise in the treatment of Parkinson's disease. Employing the known pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidine A_{2A} antagonist SCH 58261 as a starting point, we identified the potent and selective (vs. A1) antagonist 11 h, orally active in the rat haloperidol-induced catalepsy model. We further optimized this lead to the methoxyethoxyethyl ether **12a** (SCH 420814), which shows broad selectivity, good pharmacokinetic properties, and excellent in vivo activity.

© 2006 Elsevier Ltd. All rights reserved.

Parkinson's disease (PD) is a very serious neurological disorder, and current methods of treatment fail to achieve long-term control. Since adenosine A_{2A} receptor antagonists have been shown to restore the deficits caused by degeneration of the striatonigral dopamine system, which is compromised by the loss of striatal neurons in this disease, A_{2A} antagonism affords a possible treatment for PD.¹ The A_{2A} antagonist KW-6002 (istradefylline) was shown to be effective in animal models of PD, and recent clinical studies demonstrated efficacy in alleviation of symptoms of the disease.²

Adenosine A_{2A} receptor antagonists of several structural types have been described. The earliest described are xanthines. Subsequently, non-xanthines CGS 15943³ and CP 66,713⁴ were reported. These are non-selective for the A_{2A} receptor relative to the A_1 receptor. KW-6002 is a xanthine with moderate receptor selectivity.² Several other bicyclic systems have been described with

0960-894X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.11.083

good potency and selectivity.⁵ Beginning in 1994, reports described a series of pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidines, some with good selectivity.⁶ The parent compound of this tricyclic series is SCH 58261,^{6c} a high-affinity A_{2A} receptor antagonist ($K_i = 2 \text{ nM}$), which shows potent in vivo activity in animal models of PD. However, SCH 58261 is only moderately selective for A_{2A} receptors over A_1 receptors, possesses very poor solubility, and fails to show activity upon oral administration. We report the discovery of high-affinity A_{2A} receptor antagonists with improved selectivity and potent oral activity through modification of the phenethyl side chain of SCH 58261.⁷

For preparation of compounds 1 (Scheme 1) we initially adopted the previously reported method, ^{6b} targeting key intermediate 3 that could be alkylated at the 7-position. However, this route behaved poorly in our hands, with 2 producing primarily 4, rather than the required 3. We developed an alternative synthesis of 3 (Scheme 2) that begins with commercially available 5.⁸ Dehydrative cyclization of 7 with N,O-bis(trimethylsilyl)acetamide (BSA) at reflux proceeded with concomitant Dimroth rearrangement⁹ to afford the desired product 3.

Keywords: Adenosine A_{2A}; Parkinson's; Catalepsy; Pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidine.

^{*} Corresponding author. Tel.: +1 908 740 3495; fax: +1 908 740 7152; e-mail: bernard.neustadt@spcorp.com

SCH 58261 prepared by alkylation of **3** from the newly developed route was identical by ¹H and ¹³C NMR spectroscopy to an authentic sample prepared by the published route,^{6b} confirming that the required Dimroth rearrangement had occurred. In addition, the structure of SCH 58261 was confirmed independently by X-ray crystallography,¹⁰ rigorously establishing the structural assignments.

A variety of alkylated products were prepared from 3. We found that arylpiperazine derivatives of type 11 were of particular interest. These were produced by alkylation of 3 (Scheme 3) with the bis-tosylate derived from ethylene glycol, which afforded the desired tosylate 10 as the major product, along with minor amounts of the N8 regioisomer. Amination of 10 with *N*-arylpiperazines and related amines proved very efficient and allowed

Scheme 1. Desired targets and a critical step in the previously reported synthetic route to pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines.

Scheme 2. Newly developed synthetic route to pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines.

Scheme 3. Convergent synthetic route from intermediate 10.

the separation of N7- and N8-alkylated materials to be carried out only once, at the stage of precursor 10. Requisite *N*-arylpiperazines were typically prepared by Buchwald–Hartwig amination¹¹ of aryl bromides with piperazine.

