Accepted Manuscript

5-alkyloxytryptamines are membrane-targeting, broad-spectrum antibiotics

Katherine C. Faulkner, Katherine A. Hurley, Douglas B. Weibel

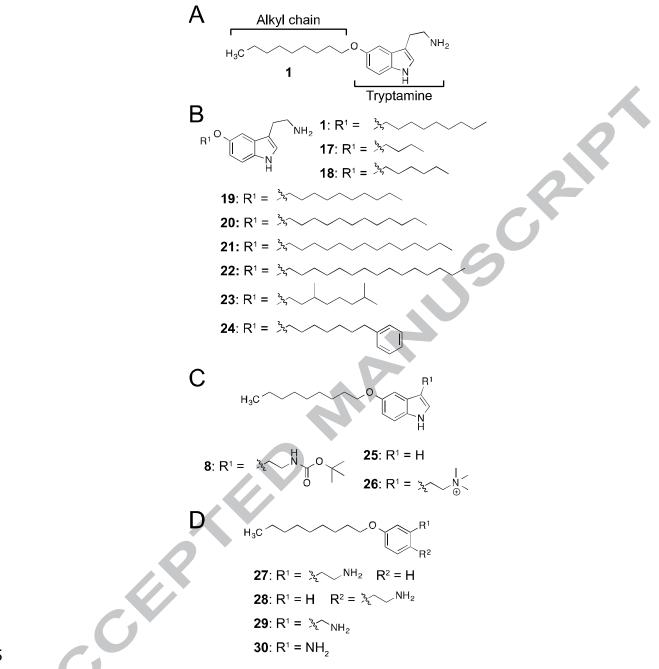
PII:	S0960-894X(16)31032-0
DOI:	http://dx.doi.org/10.1016/j.bmcl.2016.10.004
Reference:	BMCL 24307
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	24 June 2016
Revised Date:	1 October 2016
Accepted Date:	4 October 2016

Please cite this article as: Faulkner, K.C., Hurley, K.A., Weibel, D.B., 5-alkyloxytryptamines are membranetargeting, broad-spectrum antibiotics, *Bioorganic & Medicinal Chemistry Letters* (2016), doi: http://dx.doi.org/ 10.1016/j.bmcl.2016.10.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
T	

2	5-alkyloxytryptamines are membrane-targeting, broad-spectrum antibiotics
3	Katherine C. Faulkner ^{a^} , Katherine A. Hurley ^{a^} , Douglas B. Weibel ^{a,b,c}
4	^a Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall,
5	Madison, WI 53706 USA
6	^b Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue,
7	Madison, WI 53706 USA
8	^c Department of Biochemical Engineering, University of Wisconsin-Madison, 1550
9	Engineering Drive, Madison, WI 53706 USA
10	
11	^ equal contribution
12	*Author to whom correspondence should be addressed:
13	Douglas B. Weibel
14	Departments of Biochemistry, Chemistry, and Biomedical Engineering
15	6424A Biochemical Sciences Building
16 17	440 Henry Mall Madison WI 53706 USA
18	Phone: +1 (608) 890-1342
19	Fax: +1 (608) 265-0764
20	E-mail: weibel@biochem.wisc.edu
21	
22	Key Words: serotonin; tryptamine; antibacterial; bacterial membrane; antibiotic


24 Abstract

25 Antibiotic adjuvant therapy represents an exciting opportunity to enhance the activity 26 of clinical antibiotics by co-dosing with a secondary small molecule. Successful 27 adjuvants decrease the concentration of antibiotics used to defeat bacteria, increase 28 activity (in some cases introducing activity against organisms that are drug resistant), 29 and reduce the frequency at which drug-resistant bacteria emerge. We report that 5-30 alkyloxytryptamines are a new class of broad-spectrum antibacterial agents with exciting activity as antibiotic adjuvants. We synthesized 5-alkyloxytryptamine analogs 31 32 and found that an alkyl chain length of 6-12 carbons and a primary ammonium group 33 are necessary for the antibacterial activity of the compounds, and an alkyl chain length 34 of 6-10 carbons increased the membrane permeability of gram-positive and gramnegative bacteria. Although several of the most potent analogs also have activity against 35 the membranes of human embryonic kidney cells, we demonstrate that below the 36 37 minimum inhibitory concentration (MIC) - where mammalian cell toxicity is low -38 these compounds may be successfully used as adjuvants for chloramphenicol, 39 tetracycline, ciprofloxacin, and rifampicin against clinical strains of Salmonella 40 *typhimurium, Acinetobacter baumannii* and *Staphylococcus aureus*, reducing MIC values by 41 as much as several logs. 42 43

- 44
- 45

46	The juxtaposition between the slow pace of antibiotic discovery and the accelerated rate
47	of antibacterial resistance is a current concern in the medical and research community. ¹⁻
48	³ Of particular concern are gram-negative bacteria, which use multiple mechanisms to
49	evade antibiotics, including the diffusion barrier presented by their bilayer membranes,
50	pumps for drug efflux, and enzymes that modify and deactivate drugs.4-7 Antibiotic
51	adjuvant therapy is an antibacterial development strategy gaining attention in
52	combating these three major hurdles, improving the efficacy of existing antibiotics, and
53	suppressing the emergence of drug resistance. ⁸⁻¹³
54	In antibiotic adjuvant therapy, two or more compounds – one of which is
55	traditionally an antibiotic – are combined to potentiate function and improve activity.
56	There are several successful examples of combination therapy, including Augmentin™:
57	the clinically successful combination of a beta-lactam (e.g., amoxicillin) with clavulanic
58	acid. ¹⁴ Several recent adjuvant approaches draw on a combination of an antibiotic with
59	a mechanism for inhibiting resistance mechanisms, ¹⁵ inhibiting efflux pumps, ^{16,17}
60	dispersing biofilms, ¹⁸ increasing reactive oxygen species production ¹⁹ and exploiting
61	bacterial metabolism. ^{20,21}
62	Another strategy for adjuvant therapy pairs an antibiotic with a molecule that
63	improves the transport of the compound into bacterial cells to increase the
64	concentration and bioavailability of an antibiotic. For example, the membrane-
65	permeabilizing properties of colistin sensitize multidrug-resistant Acinetobacter
66	baumannii to vancomycin. ²² Phenylpropanoids are a family of natural products that
67	damage membranes and create synergistic interactions with various antibiotics that use

