This article was downloaded by: [University Of Maryland] On: 15 October 2014, At: 05:08 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Synthesis and Antimicrobial Activity of Pyrazolyl 1,3,4-Oxadiazoles

Venkatapuram Padmavathi^a, Gali Sudhakar Reddy^a, Guda Dinneswara Reddy^a & Thalari Payani^a

^a Department of Chemistry , Sri Venkateswara University , Tirupati, India

Published online: 03 Feb 2010.

To cite this article: Venkatapuram Padmavathi , Gali Sudhakar Reddy , Guda Dinneswara Reddy & Thalari Payani (2010) Synthesis and Antimicrobial Activity of Pyrazolyl 1,3,4-Oxadiazoles, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 40:4, 482-493, DOI: <u>10.1080/00397910902985531</u>

To link to this article: http://dx.doi.org/10.1080/00397910902985531

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

Synthetic Communications[®], 40: 482–493, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 0039-7911 print/1532-2432 online DOI: 10.1080/00397910902985531

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF PYRAZOLYL 1,3,4-OXADIAZOLES

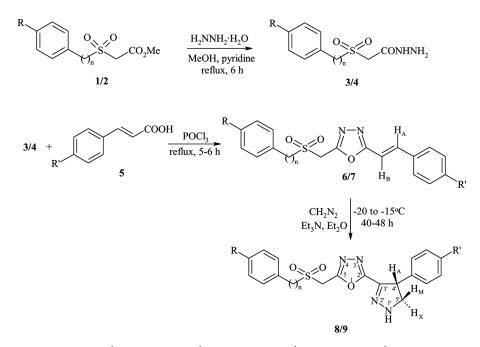
Venkatapuram Padmavathi, Gali Sudhakar Reddy, Guda Dinneswara Reddy, and Thalari Payani

Department of Chemistry, Sri Venkateswara University, Tirupati, India

The pyrazolyl oxadiazoles are synthesized from arylsulfonylacetic acid methyl ester and benzylsulfonylacetic acid methyl ester. Preliminary antimicrobial screening of the compounds showed that bis heterocycles with a chloro-substituted benzyl moiety exhibited high activity.

Keywords: Antimicrobial activity; 1,3-dipolar cycloaddition; 1,3,4-oxadiazoles; pyrazolines

INTRODUCTION


The development of simple, facile, and efficient methodologies for the synthesis of five-membered heterocycles is one of the major challenges in the field of synthetic organic chemistry. Among five-membered heterocycles, oxadiazoles and pyrazoles represent a class of compounds of great importance. Symmetrical and unsymmetrical biologically versatile compounds possessing anti-1,3,4-oxadiazoles are inflammatory,^[1] antifungal,^[2–4] antiparasitic,^[5] antimicrobial,^[6,7] and antiviral activities.^[8-10] The widespread use of 1.3.4-oxadiazoles as a scaffold in medicinal chemistry established this moiety as a member of the privileged structures class. In addition, pyrazolines have gained importance because of their chemotherapeutic properties. Celecoxib, a pyrazole derivative, is now widely used in the market as an antiinflammatory drug.^[11] Different methods have been reported for the synthesis of 1,3,4-oxadiazoles involving cyclization of diacylhydrazines prepared from acyl chlorides and hydrazine. Several cyclodehydrating agents such as $Et_2O \cdot BF_3$,^[12] 1,1,1,3,3,3-hexamethyldisilazane,^[13] triflic anhydride,^[14] phosphorus pentoxide,^[15] polyphosphoric acid,^[16] thionyl chloride,^[17,18] phosphorus oxychloride,^[19] and sulfuric acid^[20] have been used. Similarly, 1,3-dipolar cycloaddition of 1,3-dipole onto an alkene in a [3+2] manner is a facile route for the synthesis of pyrazolines.^[21,22] Among the ylides, diazomethane and nitrile imines have been used extensively as reactive intermediates. The present communication deals with the synthesis and antimicrobial activity of hitherto unknown bis heterocycles having oxadiazole and pyrazoline moieties by a simple, facile, and elegant synthetic methodology.

Received January 23, 2009.

Address correspondence to Venkatapuram Padmavathi, Department of Chemistry, Sri Venkateswara University, Tirupati 517502, India. E-mail: vkpuram2001@yahoo.com

RESULTS AND DISCUSSION

To synthesize the desired bis heterocycles, the acid hydrazides of arylsulfonylacetic acid methyl ester (1) and arylmethanesulfonylacetic acid methyl ester (2) are used as synthetic intermediates. The arylsulfonylacetic acid hydrazide (3) and arylmethanesulfonylacetic acid hydrazide (4) are prepared by the condensation of the previous compounds with hydrazine hydrate in the presence of pyridine. The cyclocondensation of 3/4 with cinnamic acid 5 in the presence of phosphorus oxychloride led to 2-(styryl)-5-(arylsulfonylmethyl)-1,3,4-oxadiazole (6) and 2-(styryl)-5-(arylmethanesulfonylmethyl)-1,3,4-oxadiazole (7) (Scheme 1). The ¹H NMR spectra of **6a** and **7a** displayed a singlet at δ 4.60, 4.76 for methylene protons flanked between heterocyclic and sulfonyl moieties. Two doublets are observed at δ 7.68, 7.42 in **6a** and at δ 7.55, 7.34 in **7a** that are due to olefin protons, H_A and H_B. The coupling constant value $J_{AB} = 15.7$ in **6a** and 15.1 Hz in **7a** indicates that they possess *E*-configuration. Apart from these, **7a** showed a singlet at δ 5.05 for benzylic protons. The olefin moiety present in 6 and 7 is used to build the pyrazoline ring by 1,3-dipolar cycloaddition of diazomethane. Thus, treatment of 6/7 with diazomethane at -20 to 15° C for 48 h in the presence of Et₃N resulted in 5-(arylsulfonylmethyl)-2-(4',5'-dihydro-4'-phenyl-1'H-pyrazol-3'-yl)-1,3,4-oxadiazole (8) and 5-(arylmethanesulfonylmethyl)-2-(4',5'-dihydro-4'-phenyl-1'H-pyrazol-3'yl)-1,3,4-oxadiazole (9), respectively. The ¹H NMR spectra of 8a and 9a displayed three double doublets at δ 4.64, 4.60 (H_A); 4.04, 4.01 (H_M); and 3.72, 3.66 (H_X), respectively. The coupling constant values $J_{AX} = 4.2$, 4.6; $J_{MX} = 8.7$, 8.6; and $J_{AM} = 12.0, 12.6$ indicate that H_A , H_M are *cis*; H_A , H_X are *trans*, and H_M , H_X are

Scheme 1. (a) R = H, $R^1 = H$; (b) R = H, $R^1 = Cl$; (c) R = Me, $R^1 = H$; (d) R = Cl, $R^1 = H$; and (e) R = Cl, $R^1 = Cl$; n = 0 (1,3,6,8); n = 1 (2,4,7,9).

geminal. Besides, **8a** and **9a** showed a singlet at δ 4.37 and 4.34 for methylene protons present between sulfonyl and the oxadiazole ring. However, **9a** displayed an additional singlet at δ 5.02 for benzylic protons. The structures of **6–9** are further established by ¹³C NMR spectra.

