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1. Introduction

The β-carbolines are a large class of secondary metabolites, 
occurring in various living organisms, such as plants, marine 
invertebrates, and microorganisms, and a broad spectrum of 
biological activities (e.g. antimicrobial, antiviral, 
neuropharmocological, antitumor) has been demonstrated for 
them.1 The carbazoles, formal 2-desaza analogues of the β-
carbolines, are also widely distributed in Nature and have 
attracted considerable interest in organic and medicinal 
chemistry.2 Hence, considerable effort has been undertaken for 
the development of synthetic approaches to these two 
chemotypes of natural products.
Whereas the synthesis of β-carbolines bearing various residues at 
C-1, in combination with substituents on ring C, is easily 
achieved starting from tryptamine or tryptophan using the Pictet-
Spengler, Bischler-Napieralski and related reactions (reviewed in 
the literature),3 via Pd-catalyzed cross-coupling reactions of 1-
halogenated β-carbolines,4 or by reaction of 1,9-dimetalated β-
carboline with electrophiles5 β-carbolines bearing additional 
residues at C-3 are far less accessible (except for residues that 
can be derived from the carboxylate group originating from 
tryptophan.6 Tryptamines bearing additional residues in the side 
chain are available via electrophilic substitution of indoles at C-3 
with appropriately substituted nitroalkenes over several steps.3 
Alternative approaches to 1,3-disubstituted β-carbolines utilize 
tryptamine derivatives obtained by functionalization of gramine7 
or Pd-catalyzed cyclization of 3-alkynyl-2-acylindoles.8 
Additional approaches to ring A-substituted β-carbolines have 
also been reported.9

Classical approaches to substituted carbazoles include variations 
of the Fischer indole synthesis10 and transition metal-catalyzed 
cyclizations of diarylamines and related precursor.11 Furthermore, 
Knölker and co-workers’ approach starting from anilines and 
cyclcohexadienyl-tricarbonyliron complexes has found broad 
application,2,12 amongst other more recent approaches.13

In continuation of our recent work on bioactive β-carbolines14 
(e.g. inhibitors of the protein kinases CLK1, DYRK1A, PIM1) 
and carbazoles14b,15) we were interested in the development of a 
flexible approach to both β-carbolines and carbazoles with 
variable substitution patterns on rings A. This aim was most 
likely achievable with a protocol which includes de-novo 
construction of the respective A rings (pyridine in β-carbolines, 
benzene ring in carbazoles) from appropriately substituted, 
readily available precursors. A literature search revealed that 
Duval and Cuny16 described a divergent approach to both β-
carbolines and carbazoles starting from diketoindole precursors 
of type A in 2004. Treatment with base gave, depending on the 
nature of the substituents, 1-hydroxy- (B) or 3-hydroxycarbazoles 
(C), whereas incorporation of ammonia led to 1-substituted 3-
alkyl-β-carbolines (D). However, this protocol is hampered by 
the fact that the synthesis of the required diketoindoles A requires 
a considerable number of steps, including utilization of 
organometallic building blocks (Fig. 1a). 
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Based on an aza-alkylation/Michael addition cascade reaction developed by Kim and co-workers 
we have developed divergent cascade reactions leading to either highly substituted 1-
hydroxycarbazoles, 3-hydroxycarbazoles or β-carbolines, starting from readily accessible ortho-
arylsulfonylaminobenzaldehydes. Olefination of the aldehyde functionality by aldol 
condensation or Wittig olefination gave reactive enone intermediates, which underwent the 
cascade reactions, either in two steps or in one-pot conversions, to give hydroxycarbazoles or 
complex β-carbolines.

2009 Elsevier Ltd. All rights reserved.
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Figure 1: a) Multistep approach to hydroxycarbazoles and β-
carbolines published by Duval and Cuny.16 b) Kim and co-
workers’17 aza-alkylation/Michael addition approach to 2,3-
disubstituted indoles.

This prompted us to develop an improved protocol involving a 
significantly shorter approach to the central diketoindole 
intermediates A and direct processing of these intermediates into 
either β-carbolines or carbazoles. For the construction of the 
central building blocks A we selected a domino aza-
alkylation/Michael addition cascade reaction of 2-
(sulfonylamino)-substituted vinylogous ketones that had been 
previously developed by Kim and co-workers17 for the 
preparation of 3-substituted 2-aroylindoles (Fig. 1b).

We have extended the scope of this diketoindole synthesis to 
aliphatic acyl residues at C-2 of A and developed a protocol for 
the subsequent direct conversion into either β-carbolines or 
hydroxycarbazoles. 