68	different mechanisms of action against gram-negative and gram-positive bacteria. ^{23,24}
69	The discovery of new families of small molecules that target bacterial membranes and
70	increase the transport of antibiotics into cells may advance this emerging area of
71	antibiotic chemotherapy.
72	We discovered 5-nonyloxytryptamine (5-NOT, 1) in a high throughput screen of
73	small molecules that cause bacterial cells to form anucleate daughter cells (i.e., cells
74	lacking chromosomes) (Figure 1A). ²⁵ 1 belongs to a family of serotonin-like compounds
75	that bind 5-hydroxytryptamine (serotonin) receptors (5-HT), and was previously
76	synthesized to test its selectivity in binding the human 5- HT_{1D} receptor. ^{26,27} Multiple
77	variants of human 5-HT $_1$ receptors exist and elicit different neurological responses. ²⁸ 5-
78	$\mathrm{HT}_{\mathrm{1D}}$ causes endothelium dependent relaxation in arteries and previous research
79	suggests that 5-HT $_{1D}$ receptor agonists inhibit neurotransmitter release and relax cranial
80	arteries. ²⁹ Sumatriptan selectively binds to the 5- HT_{1D} receptor and is an effective
81	strategy for treating migraines. ^{27,30} A structure-activity relationship study of
82	sumatriptan and other serotonin-like compounds led to the discovery of 1 , which binds
83	to 5-HT $_{1D}$ receptors with 300-fold selectivity over non-specific serotonin 5-HT $_1$
84	receptors. ²⁷

85

Figure 1. A) The chemical structure of 5-nonyloxytryptamine (1), an O-alkylated
derivative of serotonin. A list of analogs of 1 synthesized separated by structural
modifications: B) modification of alkyl chain, C) modification of the substituent at 3position and the amine, and D) substitution of the indole ring by a phenyl ring and
modification of the length of the ethylene chain.
We performed minimum inhibitory concentration (MIC) assays of 1 against *E*.

93 coli BW25113 (6.0 μ g/mL), B. subtilis 168 (0.76 μ g/mL), and E. coli BW25113 Δ tolC (1.5

94 $\mu g/mL$) (Table 1). These experiments made it possible for us to determine its potency 95 against a model gram-negative and gram-positive bacterium, and a bacterium in which 96 the AcrAB-TolC drug efflux pump system was partially disabled to potentially increase 97 in the intracellular concentration of the compound (compared to the parent *E. coli*) 98 BW25113 strain). We also measured the antibacterial activity of 1 against various BSL-2 99 bacterial strains; 1 was effective against all strains tested with MIC values ranging from 100 $3.0-24 \,\mu g/mL$ (Table 1). We determined the minimum bactericidal concentration (MBC) of 1 against BSL-1 and BSL-2 strains to establish whether it was bacteriostatic or 101 102 bactericidal (Table 1).³¹ The ratio of MBC to MIC for 1 indicated that it was bactericidal 103 against: Shigella boydii, Klebsiella pneumonia, Acinetobacter baumannii, Edwardsiella tarda, 104 Morganella morganii, Staphylococcus aureus, and Streptococcus pyogenes and bacteriostatic 105 against: Pseudomonas aeruginosa, Salmonella typhimurium, Vibrio cholera, and Enterobacter 106 aerogenes (Table 1).

Bacterial Strain	MBC (µg/mL)	MIC (µg/mL)	MBC/MIC	Mode
E. coli BW25113	12	6.0	2	Bactericidal
E. coli BW25113 ΔtolC	6	1.5	4	Bacteriostatic
B. subtilis 168	0.76	0.76	1	Bactericidal
Pseudomonas aeruginosa	96	24	4	Bacteriostatic
Salmonella typhimurium	24	6.0	4	Bacteriostatic
Vibrio cholerae	24	6.0	4	Bacteriostatic
Shigella boydii	6.0	6.0	1	Bactericidal

Klebsiella pneumoniae	6.0	6.0	1	Bactericidal]
Riebsiella pheumoniae	0.0	0.0	1	Dactericiual	
Enterobacter aerogenes	>24	6.0	>4	Bacteriostatic	
Acinetobacter baumannii	6.0	6.0	1	Bactericidal	
Edwardsiella tarda	12	6.0	2	Bactericidal	0
Morganella morganii	24	12	2	Bactericidal	
Staphylococcus aureus	6.0	3.0	2	Bactericidal	
Streptococcus pyogenes	24	24	1	Bactericidal	

107 **Table 1.** Minimum inhibitory concentration (MIC) and minimum bacterial

108 concentration (MBC) values of **1** against *E. coli* BW25113, *E. coli* BW25113 Δ*tolC*, *B.*

- 109 *subtilis* 168, and BSL-2 bacterial strains.
- 110 111

We initiated our structure-activity relationship (SAR) study by testing the MIC

- 112 activity of commercially available molecules with structures related to serotonin:
- 113 tryptamine (2), serotonin (3), 5-methoxytryptamine (4), 2-methyl-5-hydroxytryptamine
- (5), and 6-methoxytryptamine (6) (Figure S1). We determined the MIC values of 2-6
- against *E. coli* BW25113, *E. coli* BW25113 Δ*tolC*, and *B. subtilis* 168 and found they were
- all >56 μ g/mL, consistent with the importance of the long alkyl group of **1** on its
- 117 antibacterial properties (Table 2). We continued our SAR study by synthesizing new
- analogs of **1** in which we varied the alkyl group.