Antimicrobial Testing

The compounds **8** and **9** were tested for in vitro antimicrobial activity against the Gram-positive bacteria *Staphylococcus aureus and Bacillus subtilis*, the Gram-negative bacteria *Klebsiella pneumoniae* and *Proteus vulgaris*, and fungi *Fusarium solani*, *Curvularia lunata*, and *Aspergillus niger*. The primary screen was carried out by the agar disc-diffusion method^[23] using nutrient agar medium. The minimum inhibitory concentration for the most active compounds **9b**, **9d**, and **9e** against the same microorganisms used in the preliminary screening was carried out using the microdilution susceptibility method.^[24] Chloramphenicol and ketoconazole were used as control drugs.

Biological Results

The results of preliminary antibacterial testing for the compounds 8 and 9 are shown in Table 1. The results revealed that 5-(benzylsulfonylmethyl)-2-[4',

Compound	Concentration (µg/disc)	Zone of inhibition (mm)				
		Gram-positive bacteria		Gram-negative bacteria		
		Staphylococcus aureus	Bacillus subtilis	Klebsiella pneumoniae	Proteus vulgaris	
8a	100	15	15	14	12	
	200	18	17	16	15	
8b	100	20	23	19	16	
	200	25	27	21	19	
8c	100	12	11	16	14	
	200	15	13	18	17	
8d	100	20	22	14	18	
	200	24	25	18	21	
8e	100	22	23	16	15	
	200	27	26	19	20	
9a	100	17	19	14	15	
	200	22	25	19	18	
9b	100	28	29	26	26	
	200	32	35	28	30	
9c	100	16	14	15	16	
	200	18	17	18	18	
9d	100	27	30	25	24	
	200	30	33	29	27	
9e	100	32	34	31	29	
	200	36	37	35	33	
Chloramphenicol	100	35	38	37	42	
2	200	41	44	42	45	

Table 1. In vitro antibacterial activity of 8 and 9

5'-dihydro-4'-(*p*-chlorophenyl)-1'*H*-pyrazol-3'-yl]-1,3,4-oxadiazole (**9b**) and 5-(*p*-chlorobenzylsulfonylmethyl)-2-[4',5'-dihydro-4'-(*p*-chlorophenyl)-1'*H*-pyrazol-3'-yl]-1,3,4-oxadiazole (**9e**) exhibited pronounced activity on both Gram (+ve) (32–36 mm) and Gram (–ve) (28–32 mm) bacteria. The compounds **8b**, **8d**, **8e**, **9a**, and **9d** showed moderate to high activity toward Gram (+ve) bacteria (22–27 mm) and moderate activity toward Gram (–ve) bacteria (18–21 mm). On the other hand, **8a**, **8c**, and **9c** displayed the least activity against both bacteria.

All the test compounds inhibited the spore germination of tested fungi *Aspergillus niger, Fusarium solani*, and *Curvularia lunata*. Results of the investigation presented in Table 2 revealed that all the compounds except **8a** and **8c** showed relatively more inhibitory effect on *Fusarium solani* and *Curvularia lunata* than on *Aspergillus niger*. Further, the compounds 5-benzylsulfonylmethyl-2-[4',5'-dihydro-4'-(p-chlorophenyl)-1'H-pyrazol-3'-yl]-1,3,4-oxadiazole (**9b**), 5-(p-chlorobenzylsulfonylmethyl)-2-(4',5'-dihydro-4'-(p-chlorobenzylsulfonylmethyl)-2-[4',5'-dihydro-4'-(p-chlorophenyl)-1'H-pyrazol-3'-yl]-1,3,4-oxadiazole (**9d**), and 5-(p-chlorobenzylsulfonylmethyl)-2-[4',5'-dihydro-4'-(p-chlorophenyl)-1'H-pyrazol-3'-yl]-1,3,4-oxadiazole (**9e**) displayed greater activity.

The minimum inhibitory concentration (MIC) values were determined as the lowest concentration that completely inhibited visible growth of the microorganisms (Table 3). The structure–antimicrobial activity relationship of the synthesized compounds revealed that the compounds having an aryl moiety exhibited the least activity when compared with compounds having a benzyl group. Besides, the

Compound	Concentration (µg/mL)	Zone of inhibition (mm)				
		Fusarium solani	Curvularia lunata	Aspergillus niger		
8a	100	17	19	16		
	200	21	23	19		
8b	100	24	23	17		
	200	27	25	20		
8c	100	15	15	14		
	200	18	19	17		
8d	100	22	20	19		
	200	25	24	22		
8e	100	28	25	20		
	200	31	27	23		
9a	100	20	20	17		
	200	25	23	21		
9b	100	28	28	22		
	200	33	32	26		
9c	100	22	18	18		
	200	26	23	21		
9d	100	27	26	22		
	200	32	30	28		
9e	100	31	34	28		
	200	37	39	32		
Ketoconazole	100	38	41	36		
	200	42	44	39		

Table 2. In vitro antifungal activity of 8 and 9

Compound	S. aureus	B. subtilis	K. pneumoniae	P. vulgaris	F. solani	C. lunata	A. niger
9b	50	100	100	100	100	100	100
9d	50	100	100	200	100	100	100
9e	25	25	50	50	100	50	50
Chloramphenicol	6.25	6.25	6.25	12.5			
Ketoconazole	—	—	_	—	12.5	6.25	6.25

Table 3. Minimum inhibitory concentration (MIC, $\mu g/mL$) of 9b, 9d, and 9e

compounds with a chloro substituent at the 4-position of the aryl ring were the most active. The maximum activity was observed with compounds **9b**, **9d**, and **9e** (Table 3).

CONCLUSIONS

A new class of bis heterocycles, pyrazolyl oxadiazoles, are prepared from arylsulfonylacetic acid methyl ester and benzylsulfonylacetic acid methyl ester with a simple, facile, and well-versed methodology. The compounds having benzyl groups showed greater antimicrobial activity. Further, the presence of a chloro substituent enhances the activity.