The majority of arylpiperazine derivatives that were prepared afforded high A_{2A} receptor binding affinity, with high selectivity over A_1 receptors¹² (Table 1). Affinity was assessed using radioligand competition assays as previously described;¹² SEM values were equal to or below 15% of derived K_i values. Among these, the first to demonstrate significant oral activity in the rat haloperidol-induced catalepsy assay¹³ was the unsubstituted phenylpiperazine **11a**. Potent oral activity was observed at 1.0 mg/kg at 1 h post-dose, but not at 4 h. This is consistent with the observed metabolic conversion of **11a** to the *p*-hydroxyphenyl derivative **11b**, which was orally inactive at the 1.0 mg/kg dose. In an effort to identify analogs with improved duration of activity, a number of phenyl-substituted analogs **11c–11k** that offered the potential to block metabolism were profiled in the catalepsy assay. Of these, the 2,4-difluorophenyl derivative **11h** (SCH 412348) and the 2,4,6-trifluorophenyl derivative **11k** displayed potent anti-cataleptic activity at a dose of 1.0 mg/kg, and the activity was sustained at the 4 h time point.

While SCH 412348 and **11k** displayed potent oral activity, their solubility remained poor, and subsequent efforts were directed toward improving solubility by further modifying the phenylpiperazine substitution. Accordingly, analogs incorporating ether-linked substituents were prepared, exemplified by **12a–12g** (Table 2).

Table 1. Activity of arylpiperazine compounds

Compound	Ar	$A_{2A} K_i^a$, nM	A_1/A_{2A}^{a}	Rat catalepsy, % inhibition at 1 mg/kg ^b	
				1 h	4 h
11a	گ	1.6	343	52	0
11b	но-	1.3	186	0	
11c	EtO-	1.4	848	27	
11d	NС-{	2.1	571	0	
11e	۶	1.0	101	8	
11f	CI	0.5	1348	11	
11g	۶ ۶	0.6	894	20	25
11h	F	0.6	>1600	75	80
11i	F F - - - - - - - - - - - - - - - - - -	1.4	169	45	
11j	F F F	0.6	1498	65	40
11k	F F	1.1	319	65	75

^a Average of duplicate determinations, human receptors.

^b Average for n = 3. Maximum reduction attainable is 60–80%.

. .. .

Table 2. 2-(Methoxyethoxy)phenyl and related substitution

$R \xrightarrow{R'} N \xrightarrow{N} N \xrightarrow{N}$								
Compound	R	R ′	$A_{2A} K_i^a$, nM	A ₁ /A _{2A} ^a	Rat catalepsy, % inhibition at 1 mg/kg ^b			
					1 h	4 h		
12a	MeOO-\$	Н	1.1	1340	77	70		
12b	MeOO-Ş	F	0.4	1736	60	70		
12c	ноо-۶	Н	0.6	1525	15	25		
12d [°]	MeOO_> Me	Н	1.6	539	55	20		
12e	Me O-S	Н	0.8	427	15	10		
12f°	Me_O−Ş OS-∕	Н	2.2	523	30	5		
12g	MeOO-\$	Н	0.6	1158	8	2		
12h	⊳_م`_٥-۶	Н	0.6	930	59	30		

^a See Table 1.

^b See Table 1.

^cRacemic compound.

In several cases these exhibited sub-nanomolar A_{2A} receptor binding affinity and retained excellent selectivity over A_1 receptors. Of particular interest were the methoxyethoxy derivatives **12a** and **12b**, which displayed robust oral anti-cataleptic activity that was maintained at 4 h, and **12a** (SCH 420814) was subjected to more extensive profiling.

SCH 420814 exhibits high affinity for both human and rat A_{2A} receptors, with K_i values of 1.1 and 2.5 nM, respectively. In addition, the compound is more than 1000-fold selective for human A_{2A} receptors over A_{1} ,¹⁴ A_{2B} ,¹⁵ and A_3 receptors,¹⁴ with K_i values at human A_1 , A_{2B} , and A_3 receptors of >1000 nM, >1700 nM, and >1000 nM, respectively. In cell-based assays, SCH 420814 blocked adenylate cyclase activity stimulated by the A_{2A} agonist CGS 21680 with K_b values of 0.7 nM (rat) and 1.3 nM (human), confirming that it is an antagonist of A_{2A} receptors. The compound did not show significant binding against a panel of 59 unrelated receptors, enzymes, and ion channels.¹⁶ In vivo, SCH 420814 dose-dependently reversed haloperidol-induced catalepsy in the rat with a MED of 0.3 mg/kg 1 h after oral administration (Fig. 1). The solubility of SCH 420814 as the crystalline free base in water was 0.2 μ M at native pH (5.1),¹⁷ and 2 mM in 0.01 N HCl. Pharmacokinetic properties of SCH 420814 in the rat are shown in Table 3. In this species the compound demonstrated a relatively short half-life ($t_{1/2}$), moderate clearance (Cl), a high steady-state