		MIC values against bacterial strains (µg/mL)				
Compound Number	cLogP	E. coli BW25113	E. coli BW25113 ΔtolC	B. subtilis 168	S. aureus	A. baumannii
1	4.65	6.0	1.5	0.76	0.6	6.0
2	1.13	>51	>51	>51	>51	>51
3	0.79	>56.4	>56.4	>56.4	>56.4	>56.4

4	1.06	>60.8	>60.8	>60.8	>60.8	>60.8
5	1.19	>60.8	>60.8	>60.8	>60.8	>60.8
6	1.06	>60.8	>60.8	>60.8	>60.8	>60.8
8	6.41	>130	>130	>130	>130	>130
17	2.38	>74.3	>74.3	>74.3	>74.3	>74.3
18	3.29	42	42	42	42	42
19	5.11	6.3	3.2	1.6	3.2	6.3
20	6.01	26	6.9	1.7	3.4	28
21	6.92	>119	>119	15	3.4	>119
22	7.38	>124	>124	>124	>124	>124
23	4.63	13	3.2	1.6	6.3	13
24	5.18	14	1.8	1.8	3.5	7.0
25	5.22	>83	>83	>83	>83	>83
26	6.55	52	6.5	52	6.5	52
27	4.61	5.3	2.6	0.66	5.3	5.3
28	4.61	5.3	1.3	0.66	2.6	5.3
29	4.18	9.4	4.7	4.7	9.4	9.4
30	4.5	>40	10	40	>80	>80

119**Table 2.** Estimated cLogP and measured MIC (μ g/mL) values of compounds 1-6, 8, 17-12030 against *E. coli* BW25113, *E. coli* BW25113 Δ tolC, *B. subtilis* 168, *S. aureus*, and *A.*121baumannii.

122

123 To create 5-alkyloxytryptamine analogs, we used a three-step synthesis:

124 protection of the primary amine of serotonin, alkylation of the hydroxyl group, and

125 deprotection of the primary amine (Figure 2).²⁷ We synthesized **1** by converting

serotonin to *N*-Boc-protected serotonin (7) in 84%. We alkylated 7 with 1-bromononane

127 to yield the alkylated product **8** (30%) and removed the Boc protecting group to provide

128 1 in 85% yield. We used a similar synthesis procedure to prepare analogs 17-24 (Figure

- 129 1B). Serotonin was protected with di-tert-butyl dicarbonate, alkylated with different
- 130 bromoalkanes to yield Boc-protected intermediates 8-16, and deprotected under acidic
- 131 conditions to provide final products **17-24** (Figure 2).

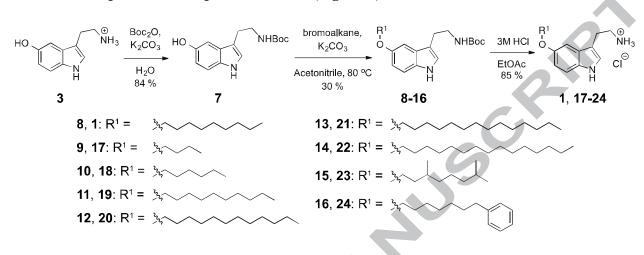
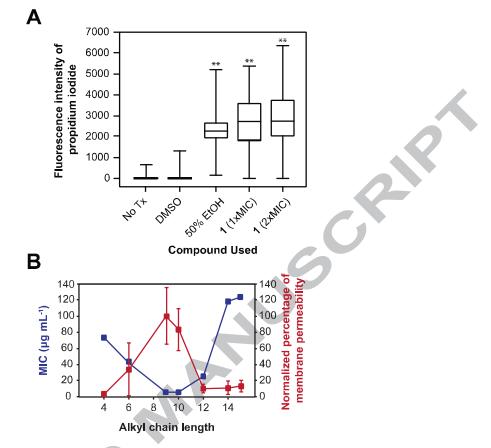


Figure 2. The general synthetic strategy for the synthesis of 1 and its analogs: Boc
protection of the amine, alkylation of the hydroxyl group, and acidic deprotection to
produce the HCl salt of the free amine. Percent yields included in this figure are for the
synthesis of 1.

- 139 We next turned our attention to modification of the substituent at the 3-position.
- 140 We synthesized the *N*-Boc-protected 5-nonyloxytryptamine analog **8** by stopping at the
- 141 O-alkylation intermediate (Figure 1C); the yield of 8 was 47% over two steps. We
- 142 synthesized **25** by O-alkylation of 1H-indol-5-ol with 1-bromononane in 52% yield. **1**
- 143 was trimethylated with methyl iodide in ethanol to produce analog 26 in yield of 27%
- 144 (Figure 1C). We synthesized analogs **27-30** by starting with a different scaffold and
- 145 using the same reaction conditions for **1** (Figure 1D). We produced **27** in 82% yield from
- 146 3-(2-aminoethyl)phenol. Analog 28 was synthesized from 4-(2-aminoethyl)phenol in
- 147 82% yield. We synthesized 29 from 3-(aminomethyl)phenol in 65% yield. Finally, we
- 148 synthesized **30** from 4-aminophenol in 42% yield.