EXPERIMENTAL

Melting points were determined in open capillaries on a Mel-Temp apparatus and are uncorrected. The purity of the compounds was checked by thin-layer chromatography (TLC; silica gel H, BDH, ethyl acetate/hexane, 1:3). The infrared (IR) spectra were recorded on a Thermo Nicolet IR 200 Fourier transfrom (FT)–IR spectrometer as KBr pellets, and the wave numbers were given in centimeters⁻¹. The ¹H NMR spectra were recorded in CDCl₃/ dimethylsulfoxide (DMSO-*d*₆) on a Varian EM-360 spectrometer (300 MHz). The ¹³C NMR spectra were recorded in CDCl₃/ DMSO-*d*₆ on a Varian VXR spectrometer operating at 75.5 MHz. All chemical shifts are reported in δ (ppm) using tetramethylsilane (TMS) as an internal standard. The microanalyses were performed on a Perkin-Elmer 240C elemental analyzer. The starting compounds arylsulfonylacetic acid methyl ester (1), arylmethanesulfonylacetic acid methyl ester (2), arylsulfonylacetic acid hydrazide (3), and arylmethanesulfonylacetic acid hydrazide (4) were prepared by the literature procedure.^[25–27]

General Procedure of Synthesis of 2-(Styryl)-5-(arylsulfonylmethyl)-1,3,4-oxadiazole (6a–e)

 $POCl_3$ (4 mL) was added to compounds 3 (5 mmol) and 5 (5 mmol) and heated under reflux for 5–6 h. The excess $POCl_3$ was removed under reduced pressure, and the residue was poured onto crushed ice. The resulting precipitate was filtered, washed with saturated sodium bicarbonate solution and then with water, dried, and recrystallized from ethanol to get 6.

Selected Data

2-(Styryl)-5-(phenylsulfonylmethyl)-1,3,4-oxadiazole (6a). Yellow solid; yield 1.06 g (65%); mp 91–93°C; ¹H NMR (DMSO- d_6) δ (ppm): 4.60 (s, 2H, SO₂-CH₂), 7.42 (d, 1H, H_B, J=15.7 Hz), 7.68 (d, 1H, H_A, J=15.7 Hz), 7.15–7.48 (m, 10H, Ar-H); ¹³C NMR (DMSO- d_6) δ (ppm): 53.4 (CH₂), 137.8 (CN-*C*H), 143.8 (Ar-*C*H), 157.5 (C-5), 165.8 (C-2), 126.8, 127.2, 128.3, 128.6, 129.2, 130.4, 132.2, 133.6 (aromatic carbons); IR (KBr, cm⁻¹): 1569 (C=N), 1536 (C=C), 1345, 1144 (SO₂): Anal. calcd. for C₁₇H₁₄N₂O₃S (326.37): C, 62.56; H, 4.32; N 8.58. Found: C, 62.44; H, 4.35; N, 8.64.

2-(*p***-Chlorostyryl)-5-(phenylsulfonylmethyl)-1,3,4-oxadiazole (6b).** Yellow solid; yield 1.26 g (70%); mp 102–104°C; ¹H NMR (DMSO- d_6) δ (ppm): 4.57 (s, 2H, SO₂-CH₂), 7.38 (d, 1H, H_B, J=15.3 Hz), 7.61 (d, 1H, H_A, J=15.3 Hz), 7.26–7.52 (m, 9H, Ar-H); ¹³C NMR (DMSO- d_6) δ (ppm): 53.8 (CH₂), 137.2 (CN-CH), 143.3 (Ar-CH), 157.6 (C-5), 166.3 (C-2), 126.8, 127.6, 128.1, 128.7, 129.2, 129.6, 134.5, 136.8 (aromatic carbons); IR (KBr, cm⁻¹): 1573 (C=N), 1541 (C=C), 1333, 1137 (SO₂). Anal. calcd. for C₁₇H₁₃ClN₂O₃S (360.81): C, 56.59; H, 3.63; N, 7.76. Found: C, 56.50; H, 3.65; N, 7.80.

2-(Styryl)-5-(*p***-methylphenylsulfonylmethyl)-1,3,4-oxadiazole (6c).** Yellow solid; yield 1.07 g (63%); mp 96–98°C; ¹H NMR (DMSO- d_6) δ (ppm): 2.28 (s, 3H, Ar-CH₃), 4.53 (s, 2H, SO₂-CH₂), 7.46 (d, 1H, H_B, J=15.9 Hz), 7.59 (d, 1H, H_A, J=15.9 Hz), 7.20–7.51 (m, 9H, Ar-H); ¹³C NMR (DMSO- d_6) δ (ppm): 23.4 (Ar-CH₃), 54.1 (CH₂), 138.1 (CN-CH), 144.2 (Ar-CH), 156.4 (C-5), 165.5 (C-2), 125.4, 126.1, 127.3, 128.7, 129.8, 131.7, 134.2, 135.1 (aromatic carbons); IR (KBr, cm⁻¹): 1570 (C=N), 1537 (C=C), 1338, 1131 (SO₂). Anal. calcd. for C₁₈H₁₆N₂O₃S (340.40): C, 63.51; H, 4.74; N, 8.23. Found: C, 63.42; H, 4.70; N, 8.26.

2-(Styryl)-5-(*p***-chlorophenylsulfonylmethyl)-1,3,4-oxadiazole (6d).** Yellow crystals; yield 1.19 g (66%); mp 103–105°C; ¹H NMR (DMSO-*d*₆) δ (ppm): 4.59 (s, 2H, SO₂-CH₂), 7.41 (d, 1H, H_B, *J*=15.5 Hz), 7.64 (d, 1H, H_A, *J*=15.5 Hz), 7.28–7.72 (m, 9H, Ar-H); ¹³C NMR (DMSO-*d*₆) δ (ppm): 56.8 (CH₂), 138.7 (CN-CH), 141.8 (Ar-CH), 156.8 (C-5), 167.2 (C-2), 126.5, 128.9, 129.2, 129.6, 130.5, 133.7, 134.3, 136.5 (aromatic carbons); IR (KBr, cm⁻¹): 1572 (C=N), 1532 (C=C), 1335, 1135 (SO₂); Anal. calcd. for C₁₇H₁₃ClN₂O₃S (360.81): C, 56. 59; H, 3.63; N, 7.76. Found: C, 56.49; H, 3.60; N, 7.78.