Figure 1. Dose–response of oral SCH 420814 in rat haloperidolinduced catalepsy. **P < 0.01 versus vehicle, Dunnett's *t*-test.

Table 3. Rat pharmacokinetic properties of SCH 420814 HCl salt^a

po dose	iv dose	C _{max} po	T _{max} , po	AUC po	<i>t</i> _{1/2} iv (h)	Cl, iv	V _{ss} , iv	F _{po}
(mg/kg)	(mg/kg)	(nM)	(h)	(nM h)		(mL min ⁻¹ kg ⁻¹)	(L kg ⁻¹)	(%)
3	1	762	0.25	1560	2.1	37	2.6	57

^a Mean values, n = 3 per route.

volume of distribution (V_{ss}), and a brain-to-plasma ratio of 1. When administered to rats as the hydrochloride salt, the compound was well absorbed, with a measured oral bioavailability of 57%. In several species, a major metabolite was the O-desmethyl compound.

In conclusion, novel, orally active phenylpiperazine adenosine A_{2A} receptor antagonists derived from SCH 58261 were identified, exemplified by SCH 412348. Optimization of the phenylpiperazine substitution resulted in identification of SCH 420814, which displays potent oral anti-cataleptic activity and favorable pharmacokinetic properties in rats. Further pharmacological characterization of SCH 412348 and SCH 420814 will be reported in due course.

References and notes

- (a) Jacobson, K. A.; van Galen, P. J. M.; Williams, M. J. Med. Chem. 1992, 35, 4007; (b) Muller, C. E. Drugs of the Future 2000, 25, 1043; (c) Schwarzschild, M. A.; Agnati, L.; Fuxe, K.; Chen, J-F.; Morelli, M. Trends Neurosci. 2006, 29, 647.
- (a) Bara-Himenez, W.; Sherzai, A.; Dimitrova, T.; Favit, A.; Bibbiani, F.; Gillespie, M.; Morris, M. J.; Mouradian, M. M.; Chase, T. N. *Neurology* **2003**, *61*, 293; (b) Hauser, R. A.; Hubble, J. P.; Truong, D. D. *Neurology* **2003**, *251*, 297.
- Francis, J. E.; Cash, W. D.; Psychoyos, S.; Ghai, G.; Wenk, P.; Friedmann, R. C.; Atkins, C.; Warren, V.; Furness, P.; Hyun, J. L.; Stone, G. A.; Desai, M.; Williams, M. J. Med. Chem. 1988, 31, 1014.
- Sarges, R.; Howard, H. R.; Brown, R. G.; Lebel, L. A.; Seymour, P. A.; Koe, B. K. J. Med. Chem. 1990, 33, 2240.
- For recent examples of bicyclic systems, see: (a) Vu, C. B.; Pan, D.; Peng, B.; Sha, L.; Kumaravel, G.; Jin, X.; Phadke, D.; Engber, T.; Huang, C.; Reilly, J.; Tam, S.; Petter, R. C. *Bioorg. Med. Chem. Lett.* 2004, *14*, 4831; (b) Vu, C. B.; Shields, P.; Peng, B.; Kumaravel, G.; Jin, X.; Phadke, D.; Wang, J.; Engber, T.; Ayyub, E.; Petter, R. C. *Bioorg. Med. Chem. Lett.* 2004, *14*, 4835; (c) Dowling, J. E.; Vessels, J. T.; Haque, S.; Chang, H. X.; van Vloten, K.; Kumaravel, G.; Engber, T.; Jin, X.; Phadke, D.; Wang, J.; Ayyub, E.; Petter, R. C. *Bioorg. Med. Chem. Lett.* 2005, *15*, 4809; (d) Weiss, S. M.; Benwell, K.; Cliffe, I. A.; Gillespie, R. J.; Knight, A. R.; Lerpiniere, J.; Misra, A.;

Pratt, R. M.; Revell, D.; Upton, R.; Dourish, C. T. *Neurology* **2003**, *61* (Suppl. 6), S101.