149	We used the library of 5-NOT analogs to make correlations between the structure
150	of 1 and its antibacterial activity. First, we tested how altering the length of the alkyl
151	chain of 1 affected antibacterial activity (Figure 1B). The MIC value for analogs with
152	butyl and hexyl saturated alkyl chains (17, 18) displayed a decrease in antibacterial
153	activity against <i>E. coli</i> BW25113. Butane analog 17 had an MIC value >74 µg/mL against
154	a panel of BSL-1 and BSL-2 bacterial strains (Table 2 and Table S1). The MIC value of
155	the hexyl analog 18 was 42 μ g/mL against <i>E. coli</i> BW25113, <i>E. coli</i> BW25113 Δ tolC, and <i>B</i> .
156	<i>subtilis</i> 168 and \geq 42 µg/mL against a panel of BSL-2 bacterial strains (Table 2 and Table
157	S1). 1 , 17 , and 18 have cLogP values of 4.65, 2.38, and 3.29, respectively. Compound 19
158	has a 10 carbon-chain, MIC values that are comparable to 1 against <i>E. coli</i> BW25113
159	(MIC, 6.3 μ g/mL), <i>E. coli</i> BW25113 Δ <i>tolC</i> (MIC, 3.2 μ g/mL), and <i>B. subtilis</i> 168 (MIC, 1.6
160	μ g/mL) (Table 2), and a cLogP value of 5.11, which is close to the cLogP value of 1
161	(Table 2). Increasing the length of the saturated alkyl groups (20 has a 12 carbon-chain,
162	21 has a 14 carbon-chain, and 22 has a 15 carbon-chain) decreased the antibacterial
163	activity of compounds (Figure1B). Of the analogs with longer saturated chains, 20 had
164	the highest antibacterial activity with MIC values of 26, 6.9, and 1.7 μ g/mL against <i>E</i> .
165	<i>coli</i> BW25113, <i>E. coli</i> BW25113 Δ <i>tolC</i> , and <i>B. subtilis</i> 168. (Table 2). 21 had antibacterial
166	activity only against <i>B. subtilis</i> 168 (MIC, 15 μ g/mL) and <i>S. aureus</i> (MIC, 3.4 μ g/mL),
167	and 22 did not display antibacterial properties (Table 2 and Table S1). cLogP values of
168	compounds 20-22 increased with chain length: cLogP values were 6.01 (20), 6.92 (21),
169	and 7.39 (22) (Table 2). These results suggest that the most active analogs have an
170	optimal alkyl length of 6-12 carbon atoms and a cLogP value of \sim 5.


171	After alkane modification, we synthesized and tested two analogs with similar
172	chain length containing various substituents: 23 has an 8 carbon branched chain bearing
173	two methyl groups, while 24 has a 7 carbon-tail modified with a terminal phenyl group
174	(Figure1B); 23 and 24 have cLogP values of 4.63 and 5.18, respectively. 23 and 24 had
175	comparable MIC values of 13-14 μ g/mL against <i>E. coli</i> BW25113 (Table 2) and displayed
176	MIC values of 3.2-25 μ g/mL against a panel of BSL-2 strains, with the exception of <i>P</i> .
177	aeruginosa (25 and 56 µg/mL, respectively) and <i>M. morganii</i> (>101 and >112 µg/mL,
178	respectively) (Table S1).
179	We next investigated the function of the primary amine on the ethylene chain
180	located at the 3-position of the indole ring to determine whether the ammonium group
181	was important for the antibacterial properties of these compounds. We synthesized
182	analogs with a protected primary amine (8) , lacking the ethylene amine chain (25) , with
183	a quaternary ammonium (26) to determine the role of the amine on the antibacterial
184	activity of compounds. Trimethylating the primary amine created quaternary
185	ammonium analog 26 (Figure 1C). Protecting the amine (8) and removing it completely
186	(25) eliminated the antibacterial properties (MIC, >83 μ g/mL) against <i>E. coli</i> BW25113, <i>E.</i>
187	<i>coli</i> BW25113 Δ <i>tolC</i> , and <i>B. subtilis</i> 168 cells (Table 2). Trimethylamine analog (26) had
188	decreased antibacterial activity compared to 1 : MIC values of $52 \mu\text{g/mL}$ (<i>E. coli</i>
189	BW25113), 6.5 μ g/mL (<i>E. coli</i> BW25113 Δ <i>tolC</i>), and 52 μ g/mL (<i>B. subtilis</i> 168) (Table 2).
190	These results confirm our hypothesis that the amine is important for the antibacterial
191	activity of these compounds and that the small size and presence of acidic protons on
192	the ammonium group are contributing factors to the antibacterial activity.

193	We next investigated the impact of the indole ring of 1 on its activity. We
194	replaced the indole ring with benzene (27) to alter the structure, yet maintain the same
195	spacing between the ethylene amine group and hydrophobic tail in ${f 1}$ (Figure 1D); the
196	ethylene amine at the 3-position and O-alkyl chain at the 5-position on the indole ring is
197	structurally similar to the 1 and 3-positions on the benzene ring. The MIC value of
198	analog 27 was 5.3 µg/mL against <i>E. coli</i> BW25113, 2.6 µg/mL against <i>E. coli</i>
199	BW25113 Δ tolC, 0.66 µg/mL against <i>B. subtilis</i> 168, and matched the MIC value of 1
200	against S. boydii, K. pneumonia, A. baumannii, E. tarda, M. morganii, P. aeruginosa, S.
201	typhimurium, V. cholera, and E. aerogenes (Table 2 and Table S2). Since 1 and 27 exhibited
202	similar antibacterial activity, we tested the position of the ethylene amine relative to the
203	hydrophobic tail on the benzene scaffold. Instead of a 1,3 configuration of the alkyl
204	group and ethylene amine groups, we synthesized a 1,4 configuration (28) (Figure 1D).
205	The MIC values of 28 against <i>E. coli</i> BW25113 (5.3 μ g/mL), <i>E. coli</i> BW25113 Δ tolC (1.3
206	μ g/mL), B. subtilis 168 (0.66 μ g/mL) were approximately the same as for 27 (Table 2)
207	and identical to 27 and 1 against <i>S. boydii, K. pneumonia, A. baumannii, S. typhimurium,</i>
208	and <i>V. cholera</i> . The MIC values of 28 increased to >84 μ g/mL against <i>P. aeruginosa, E.</i>
209	<i>tarda,</i> and <i>M. morganii</i> and $10 \mu\text{g/mL}$ against <i>E. aerogenes</i> (Table S2). Both 27 and 28
210	have cLogP values of 4.61, which are similar to the cLogP value of 1 (Table 2). These
211	studies suggest that the 1,3 orientation of the alkyl tail and the ethylene amine groups
212	around the scaffold structure is not required for antibacterial activity.
213	Finally, we tested the contribution of the ethylene chain connecting the primary

amine at the 3-position of the benzene scaffold to the antibacterial activity of this family

of compounds. We synthesized two analogs that maintain the 1,3 configuration: methylene amine analog **29** and amino analog **30** (Figure 1D). The MIC values of **29** and **30** were against *E. coli* BW25113 (9.4 and >40 µg/mL, respectively), *E. coli* BW25113 $\Delta tolC$ (4.7 and 10 µg/mL, respectively), and *B. subtilis* 168 (4.7 and 40 µg/mL, respectively) suggest that a distance of ~3-5 Å between the primary amine and the aromatic ring is ideal for activity (Table 2).