2-(p-Chlorostyryl)-5-(*p***-chlorophenylsulfonylmethyl)-1,3,4-oxadiazole (6e). Yellow solid; yield 1.42 g (72%); mp 115–117°C; ¹H NMR (DMSO-d_6) \delta (ppm): 4.51 (s, 2H, SO₂-CH₂), 7.35 (d, 1H, H_B, J=15.2 Hz), 7.57 (d, 1H, H_A, J=15.2 Hz), 7.32–7.87 (m, 8H, Ar-H); ¹³C NMR (DMSO-d_6) \delta (ppm): 57.2 (CH₂), 137.6 (CN-***C***H), 142.3 (Ar-***C***H), 157.3 (C-5), 168.4 (C-2), 125.5, 126.4, 127.8, 129.5, 131.3, 133.7, 134.5, 137.2 (aromatic carbons); IR (KBr, cm⁻¹): 1567 (C=N), 1539 (C=C), 1342, 1129 (SO₂); Anal. Calcd. for C₁₇H₁₂Cl₂N₂O₃S (395.26): C, 51.66; H, 3.06; N, 7.09. Found: C, 51.76; H, 3.09; N, 7.05.**

General Procedure of Synthesis of 2-styryl-5-(arylmethanesulfonylmethyl)-1,3,4-oxadiazole (7a–e)

A mixture of 4 (5 mmol), 5 (5 mmol), and $POCl_3$ (4 mL) was heated under reflux for 5–6 h. The excess $POCl_3$ was removed under reduced pressure, and the residue was poured onto crushed ice. The resulting precipitate was filtered, washed with saturated sodium bicarbonate solution followed by water, dried, and recrystallized from ethanol to get 7.

Selected Data

2-(Styryl)-5-(benzylsulfonylmethyl)-1,3,4-oxadiazole (7a). Yellow solid; yield 1.25 g (74%); mp 101–103°C; ¹H NMR (DMSO- d_6) δ (ppm): 4.76 (s, 2H, SO₂-CH₂), 5.05 (s, 2H, Ar-CH₂), 7.34 (d, 1H, H_B, J=15.1 Hz), 7.55 (d, 1H, H_A, J=15.1 Hz), 7.20–7.57 (m, 10H, Ar-H); ¹³C NMR (DMSO- d_6) δ (ppm): 48.4 (SO₂-CH₂), 58.9 (Ar-CH₂), 138.1 (CN-CH), 145.2 (Ar-CH), 157.4 (C-5), 165.2 (C-2), 127.6, 128.3, 128.9, 129.6, 131.5, 132.6, 133.4, 134.8 (aromatic carbons); IR (KBr, cm⁻¹): 1571 (C=N), 1533 (C=C), 1333, 1141 (SO₂). Anal. calcd. for C₁₈H₁₆N₂O₃S (340.40): C, 63.51; H, 4.74; N, 8.23. Found: C, 63.58; H, 4.78; N, 8.27.

2-(p-Chlorostyryl)-5-(benzylsulfonylmethyl)-1,3,4-oxadiazole (7b). Yellow solid; yield 1.34 g (72%); mp 105–107°C; ¹H NMR (DMSO- d_6) δ (ppm): 4.72 (s, 2H, SO₂-CH₂), 5.07 (s, 2H, Ar-CH₂), 7.38 (d, 1H, H_B, J=15.7 Hz), 7.59 (d, 1H, H_A, J=15.7 Hz), 7.26–7.64 (m, 9H, Ar-H); ¹³C NMR (DMSO- d_6) δ (ppm): 48.7 (SO₂-CH₂), 58.2 (Ar-CH₂), 138.8 (CN-CH), 145.6 (Ar-CH), 157.8 (C-5), 164.6 (C-2), 127.9, 128.7, 129.7, 130.4, 131.8, 133.1, 134.3, 136.6 (aromatic carbons); IR (KBr, cm⁻¹): 1575 (C=N), 1546 (C=C), 1339, 1136 (SO₂). Anal. calcd. for C₁₈H₁₅ClN₂O₃S (374.84): C, 57.68; H, 4.03; N, 7.47. Found: C, 57.60; H, 4.01; N, 7.44.

2-(Styryl)-5-(*p***-methylbenzylsulfonylmethyl)-1,3,4-oxadiazole (7c).** Yellow solid; yield 1.22 g (69%); mp 98–100°C; ¹H NMR (CDCl₃+DMSO-*d*₆) δ (ppm): 2.27 (s, 3H, Ar-CH₃), 4.68 (s, 2H, SO₂-CH₂), 5.11 (s, 2H, Ar-CH₂), 7.31 (d, 1H, H_B, *J*=15.9 Hz), 7.57 (d, 1H, H_A, *J*=15.9 Hz), 7.18–7.62 (m, 9H, Ar-H); ¹³C NMR (CDCl₃+DMSO-*d*₆) δ (ppm): 23.1 (Ar-CH₃), 49.3 (SO₂-CH₂), 57.9 (Ar-CH₂), 138.5 (CN-CH), 146.1 (Ar-CH), 157.2 (C-5), 164.7 (C-2), 125.5, 127.2, 129.5, 131.3, 132.4, 133.0, 133.3, 135.8 (aromatic carbons); IR (KBr, cm⁻¹): 1570 (C=N), 1540 (C=C), 1331, 1134 (SO₂). Anal. calcd. for C₁₉H₁₈N₂O₃S (354.42): C, 64.39; H, 5.12; N, 7.90. Found: C, 64.47; H, 5.09; N, 7.93.

2-(Styryl)-5-(*p***-chlorobenzylsulfonylmethyl)-1,3,4-oxadiazole (7d).** Yellow solid; yield 1.40 g (75%) mp 108–110°C; ¹H NMR (DMSO- d_6) δ (ppm): 4.75 (s, 2H, SO₂-CH₂), 5.02 (s, 2H, Ar-CH₂), 7.36 (d, 1H, H_B, *J*=15.2 Hz), 7.60 (d, 1H, H_A, *J*=15.2 Hz), 7.36–7.78 (m, 9H, Ar-H); ¹³C NMR (DMSO- d_6) δ (ppm): 48.8 (SO₂-CH₂), 58.1 (Ar-CH₂), 138.7 (CN-CH), 147.3 (Ar-CH), 157.9 (C-5), 164.5 (C-2), 125.4, 126.4, 128.1, 129.5, 130.7, 132.1, 135.7, 136.2 (aromatic carbons); IR (KBr, cm⁻¹): 1578 (C=N), 1543 (C=C), 1338, 1146 (SO₂). Anal. calcd. for C₁₈H₁₅ClN₂O₃S (374.84): C, 57.68; H, 4.03; N, 7.47. Found: C, 57.75; H, 4.07; N, 7.52.