- (a) Baraldi, P. G.; Manfredini, S.; Simoni, D.; Zapaterrra, L.; Zocchi, C.; Dionisotti, S.; Ongini, E. *Bioorg. Med. Chem. Lett.* **1994**, *4*, 2539; (b) Baraldi, P. G.; Cacciari, B.; Spalutto, G.; Villatoro, M. J. P.; Zocchi, C.; Dionisotti, S.; Ongini, E. J. Med. Chem. **1996**, *39*, 1164; (c) Ongini, E. *Drug Dev. Res.* **1997**, *42*, 63; (d) Baraldi, P. G.; Cacciari, B.; Spalutto, G.; Bergonzoni, M.; Dionisotti, S.; Ongini, E.; Varani, K.; Borea, P. A. J. Med. Chem. **1998**, *41*, 2126; (e) Baraldi, P. G.; Fruttarolo, F.; Tabrizi, M. A.; Preti, D.; Romagnoli, R.; El-Kashef, H.; Moorman, A.; Varani, K.; Gessi, S.; Merighi, S. K.; Borea, P. A. J. Med. Chem. **2003**, *46*, 1229; (f) Baraldi, P. G.; Tabrizi, M. A.; Bovero, A.; Avitabile, B.; Preti, D.; Fruttarolo, F.; Romagnoli, R.; Varani, K.; Borea, P. A. *Eur. J. Med. Chem.* **2003**, *38*, 367.
- 7. This work was reported in part at the American Chemical Society 231st National Meeting (March 2006), paper MEDI 204.
- 8. Klötzer, W.; Herberz, M. *Monats. Chem.* **1965**, *96*, 1567, Also purchased from AstaTech, Inc.
- 9. El Ashry, E. S. H.; El Kilany, Y.; Rashed, N.; Assafir, H. Adv. Heterocyclic Chem. 2000, 75, 79.
- 10. Professor Andrew McPhail, private communication.
- Morita, S.; Kitano, K.; Matsubara, J.; Ohtani, T.; Kawana, Y.; Otsubo, K.; Uchida, M. *Tetrahedron* 1998, 54, 4811.
- 12. A detailed description of the adenosine receptor binding assays is provided in *Bioorg. Med Chem. Lett.* **2005**, *15*, 1333, footnote 11.
- (a) Myslobodsky, M. S.; Mintz, M.; Kofman, O. *Pharmacol. Biochem. Behav.* **1981**, *15*, 93; (b) Pinna, A.; Volpini, R.; Cristalli, G.; Morelli, M. *Eur. J. Pharmacol.* **2005**, *512*, 157.
- Assay methodology described in: Ongini, E.; Dionosotti, S.; Gessi, S.; Irenius, E.; Fredholm, B. B. Naunyn Schmiederbergs Arch. Pharmacol. 1999, 359, 7.
- Assay methodology described in: Jacobson, K. A.; Ji, X. D. Drug Design Discov. 1999, 16, 217.
- 16. Includes adrenergic α_{1a} , α_{1b} , α_{2a} , α_{2b} , α_{2c} , β_1 ; NE uptake: AT1 and 2; bradykinin B2; CGRP; CCK1 and 2; CB1 and 2; C5a; CCR2, 3, 6, and 7; CXCR3; dopamine uptake; ET-A and B; FPR1; EGF; galanin and GALR2; glucagon; H3; IL-6; LTB4 and D4; melanocortin; motilin; muscarinic M1-M5; NK1-3; NPY1-5; prostaglandin EP1 and IP; 5-HT 1A, 2C, 6, and 7; progesterone; VIP; and V1 a.
- 17. A single measurement at pH 7.4 gave solubility below 10 ng/mL.