221 These results suggest that the hydrophobic tail and the charged, primary amine head of **1** are essential for its antibacterial activity, making it plausible that these 222 223 compounds mimic the general structural features of lipids and lead to bacterial cell 224 death through altering the physical properties of membranes.³² We investigated the 225 effect of **1** on membrane permeability using the membrane impermeable DNA probe 226 propidium iodide (PI) to label DNA in cells in which the membrane is compromised (Figure 3A).^{33,34} We treated *E. coli* BW25113 cells with **1** at 6.0 μ g/mL (1×MIC) or 12 227 228 μ g/mL (2×MIC), 50% v/v ethanol (positive control), and an equivalent volume of 229 DMSO (solvent control) and used flow cytometry to measure the fluorescence intensity of individual cells in each of the treatment populations in the presence and absence of 230 231 PI (background fluorescence control). Ethanol-treated cells and cells treated with 1 at 232 both concentrations gave a significantly higher fluorescent signal than the population 233 treated with DMSO and untreated cells, suggesting **1** increases the membrane 234 permeability of *E. coli* cells.

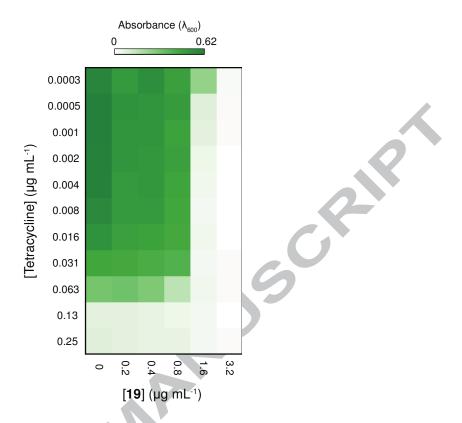
235

Figure 3. A) A plot depicting the fluorescence intensity of propidium iodine (PI) after 236 treating *E. coli* BW25113 cells with DMSO, 50% ethanol, 1×MIC of **1** (6.0 µg/mL), and 237 238 $2 \times MIC$ of **1** (12.0 µg/mL), labeling using PI, and measurements using flow cytometry. Each condition includes a sample size of n>7,000 cells. The three treatment conditions 239 240 (50% ethanol, 1×MIC, and 2×MIC) are statistically significant compared to DMSO 241 treatment (**p<0.001). A Q-test was preformed to define and remove outliers. B) The 242 MIC and percent of membrane permeability after treatment of *E. coli* BW25113 cells 243 with compounds 1 and 17-22 are presented on the same axes. The 244 fluorescence/absorbance ratio was normalized to the fluorescence/absorbance ratio of 245 the 50% ethanol treatment control. 246 247 We also explored the effect of alkyl chain length on the membrane permeability 248 of E. coli BW25113 cells treated with 1xMIC of 1 (6.0 µg/mL), 18 (42 µg/mL), 19 (6.3 249 μ g/mL), and 20 (26 μ g/mL) and the highest concentration of 17 (74 μ g/mL), 21 (119 250 μ g/mL), and **22** (124 μ g/mL) that we tested in the SAR study (as these compounds did

not display significant antibiotic activity). We treated cells with compound for 15 min,

252	added PI, and measured the absorbance and fluorescence intensity of both labeled and
253	unlabeled cells (the latter a background fluorescence control) using a microplate reader
254	(Figure 3B). When normalized to the 50% ethanol positive control, we observed 100%
255	membrane permeability when cells were treated with 1 , 34% after treatment with 18 ,
256	83% after treatment with 19 and 10% after treatment with 20 . Compounds 17 , 21 , and 22
257	displayed very little membrane permeability -3% , 11% , and 13% , respectively, which is
258	consistent with their lack of biological activity in MIC assays. An alkyl chain length of 6-
259	10 carbons maximizes bacterial cell membrane permeability and minimizes the MIC,
260	suggesting that biological activity of these compounds is related to membrane
261	permeability (Figure 3B).
262	To rule out the activity of 1 also arising from binding to a protein target in cells,
263	we performed a spontaneous resistant mutant screen. We isolated stable E. coli mutants
264	that were resistant to 10×MIC of 1, isolated genomic DNA of two mutants, deep
265	sequenced them, and assembled their genomes. We identified loci for mutations that
266	mapped to four genes; <i>pykA</i> , <i>otsA</i> , <i>thrS</i> , <i>ydeA</i> (Table S3). Using a multiple copy
267	suppression assay, we demonstrated that overexpressing each protein did not reduce
268	the MIC of <i>E. coli</i> MG1655 cells to 1 (Table S3). These results suggest that this compound
269	does not have a specific protein target in bacteria and that its activity arises from its
270	interaction with the membrane.
271	The membrane permeability activity of 1 , 18 , 19 , 20 , and 27 led us to explore

The membrane permeability activity of **1**, **18**, **19**, **20**, and **27** led us to explore these compounds as antibiotic adjuvants to facilitate antibiotic transport into bacterial cells, decrease the concentration of therapeutic antibiotics (and thereby reduce the