2-(p-Chlorostyryl)-5-(p-chlorobenzylsulfonylmethyl)-1,3,4-oxadiazole (7e). Yellow crystals; yield 1.59 g (78%); mp 112–114°C; ¹H NMR (DMSO- d_6) δ (ppm): 4.70 (s, 2H, SO₂-CH₂), 5.09 (s, 2H, Ar-CH₂), 7.33 (d, 1H, H_B, J=15.4 Hz), 7.62 (d, 1H, H_A, J=15.4 Hz), 7.32–7.80 (m, 8H, Ar-H); ¹³C NMR (DMSO- d_6) δ (ppm): 51.0 (SO₂-CH₂), 58.4 (Ar-CH₂), 139.1 (CN-CH), 146.7 (Ar-CH), 158.4 (C-5), 167.5 (C-2), 128.6, 129.2, 129.8, 130.2, 132.4, 133.1, 134.6, 137.9 (aromatic carbons); IR (KBr, cm⁻¹): 1565 (C=N), 1534 (C=C), 1333, 1130 (SO₂). Anal. calcd. for C₁₈H₁₄Cl₂N₂O₃S (409.29): C, 52.82; H, 3.45; N, 6.84. Found: C, 52.76; H, 3.47; N, 6.88.

General Procedure of Synthesis of 5-(arylsulfonylmethyl)-2-(4',5'-dihydro-4'-phenyl-1'*H*-pyrazol-3'-yl)-1,3,4-oxadiazole (8a–e)

An ethereal solution of diazomethane (20 mL, 0.4 M) and triethylamine (0.06 g) was added to a cooled solution of **6** (2.5 mmol) in DCM (10 mL). The reaction mixture was kept at -20 to -15° C for 40–48 h. The solvent was removed under reduced pressure. The resultant solid was purified by column chromatography (hexane–ethyl acetate, 4:1).

Selected Data

5-(Phenylsulfonylmethyl)-2-[4',5'-dihydro-4'-phenyl-1'*H***-pyrazol-3'-yl]-1,3,4-oxadiazole (8a).** Yellow solid; yield 0.77 g (84%); mp 127–129°C; ¹H NMR (DMSO-*d*₆) δ (ppm): 3.72 (dd, 1H, H_X, *J*_{AX} = 4.2 Hz, *J*_{MX} = 8.7 Hz), 4.04 (dd, 1H, H_M, *J*_{AM} = 12.0 Hz), 4.37 (s, 2H, SO₂-CH₂), 4.64 (dd, 1H, H_A), 7.26–7.73 (m, 10H, Ar-H), 10.49 (bs, 1H, NH); ¹³C NMR (DMSO-*d*₆) δ (ppm): 50.9 (SO₂-CH₂), 52.4 (C-5'), 65.8 (C-4'), 151.9 (C-3'), 152.6 (C-5), 163.4 (C-2), 128.6, 129.2, 129.8, 130.2, 132.4, 133.1, 134.6, 134.9 (aromatic carbons); IR (KBr, cm⁻¹): 3345 (NH), 1563 (C=N), 1337, 1138 (SO₂). Anal. calcd. for C₁₈H₁₆N₄O₃S (368.41): C, 58.68; H, 4.38; N, 15.21. Found: C, 58.60; H, 4.40; N, 15.27.

5-(Phenylsulfonylmethyl)-2-[4',5'-dihydro-4'-(p-chlorophenyl)-1'H-pyrazol-3'-yl]-1,3,4-oxadiazole (8b). Yellow crystals; yield 0.80 g (80%); mp 132–134°C; ¹H NMR (DMSO-*d*₆) δ (ppm): 3.66 (dd, 1H, H_X, *J*_{AX} = 4.6 Hz, *J*_{MX} = 10.1 Hz), 3.98 (dd, 1H, H_M, *J*_{AM} = 12.5 Hz), 4.32 (s, 2H, SO₂-CH₂), 4.59 (dd, 1H, H_A), 7.19–7.75 (m, 9H, Ar-H), 10.51 (bs, 1H, NH); ¹³C NMR (DMSO-*d*₆) δ (ppm): 50.3 (SO₂-CH₂), 51.9 (C-5'), 65.9 (C-4'), 150.2 (C-3'), 153.3 (C-5), 163.1 (C-2), 127.2, 128.8, 129.2, 130.8, 131.3, 132.2, 134.8, 135.5 (aromatic carbons); IR (KBr, cm⁻¹): 3340 (NH), 1565 (C=N), 1335, 1130 (SO₂). Anal. calcd. for C₁₈H₁₅ ClN₄O₃S (402.85): C, 53.67; H, 3.75; N, 13.91. Found: C, 53.74; H, 3.72; N, 13.99.

5-(*p*-Methylphenylsulfonylmethyl)-2-(4',5'-dihydro-4'-phenyl-1'*H*-pyrazol-3'-yl)-1,3,4-oxadiazole (8c). Yellow solid; yield 0.81 g (85%); mp 139–141°C; ¹H NMR (CDCl₃+DMSO-*d*₆) δ (ppm): 2.25 (s, 3H, Ar-CH₃), 3.62 (dd, 1H, H_X, $J_{AX} = 5.1$ Hz, $J_{MX} = 9.8$ Hz), 4.01 (dd, 1H, H_M, $J_{AM} = 12.3$ Hz), 4.35 (s, 2H, SO₂-CH₂), 4.62 (dd, 1H, H_A), 7.15–7.64 (m, 9H, Ar-H), 10.54 (bs, 1H, NH); ¹³C NMR (CDCl₃+DMSO-*d*₆) δ (ppm): 22.9 (Ar-CH₃), 50.7 (SO₂-CH₂), 52.6 (C-5'), 65.6 (C-4'), 151.5 (C-3'), 153.9 (C-5), 161.6 (C-2), 127.9, 128.7, 129.7, 130.4, 131.8, 132.6, 133.5, 134.3 (aromatic carbons); IR (KBr, cm⁻¹): 3336 (NH), 1566 (C=N), 1342, 1148 (SO₂). Anal. calcd. for $C_{19}H_{18}N_4O_3S$ (382.44): C, 59.67; H, 4.74; N, 14.65. Found: C, 59.75; H, 4.72; N, 14.71.