2. Results and Discussion

Various protocols have been published for the synthesis of the 
required (ring-substituted) ortho-arenesulfonylamino enone 
starting materials, either from 2-functionalized anilines or 
nitrobenzenes, and construction of the enone moiety is 
conveniently accomplished either from 2-formyl derivatives (via 
Wittig olefination18 or aldol condensation with methyl ketones19) 
or from 2-halogenated derivatives via Heck-type olefinations 
with enones or allylic alcohols.20 In our hands, aldol 
condensation of aldehyde 1, readily available from commercially 
available 2-aminobenzyl alcohol via one-pot N-
sulfonylation/PCC oxidation,21 with methyl ketones (acetone, 2-
butanone, acetophenone) proved to be most convenient, and 
enones 2a-c were obtained in 79-89% yield. Utilizing Kim and 
co-workers’17a aza-alkylation/Michael addition cascade reaction 
protocol, intermediates 2a-c were reacted with aliphatic and 
aromatic α-bromoketones in presence of trimethylamine to 
achieve N-alkylation, directly followed by treatment with DBU 
to terminate the cascade reaction (intramolecular Michael 
addition, aromatization by desulfonylation). Diketoindoles 3a, 
3c and 3d were isolated in high yields (73-80%), whereas the 

diketones derived from ethyl ketone precursors (3b, 3e) showed 
a high tendency for undergoing immediate intramolecular aldol 
condensation under the basic reaction conditions22 to give the 3-
hydroxycarbazole 4b and the 1-hydroxycarbazole 4e in moderate 
yields. Compound 4b is easily converted into the marine alkaloid 
hyellazole (O-methyl derivative of 4b) by O-methylation,16 
hence our approach favorably compares with previously 
published multi-step total syntheses of hyellazole, which 
typically  afford either indole- or benzene-derived intermediates 
with complex substitution patterns.23

Diketoindoles 3a, 3c and 3d were converted into the 
hydroxycarbazoles 4a, 4c and 4d by treatment with sodium 
hydroxide in ethanol-water in 46-73% yield. The moderate 
yields of some of the obtained 1- and 3-hydroxycarbazoles are in 
part due to the sensitivity of the hydroxycarbazoles to air 
oxidation.16,24,25 As previously observed by Duval and Cuny,16 
diketoindoles bearing two enolizable keto groups had a clear 
preference for the formation of the 1-hydroxycarbazoles 
(Scheme 1). 
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1. Et3N 1.5 equiv.),
acetonitrile,
60 °C, 30 min

2. DBU (3.5 equiv.),
60 °C, 30 min

( 3 equiv.)

Scheme 1: Three-step cascade synthesis of carbazoles starting 
from sulfonamides 2a-c.

With the respective diketoindoles 3a/3c/3d in hand, 1,3-
disubstituted β-carbolines 5a/5c/5d were accessible by treatment 
with ammonium acetate in glacial acetic acid. However, the 
above described tendency for 3b and 3e to cyclize directly to the 
hydroxycarbazoles prevented the option for synthesizing the β-
carbolines 5b/5e. Fortunately, undesired carbazole formation 
could be circumvented by adding excess ammonium acetate 
immediately after DBU-mediated generation of the 
diketoindoles. After heating the reaction mixtures in a sealed 
tube, β-carbolines 5b/5e were obtained directly from enones 
2b/2c in a four-step cascade reaction in 41% and 58% yield 
(Scheme 2).
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Scheme 2: Three-step cascade synthesis of β-carbolines starting 
from sulfonamides 2a-c.

This cascade reaction was further applied to the synthesis of a 3-
alkoxycarbonyl β-carboline. Preparation of the required 
intermediate 6 could not be accomplished with the standard aldol 
condensation of aldehyde 1 and ethyl pyruvate, and Lewis acid–
mediated condensation using BF3/acetic anhydride26 was also not 
successful.  Hence, the required enone moiety was built up by 
Wittig olefination of aldehyde 1 with a pyruvate-derived 
phosphorane. Upon conversion of the obtained α-ketoester 
intermediate 6 with bromoacetophenone under the conditions 
described above for diketoindole synthesis, the desired indole 
was accompanied by poorly separable side-products. It was 
again found that a one-pot procedure involving addition of 
excess ammonium acetate immediately after DBU-mediated 
generation of the diketoindole was most convenient, and 1-
phenylindole-3-carboxylate 7 was obtained in 63% yield 
(Scheme 3).
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Scheme 3: Wittig olefination to give vinylogous ketoester 6, 
followed by one-pot conversion into β-carboline-3-carboxylate 
7.

3. Conclusion

In conclusion, we have, based on valuable previous work on 
both the preparation of diketoindole intermediates17 and their 
further conversion into tricyclic heterocycles,16 developed novel 
short cascade reactions leading to either highly substituted 1-
hydroxycarbazoles, 3-hydroxycarbazoles or β-carbolines starting 
from readily accessible ortho-arylsulfonylaminobenzaldehydes. 
Olefination of the aldehyde functionality by aldol condensation 
or Wittig olefination gave reactive enone intermediates, which 
underwent cascade reactions, either in two steps or in one-pot 
conversions giving either hydroxycarbazoles or complex β-
carbolines. This divergent and straightforward approach should 

find broad application in the synthesis of novel bioactive 
carbazole and β-carboline derivatives.

Supplementary Material

Experimental section and copies of NMR spectra are available as 
supplementary data. 
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