274	susceptibility for bacteria developing drug resistance), and increase the susceptibility of
275	bacteria to the drugs. We used chloramphenicol, tetracycline, ciprofloxacin and
276	rifampicin as model clinical antibiotics that hit a range of drug targets. We treated <i>E. coli</i>
277	BW25113 cells with a combination of each of these antibiotics and 1 , 18 , 19 , 20 , or 27 at a
278	concentration of either 0.25× or 0.5×MIC. Analogs 18, 19, and 20 at 0.5×MIC
279	significantly changed the MIC of certain antibiotics against <i>E. coli</i> BW25113, while 1 had
280	no effect on the MIC of all four antibiotics (Table 3). Co-dosing 1 , 18 , 19 , or 27 at
281	0.25×MIC did not have a significant effect on the MIC of the four antibiotics. 18 and 19
282	(at 0.5×MIC) reduced the MIC of rifampicin by ≥8-fold. Co-dosing 20 (at 0.5×MIC)
283	reduced the MIC of chloramphenicol and ciprofloxacin by 16-fold, the MIC of
284	tetracycline by 8-fold, and the MIC of rifampicin by 32-fold against <i>E. coli</i> BW25113. 10
285	was also active at 0.25×MIC and reduced the MIC of chloramphenicol by 4-fold and
286	rifampicin by 8-fold (Table 3). From these data we selected 18, 19, rifampicin, and
287	tetracycline to test additional drug combinations against S. typhimurium, A. baumannii,
288	P. aeruginosa, K. pneumoniae, S. aureus.
	Analog

		Analog									
		Concentration (μ g/mL)									
	No	1	1	18	18	19	19	20	20	27	27
Antibiotic	Analog	3.0	1.5	21	10.5	3.2	1.6	14	6.9	2.6	1.3
Chloramphenicol	8	8	8	4	4	2	4	0.5	2	4	8
(µg/mL)	0	0	0	4	4	2	4	0.5	2	4	0
Tetracycline	2	2	2	1	2	0.25	1	0.25	1	1	2
(µg/mL)	Ζ	2	2	T	Ζ	0.23	1	0.25	1		2
Ciprofloxacin	13	13	13	13	13	13	13	0.8	13	25	25
(ng/mL)	15	13	13	15	13	13	13	0.0	13	23	23
Rifampicin	8	8	8	1	4	1	8	0.25	1	2	4

	(µg/mL)
289	Table 3. The MIC (μ g/mL) of 4 antibiotics against <i>E. coli</i> BW25113 supplemented with 1 ,
290	18, 19, 20, and 27. Gray shading highlights co-treatment combinations tested against
291	BSL-2 bacterial strains, which form the basis for Table 4.
292	
293	Table 4 displays MIC data for rifampicin dosed with 18 (21 μ g/mL) and
294	tetracycline dosed with 19 (3.2 μ g/mL; with the exception of <i>S. aureus</i> , for which we
295	used 1.6 μ g/mL) against all five bacterial strains. The activity of 18 and 19 as potential
296	adjuvants was most notable against S. typhimurium, A. baumannii, and S. aureus. The
297	MIC of rifampicin against <i>S. typhimurium</i> and <i>A. baumannii</i> was $8 \mu g/mL$ and $2 \mu g/mL$,
298	respectively. Co-dosing rifampicin with 18 (21 μ g/mL) decreased the MICs to 0.5
299	μ g/mL and 0.016 μ g/mL, respectively. The MIC of tetracycline was 1 μ g/mL for both <i>S</i> .
300	<i>typhimurium</i> and <i>A. baumannii;</i> adding 19 (3.2 μ g/mL) decreased the MIC to 0.016
201	
301	μ g/mL and 0.25 μ g/mL, respectively. The only combination effective against <i>S. aureus</i>
202	$10 (1 (u_{\alpha}/m_{\alpha}))$ and taken analyzes which us decay d the MIC of taken median by every
302	was 19 (1.6 μ g/mL) and tetracycline, which reduced the MIC of tetracycline by over
202	100 fold to $0.001 \mu g/m L$ (Table 4 Figure 4)
303	100-fold to 0.001 μg/mL (Table 4, Figure 4).

Antibiotic (µg/mL)	Rifampicin	Rifampicin	Tetracycline	Tetracycline
Analog/[Analog] (µg/mL)	No Analog	18 /21	No Analog	19 /3.2
Salmonella typhimurium	8	0.5	1	0.016
Acinetobacter baumannii	2	0.016	1	0.25
Pseudomonas aeruginosa	16	16	32	16
Klebsiella pneumoniae	16	8	2	2
Staphylococcus aureus	0.004	0.004	0.125	0.001*

- ^{*} We used a concentration of **19** (1.6 μ g/mL) with tetracycline when treating *S. aureus* to keep to maintain 0.5×MIC of the hydroxytryptamine analog.
- 306
- 307 **Table 4.** The MIC (μ g/mL) of rifampicin and tetracycline against BSL-2 strains:
- 308 Salmonella typhimurium, Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella
- 309 *pneumoniae,* and *Staphylococcus aureus* supplemented with sub-MIC concentrations of **18** 310 and **19**.
- 311

312

Figure 4. A plot depicting a checkerboard assay with varying concentrations of
tetracycline and 19 against *S. aureus*. The MIC of tetracycline and 19 against *S. aureus* is
0.13 µg/mL and 3.2 µg/mL, respectively.