5-(*p*-Chlorophenylsulfonylmethyl)-2-(4',5'-dihydro-4'-phenyl-1'*H*-pyrazol-3'-yl)-1,3,4-oxadiazole (8d). Yellow crystals; yield 0.82 g (82%); mp 147–149°C; ¹H NMR (DMSO-*d*₆) δ (ppm): 3.70 (dd, 1H, H_X, J_{AX} = 5.5 Hz, J_{MX} = 10.3 Hz), 4.06 (dd, 1H, H_M, J_{AM} = 12.5 Hz), 4.30 (s, 2H, SO₂-CH₂), 4.58 (dd, 1H, H_A), 7.20–7.70 (m, 9H, Ar-H), 10.49 (bs, 1H, NH); ¹³C NMR (DMSO-*d*₆) δ (ppm): 51.7 (SO₂-CH₂), 52.1 (C-5'), 66.5 (C-4'), 152.8 (C-3'), 155.6 (C-5), 165.8 (C-2), 126.5, 127.1, 127.9, 129.2, 130.5, 132.5, 135.8, 136.3 (aromatic carbons); IR (KBr, cm⁻¹): 3328 (NH), 1564 (C=N), 1330, 1140 (SO₂). Anal. calcd. for C₁₈H₁₅ClN₄O₃S (402.85): C, 53.67; H, 3.75; N, 13.91. Found: C, 53.60; H, 3.79; N, 13.82.

5-(*p*-Chlorophenylsulfonylmethyl)-2-[4',5'-dihydro-4'-(*p*-chlorophenyl)-1'*H*-pyrazol-3'-yl]-1,3,4-oxadiazole (8e). Yellow crystals; yield 0.95 g (87%); mp 154–156°C; ¹H NMR (DMSO-*d*₆) δ (ppm): 3.74 (dd, 1H, H_X, $J_{AX} = 5.2$ Hz, $J_{MX} = 10.0$ Hz), 4.00 (dd, 1H, H_M, $J_{AM} = 12.1$ Hz), 4.37 (s, 2H, SO₂-CH₂), 4.59 (dd, 1H, H_A), 7.23–7.81 (m, 8H, Ar-H), 10.52 (bs, 1H, NH); ¹³C NMR (DMSO*d*₆) δ (ppm): 51.3 (SO₂-CH₂), 52.3 (C-5'), 65.9 (C-4'), 154.2 (C-3'), 157.5 (C-5), 168.2 (C-2), 125.1, 125.7, 126.6, 127.4, 128.3, 131.7, 133.8, 138.4 (aromatic carbons); IR (KBr, cm⁻¹): 3324 (NH), 1568 (C=N), 1338, 1146 (SO₂). Anal. calcd. for C₁₈H₁₄Cl₂N₄O₃S (437.30): C, 49.44; H, 3.23; N, 12.81. Found: C, 49.40; H, 3.20; N, 12.74.

General Procedure of Synthesis of 5-(Arylmethanesulfonylmethyl)-2-(4',5'-dihydro-4'-phenyl-1'*H*-pyrazol-3'-yl)-1,3,4-oxadiazole (9a–e)

An ethereal solution of diazomethane (20 mL, 0.4 M) and triethylamine (0.06 g) were added to a cooled solution of 7 (2.5 mmol) in DCM (10 mL). The reaction mixture was kept at -20 to -15° C for 40–46 h. The solvent was removed under reduced pressure. The resultant solid was purified by column chromatography (hexane–ethyl acetate, 4:1).

Selected Data

5-(Benzylsulfonylmethyl)-2-[4',5'-dihydro-4'-phenyl-1'*H***-pyrazol-3'-yl]-1,3,4oxadiazole (9a). Yellow solid; yield 0.75 g (79%); mp 117–119°C; ¹H NMR (DMSO-d_6) \delta (ppm): 3.66 (dd, 1H, H_X, J_{AX} = 4.6 Hz, J_{MX} = 8.6 Hz), 4.01 (dd, 1H, H_M, J_{AM} = 12.6 Hz), 4.34 (s, 2H, SO₂-CH₂), 4.60 (dd, 1H, H_A), 5.02 (s, 2H, Ar-CH₂), 7.25–7.59 (m, 10H, Ar-H), 10.57 (bs, 1H, NH); ¹³C NMR (DMSO-d_6) \delta (ppm): 48.6 (SO₂-CH₂), 51.7 (C-5'), 57.4 (Ar-CH₂), 66.2 (C-4'), 152.5 (C-3'), 157.8 (C-5), 166.6 (C-2), 126.4, 126.9, 127.2, 129.3, 130.4, 131.3, 133.6, 134.2 (aromatic carbons); IR (KBr, cm⁻¹): 3330 (NH), 1582 (C=N), 1336, 1126 (SO₂). Anal. calcd. for C₁₉H₁₈N₄O₃S (382.44): C, 59.67; H, 4.74; N, 14.65. Found: C, 59.62; H, 4.70; N, 14.72.** **5-(Benzylsulfonylmethyl)-2-[4',5'-dihydro-4'-(p-chlorophenyl)-1'H-pyrazol-3'-yl]-1,3,4-oxadiazole (9b).** Yellow crystals; yield 0.83 g (80%); mp 146–148°C; ¹H NMR (DMSO- d_6) δ (ppm): 3.75 (dd, 1H, H_X, J_{AX} = 4.2 Hz, J_{MX} = 8.2 Hz), 4.03 (dd, 1H, H_M, J_{AM} = 12.3 Hz), 4.41 (s, 2H, SO₂-CH₂), 4.68 (dd, 1H, H_A), 5.07 (s, 2H, Ar-CH₂), 7.28–7.73 (dd, 9H, Ar-H), 10.54 (bs, 1H, NH); ¹³C NMR (DMSO- d_6) δ (ppm): 49.3 (SO₂-CH₂), 52.3 (C-5'), 57.6 (Ar-CH₂), 66.5 (C-4'), 152.8 (C-3'), 158.5 (C-5), 167.5 (C-2), 125.3, 127.1, 128.6, 129.5, 131.7, 133.9, 135.2, 137.5 (aromatic carbons); IR (KBr, cm⁻¹): 3328 (NH), 1577 (C=N), 1330, 1142 (SO₂). Anal. calcd. for C₁₉H₁₇CIN₄O₃S (416.88): C, 54.74; H, 4.11; N, 13.44. Found: C, 54.70; H, 4.13; N, 13.50.