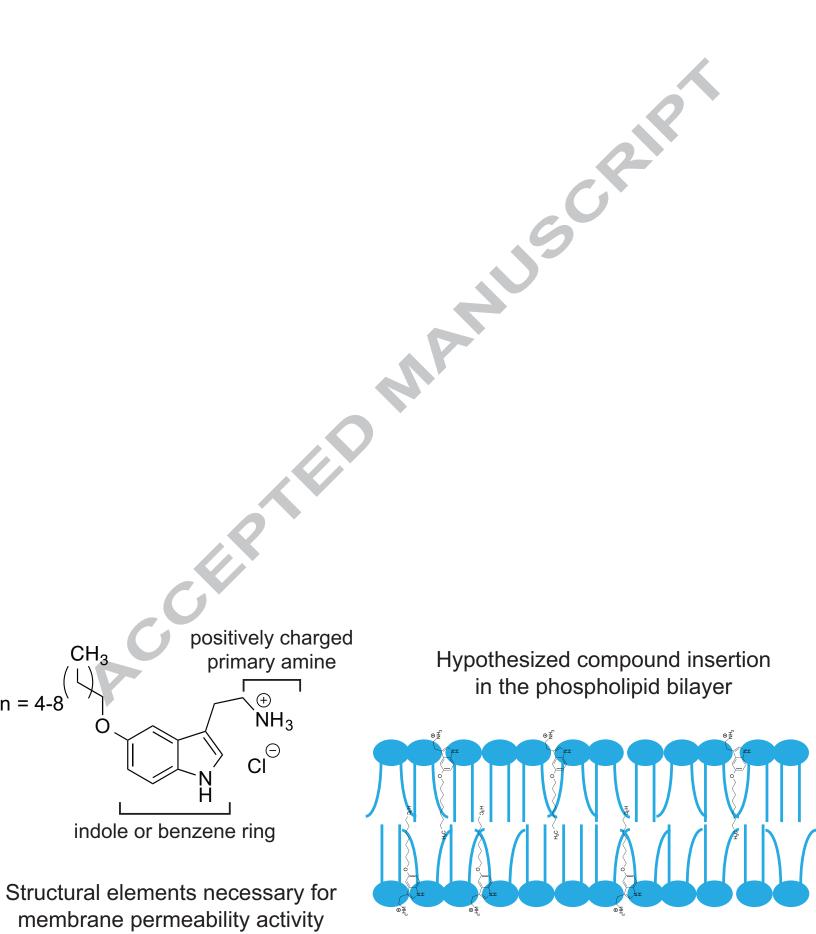
316

To explore 5-NOT analogs as antibiotic adjuvants from a therapeutic perspective, 317 318 we investigated the cytotoxicity of several analogs against human embryonic kidney 319 (HEK) cells. We measured HEK cell viability 24 and 48 h after treatment with 18, 19, 20, 320 and 27 at the concentrations used in the co-dosing experiments described above (Table 321 S4). We found that **19** (0.25×MIC, 1.6 μ g/mL) and **27** (0.25×MIC, 1.3 μ g/mL) reduce 322 HEK cell viability to 29.6% and 60.5% after 24 h of treatment. At this concentration, 19 323 reduced the susceptibility of *S. aureus* to tetracycline from 0.125 µg/mL to 0.001 µg/mL 324 (Table 4, Figure 4). These data suggest that **19** at sub-MIC concentrations can potentiate 325 the activity of clinical antibiotics, however further structural modifications will be 326 needed to reduce HEK cell cytotoxicity.

327	Although 1 was selected in a high throughput screen designed to detect
328	anucleate cells after compound treatment, cells treated with this compound and the
329	DNA-intercalating dye 4',6-diamidino-2-phenylindole (DAPI) became fluorescent,
330	indicating that cells contained a nucleoid. To test the hypothesis that molecules that
331	disrupt the cell envelope are false positives in the anucleate assay, we tested three β -
332	lactams (meropenem, aztreonam, and cefotaxime) that inhibit the biosynthesis of
333	peptidoglycan ^{35,36} and an antimicrobial peptide (cecropin A) that disrupts the bacterial
334	membrane. ³⁷ We used rifampicin as a positive control and chloramphenicol as a
335	negative control. ²⁵ We treated <i>E. coli</i> SH3210 cells with each compound and the β -
336	galactosidase substrate, DDAOG and measured the fluorescence signal indicating
337	production of the cleaved fluorescent byproduct. Meropenem, aztreonam, cefotaxime,
338	cecropin A, and 1 produced a significantly higher β -gal signal than the negative control,
339	chloramphenicol and the DMSO solvent control (Figure S2). These results confirm our
340	reasoning that compounds that interact with the membrane or inhibit cell wall
341	biosynthesis are false positive hits in the anucleate cell assay.
342	In conclusion, we report the discovery and characterization of 5-
343	alkyloxytryptamine analogs as a new family of broad-spectrum antibiotics. Members of
344	this family of compounds were described previously as human 5- $\mathrm{HT_{1D}}$ receptor
345	agonists. We describe a series of compounds in this family that target membranes and
346	display MIC values as low as 0.6-5 μ g/mL against a range of pathogenic bacteria. At
347	sub-MIC concentrations – toward the end of the spectrum where toxicity against HEK
348	cells is minimized – the compounds are effective adjuvants that potentiate the activity

349	of clinical antibiotics. For example, co-dosing <i>S. aureus</i> cells with 19 reduced the MIC of
350	tetracycline from 0.125 μ g/mL to 0.001 μ g/mL. Exploring other co-dosing formulations
351	and 5-alkyloxytryptamine analogs may increase potency while reducing toxicity.
352	
353	Acknowledgements
354	This research was supported by grants from the National Institutes of Health
355	(1DP2OD008735) and the Human Frontiers Science Program (RGY0076/2013). K.
356	Faulkner acknowledges a fellowship from the Biochemistry Department of UW
357	Madison provided by the Genentech Corporation and K. Hurley acknowledges a
358	fellowship from the American Foundation for Pharmaceutical Education (AFPE). We
359	acknowledge Soren Rozema and his synthetic efforts toward new analogs during the
360	revision process. We also acknowledge the flow cytometry instrumentation facility
361	supported by University of Wisconsin Carbone Cancer Center Cancer Center Support
362	Grant P30 CA014520.
363	
364	Supplementary data
365	Supplementary data (figures, tables, synthetic procedures, compound characterization
366	data and biological methods) associated with this article can be found in the online

367 version.


368 **References and notes**

- 369
- 370 1. Brown, E. D.; Wright, G. D. Nature 2016, 529, 336.
- 2. Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L. Nat. Rev. Drug Discov.

- **2007**, *6*, 29.
- 373 3. Silver, L. L. Clin. Microbiol. Rev. 2011, 24, 71.
- 374 4. Poole, K. Curr. Pharm. Biotechnol. 2002, 3, 77.
- 375 5. Potron, A.; Poirel, L.; Nordmann, P. Int. J. Antimicrob. Agents 2015, 45, 568.
- 376 6. Zowawi, H. M.; Harris, P. N. A.; Roberts, M. J.; Tambyah, P. A.; Schembri, M. A.;
- 377 Pezzani, M. D.; Williamson, D. A.; Paterson, D. L. Nat. Rev. Urol. 2015, 12, 570.
- 378 7. Graef, F.; Gordon, S.; Lehr, C.-M. Curr. Top. Microbiol. Immunol. 2016, 1.
- Pachón-Ibáñez, M. E.; Smani, Y.; Pachón, J. Expert Rev. Anti. Infect. Ther. 2016, 14,
 153.
- 381 9. Tamma, P. D.; Cosgrove, S. E.; Maragakis, L. L. Clin. Microbiol. Rev. 2012, 25, 450.
- 382 10. Bernal, P.; Molina-Santiago, C.; Daddaoua, A.; Llamas, M. A. *Microb. Biotechnol.*383 2013, 6, 445.
- 384 11. Farha, M. A.; Brown, E. D. Nat. Biotechnol. 2013, 31, 120.
- 385 12. Gill, E. E.; Franco, O. L.; Hancock, R. E. W. Chem. Biol. Drug Des. 2015, 85, 56.
- 386 13. Zabawa, T. P.; Pucci, M. J.; Jr, T. R. P.; Lister, T. Curr. Opin. Microbiol. 2016, 33, 7.
- 387 14. Geddes, A. M.; Klugman, K. P.; Rolinson, G. N. Int. J. Antimicrob. Agents 2007, 30,
- 388
 109.
- 389 15. Drawz, S. M.; Bonomo, R. A. *Clin. Microbiol. Rev.* **2010**, 23, 160.

- 390 16. Schindler, B. D.; Jacinto, P.; Kaatz, G. W. Future Microbiol. 2013, 8, 491.
- 391 17. Opperman, T. J.; Nguyen, S. T. Front. Microbiol. 2015, 6, 1.
- 392 18. Serra, D. O.; Mika, F.; Richter, A. M.; Hengge, R. Mol. Microbiol. 2016, doi:
- 393 10.1111/mmi.13379.
- 394 19. Brynildsen, M. P.; Winkler, J. A.; Spina, C. S.; MacDonald, I. C.; Collins, J. J. Nat.
- *Biotechnol.* **2013**, *31*, 160.
- 396 20. Thorsing, M.; Bentin, T.; Givskov, M.; Tolker-Nielsen, T.; Goltermann, L.
- 397 *Microbiology* **2015**, *161*, 1999.
- 398 21. Allison, K. R.; Brynildsen, M. P.; Collins, J. J. Nature 2011, 473, 216.
- 399 22. Gordon, N. C.; Png, K.; Wareham, D. W. Antimicrob. Agents Chemother. 2010, 54,
 400 5316.
- 401 23. Hemaiswarya, S.; Doble, M. J. Med. Microbiol. 2010, 59, 1469.
- 402 24. Hemaiswarya, S.; Doble, M. *Phytomedicine* **2009**, *16*, 997.
- 403 25. Oyamada, Y.; Ito, H.; Fujimoto-Nakamura, M.; Tanitame, A.; Iwai, N.; Nagai, K.;
- 404 Yamagishi, J. I.; Wachi, M. Antimicrob. Agents Chemother. 2006, 50, 348.
- 405 26. Glennon, R. A.; Hong, S. S.; Dukat, M.; Teitler, M.; Davis, K. J. Med. Chem. 1994, 37,
 406 2828.
- 407 27. Glennon, R. A.; Hong, S. S.; Bondarev, M.; Law, H.; Dukat, M.; Rakhit, S.; Power,
- 408 P.; Fan, E.; Kinneau, D.; Kamboj, R.; Teitler, M.; Herrick-Davis, K.; Smith, C. J. Med.
- 409 *Chem.* **1996**, *39*, 314.
- 410 28. Barnes, N. M.; Sharp, T. Neuropharmacology **1999**, *38*, 1083.
- 411 29. Upadhyay, S. N. Biochemistry 2003, 18, 1.

- 412 30. Silberstein, S. D.; Marcus, D. A. Expert Opin. Pharmacother. 2013, 14, 1659.
- 413 31. Pankey, G. A.; Sabath, L. D. Clin. Infect. Dis. 2004, 38, 864.
- 414 32. Bogdanov, M.; Mileykovskaya, E.; Dowhan, W. Subcell Biochem. 2008, 49, 197.
- 415 33. Eun, Y.; Foss, M. H.; Kiekebusch, D.; Pauw, D. A.; Westler, W. M.; Thanbichler,
- 416 M.; Weibel, D. B. J. Am. Chem. Soc. **2012**, 134, 11322.
- 417 34. Foss, M. H.; Eun, Y.-J.; Grove, C. I.; Pauw, D. A.; Sorto, N. A.; Rensvold, J. W.;
- 418 Pagliarini, D. J.; Shaw, J. T.; Weibel, D. B. Med. chem. comm. 2013, 4, 112.
- 419 35. Kong, K.; Schneper, L.; Mathee, K. APMIS 2010, 118, 1.
- 420 36. Williamson, R.; Hakenbeck, R.; Tomasz, A. Antimicrob. Agents Chemother. 1980, 18,
- 421 629.
- 422 37. Wu, J.; Mu, L.; Zhuang, L.; Han, Y.; Liu, T.; Li, J.; Yang, Y.; Yang, H.; Wei, L.
- 423 *Parasit. Vectors* **2015**, *8*, 1.