5-(p-Methylbenzylsulfonylmethyl)-2-(4',5'-dihydro-4'-phenyl-1'*H***-pyrazol-3'-yl)-1,3,4-oxadiazole (9c).** Yellow solid; yield 0.82 g (83%); mp 133–135°C; ¹H NMR (DMSO-*d*₆) δ (ppm): 2.25 (s, 3H, Ar-CH₃), 3.70 (dd, 1H, H_X, J_{AX} = 4.6 Hz, J_{MX} = 8.7 Hz), 4.05 (dd, 1H, H_M, J_{AM} = 12.7 Hz), 4.46 (s, 2H, SO₂-CH₂), 4.66 (dd, 1H, H_A), 5.01 (s, 2H, Ar-CH₂), 7.14–7.68 (m, 9H, Ar-H), 10.51 (bs, 1H, NH); ¹³C NMR (DMSO-*d*₆) δ (ppm): 23.6 (Ar-CH₃), 48.7 (SO₂-CH₂), 51.1 (C-5'), 56.4 (Ar-CH₂), 65.6 (C-4'), 151.7 (C-3'), 156.9 (C-5), 167.8 (C-2), 127.9, 128.7, 129.7, 131.8, 132.6, 133.1, 134.3, 135.6 (aromatic carbons); IR (KBr, cm⁻¹): 3335 (NH), 1585 (C=N), 1324, 1136 (SO₂). Anal. calcd. for C₂₀H₂₀N₄O₃S (396.46): C, 60.59; H, 5.08; N, 14.13. Found: C, 60.65; H, 5.12; N, 14.17.

5-(p-Chlorobenzylsulfonylmethyl)-2-(4',5'-dihydro-4'-phenyl-1'*H***-pyrazol-3'-yl)-1,3,4-oxadiazole (9d). Yellow crystals; yield 0.81 g (78%); mp 159–161°C; ¹H NMR (CDCl₃+DMSO-***d***₆) δ (ppm): 3.69 (dd, 1H, H_X, J_{AX} = 4.8 Hz, J_{MX} = 8.5 Hz), 4.00 (dd, 1H, H_M, J_{AM} = 12.2 Hz), 4.36 (s, 2H, SO₂-CH₂), 4.65 (dd, 1H, H_A), 5.05 (s, 2H, Ar-CH₂), 7.19–7.68 (m, 9H, Ar-H), 10.44 (bs, 1H, NH); ¹³C NMR (CDCl₃+DMSO-***d***₆) δ (ppm): 49.5 (SO₂-CH₂), 51.8 (C-5'), 57.0 (Ar-CH₂), 65.8 (C-4'), 152.2 (C-3'), 157.4 (C-5), 166.5 (C-2), 128.6, 129.2, 129.8, 130.2, 132.7, 133.1, 134.6, 136.4 (aromatic carbons); IR (KBr, cm⁻¹): 3327 (NH), 1579 (C=N), 1333, 1145 (SO₂). Anal. calcd. for C₁₉H₁₇ClN₄O₃S (416.88): C, 54.74; H, 4.11; N, 13.44. Found: C, 54.77; H, 4.07; N, 13.48.**

5-(p-Chlorobenzylsulfonylmethyl)-2-[4',5'-dihydro-4'-(p-chlorophenyl)-1'*H***-pyrazol-3'-yl]-1,3,4-oxadiazole (9e). Yellow solid; yield 0.95 g (85%); mp 166–168°C; ¹H NMR (DMSO-***d***₆) δ (ppm): 3.72 (dd, 1H, H_X, J_{AX} = 4.3 Hz, J_{MX} = 8.9 Hz), 4.03 (dd, 1H, H_M, J_{AM} = 12.5 Hz), 4.37 (s, 2H, SO₂-CH₂), 4.68 (dd, 1H, H_A), 5.10 (s, 2H, Ar-CH₂), 7.24–7.72 (m, 8H, Ar-H), 10.49 (bs, 1H, NH); ¹³C NMR (DMSO-***d***₆) δ (ppm): 49.1 (SO₂-CH₂), 51.4 (C-5'), 56.8 (Ar-CH₂), 65.5 (C-4'), 152.7 (C-3'), 158.2 (C-5), 167.0 (C-2), 124.9, 128.8, 129.3, 130.8, 131.1, 133.4, 134.6, 137.2 (aromatic carbons); IR (KBr, cm⁻¹): 3334 (NH), 1580 (C=N), 1330, 1125 (SO₂). Anal. calcd. for C₁₉H₁₆Cl₂N₄O₃S (451.33): C, 50.56; H, 3.57; N, 12.41. Found: C, 50.60; H, 3.59, N, 12.37.**

Antimicrobial Testing

The compounds **8** and **9** were dissolved in DMSO at concentrations of 100, 200, and $800 \,\mu\text{g/mL}$.

Antibacterial and Antifungal Assays

Preliminary antimicrobial activities of these compounds were tested by the agar disc-diffusion method. Sterile filter-paper discs (6 mm diameter) moistened with the test compound solution in DMSO of specific concentrations of 100 μ g and 200 μ g/disc were carefully placed on the agar culture plates that had been previously inoculated separately with the microorganisms. The plates were incubated at 37°C, and the diameter of the growth-inhibition zones were measured after 24 h in the case of bacteria and after 48 h in the case of fungi.

The MICs of the compounds assays were carried out using the microdilution susceptibility method. Chloramphenicol was used as the reference antibacterial agent. Ketoconazole was used as the reference antifungal agent. The test compounds, chloramphenicol and ketoconazole, were dissolved in DMSO at a concentration of $800 \,\mu\text{g/mL}$. Twofold dilutions of the solution were prepared (400, 200, 100, 50, 25, 12.5, 6.25 $\mu\text{g/mL}$). The microorganism suspensions were inoculated to the corresponding wells. The plates were incubated at 36°C for 24 and 48 h for bacteria and fungi, respectively. The MICs of the compounds were recorded as the lowest concentration of each chemical compounds in the tubes with no turbidity (i.e., no growth) of inoculated bacteria/fungi.

ACKNOWLEDGMENT

The authors are thankful to the Department of Science and Technology, New Delhi, India, for the financial assistance as a major research project.

REFERENCES

- Omar, F. A.; Mahfouz, N. M.; Rahman, M. A. Synthesis and antiinflammatory activity of some 1,3,4-oxadiazole derivatives. *Eur. J. Med. Chem.* 1996, 31, 819–825.
- Goswami, B. N.; Kataky, J. C. S.; Baruah, J. N.; Nath, S. C. Synthesis of 3,5-disubstituted 1,3, 4-oxadiazole-2-thiones as potential fungicidal agents. J. Heterocycl. Chem. 1984, 21, 205–208.
- Holla, B. S.; Poojary, K. N.; Kalluraya, B.; Gowda, P. V. 5-Substituted-1,3,4oxadiazolin-2-thiones. *Indian J. Heterocycl. Chem.* 1996, 5, 273–276.
- Talawar, M. B.; Dejai, S. R.; Sommanavar, Y. S.; Marihal, S. C.; Bennur, S. C. Synthesis and antimicrobial acivity of 1,2,4,-triazoles, 1,3,4-oxadiazoles, and 1,3,4-thiadiazoles. *Indian J. Heterocycl. Chem.* 1996, 5, 215–218.
- Omar, M. T. Synthesis of new xanthenone derivatives. Arch. Pharm. Res. (Seoul) 1997, 20, 602–609.
- 6. Hamad, M. M.; Said, S. A.; El-Ekyabi, Y. M. Synthesis and reactions of 2-(mercaptomethyl)-1,3,4-oxadiazolin-5-one. *Monatsh. Chem.* **1996**, *127*, 549–555.
- Matsumoto, M.; Kawamura, Y.; Yasuda, Y.; Tanimoto, T.; Matsumoto, K.; Yoshida, T.; Shoji, J. Isolation and characterization of thioxamycin. J. Antibiot. (Tokyo) 1989, 42, 1465–1469.
- Tan, T. M.; Chien, Y.; Kong, K. H.; Bai, J.; Li, Y.; Lim, S. G.; Ang, T. H.; Lam, Y. Synthesis and the biological evaluation of 2-benzenesulfonylalkyl-5-substituted-sulfanyl-[1,3,4]-oxadiazoles as potential anti-hepatitis B virus agents. *Antivir. Res.* 2006, 71, 7–14.
- Akhtar, T.; Hameed, S.; Al-Masoudi, N. A.; Loddo, R.; La Colla, P. In vitro antitumor and antiviral activities of new benzothiazole and 1,3,4-oxadiazole-2-thione derivatives. *Acta Pharm.* 2008, 58, 135–149.

- Abdel-Aal, M. T.; El-Sayed, W. A.; El-Kosy, S. M.; El-Ashryel, S. H. Synthesis and antiviral evaluation of novel 5-(N-aryl-aminomethyl-1,3,4-oxadiazol-2-yl)hydrazines and their sugars, 1,2,4-triazoles, tetrazoles, and pyrazolyl derivatives. *Arch Pharm* (*Weinheim*). 2008, 341, 307–313.
- 11. Dannahardt, G.; Kiefer, W.; Kramer, G.; Maehrlein, S.; Nowe, U.; Fiebich, B. The pyrrole moiety as a template for COX-1/COX-2 inhibitors. *Eur. J. Med. Chem.* **2000**, *35*, 499–510.
- Tandon, V. K.; Chhor, R. B. An efficient one pot synthesis of 1,3,4-oxadiazoles. Synth. Commun. 2001, 31, 1727–1732.
- Diana, G. D.; Volkots, D. L.; Nitz, T. J.; Biailly, T. R.; Long, M. A.; Vesico, N.; Aldous, A.; Pevear, D. C.; Dukto, F. J. Oxadiazoles as ester bioisosteric replacements in compounds related to disoxaril: Antirhinovirus activity. *J. Med. Chem.* 1994, 37, 2421–2436.
- Liras, S., Allen, M. P., Segelstein, B. E. A mild method for the preparation of 1,3, 4-oxadiazoles: Triflic anhydride promoted cyclization of diacylhydrazines. *Synth. Commun.* 2000, 30, 437–443.
- Carlsen, H. J.; Jorgensen, K. B. Synthesis of unsymmetrically substituted 4H-1,2, 4-triazoles. J. Heterocycl. Chem. 1994, 31, 805–807.
- Tully, W. R.; Cardner, C. R.; Gillespie, R. J.; Westwood, R. 2-(Oxadiazolyl)- and 2-(thiazolyl)imidazo[1,2-a]pyrimidines as agonists and inverse agonists at benzodiazepine receptors. J. Med. Chem. 1991, 34, 2060–2067.
- Al-Talib, M.; Tashtoush, H.; Odeh, N. A convenient synthesis of alkyl and aryl substituted bis-1,3,4-oxadiazoles. *Synth. Commun.* 1990, 20, 1811–1817.
- Kerr, N. V.; Ott, D. G.; Hayes, F. N. Quaternary salt formation of substituted oxazoles and thiazoles. J. Am. Chem. Soc. 1960, 82, 186–189.
- Theocharis, A. B.; Alexandrou, N. E. Synthesis and spectral data of 4,5-bis [5-aryl-1,3,4-oxadiazol-2-yl]-1-benzyl-1,2,3-triazoles. J. Heterocycl. Chem. 1990, 27, 1685–1688.
- Short, F. W.; Long, L. M. Synthesis of 5-aryl-2-oxazolepropionic acids and analogs: Antiinflammatory agents. J. Heterocycl. Chem. 1969, 6, 707–712.
- Lee, G. A. A simplified synthesis of unsaturated nitrogen-heterocycles using nitrile betaines. Synthesis 1982, 508.
- 22. Bao-Xiang, Z.; Yang, Y.; Shoji, E. Synthesis of stable Δ^4 -isoxazolines by 1,3-dipolar cycloaddition of 3,4-dihydroisoquinoline *N*-oxides with alkynes and their rearrangement to isoquinoline-fused pyrroles. *Tetrahedron* **1996**, *52*, 12049–12060.
- National Committee for Clinical Laboratory Standards (NCCLS). Approved standard document M-7A; Villanova, PA, 1985.
- Murray, P. R.; Baron, E. J.; Pfaller, M. A.; Tenover, F. C.; Yolken, R. H. In *Manual of Clinical Microbiology*, G. L. Wood, and J. A. Washington (Eds.); American Society for Microbiology: Washington, DC, 1995.
- Kenney, W. J.; Walsh, J. A.; Davenport, A. An acid-catalyzed cleavage of sulfoxides. J. Am. Chem. Soc. 1961, 83, 4019–4022.
- Reddy, D. B.; Reddy, N. S.; Reddy, S.; Reddy, M. V. R.; Balasubramanyam, S. Preparation of styryl benzylsulfones and 1,2-bis(styrylsulfonylmethyl)-4,5-dimethylbenzenes. Org. Prep. Proceed. Int. 1988, 20, 205–212.
- Padmavathi, V.; Thriveni, P.; Reddy, B. J. M.; Padmaja, A. Synthesis of thiadiazoles, triazoles, and oxadiazoles from sulfonyl acetic acids via a common route. *J. Heterocycl. Chem.* 2005, 42, 113–116.