

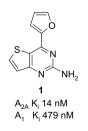
Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 2924-2929

Antagonists of the human adenosine A_{2A} receptor. Part 3: Design and synthesis of pyrazolo[3,4-*d*]pyrimidines, pyrrolo[2,3-*d*]pyrimidines and 6-arylpurines

Roger J. Gillespie,^a Ian A. Cliffe,^a Claire E. Dawson,^a Colin T. Dourish,^a Suneel Gaur,^a Allan M. Jordan,^b Antony R. Knight,^a Joanne Lerpiniere,^a Anil Misra,^a Robert M. Pratt,^a Jonathan Roffey,^a Gemma C. Stratton,^a Rebecca Upton,^a Scott M. Weiss^a and Douglas S. Williamson^{b,*}


> ^aVernalis (R&D) Ltd, 613 Reading Road, Winnersh RG41 5UA, UK ^bVernalis (R&D) Ltd, Granta Park, Cambridge CB21 6GB, UK

> Received 10 January 2008; revised 26 March 2008; accepted 27 March 2008 Available online 30 March 2008

Abstract—A series of pyrazolo[3,4-*d*]pyrimidine, pyrrolo[2,3-*d*]pyrimidine and 6-arylpurine adenosine A_{2A} antagonists is described. Many examples were highly selective against the human A_1 receptor sub-type and were active in an in vivo model of Parkinson's disease.

© 2008 Elsevier Ltd. All rights reserved.

Adenosine A_{2A} receptors play a role within the brain in regulating movement, and there is strong evidence that they may provide a novel therapy for the treatment of Parkinson's disease.^{1,2} Further to the discovery that 4arylthieno[3,2-*d*]pyrimidines such as compound **1** were potent adenosine A_{2A} receptor antagonists, selective over the A_1 receptor and demonstrated activity in a mouse haloperidol-induced hypolocomotion model of Parkinson's disease,³⁻⁷ the SAR around other bicyclic heteroaromatic templates was explored.

Keywords: Adenosine A_{2A} receptor antagonists; Parkinson's disease; Pyrazolo[3,4-*d*]pyrimidine; Pyrrolo[2,3-*d*]pyrimidine; Purine.

The 4-(furan-2-yl)pyrazolo[3,4-d]pyrimidine 2 was selected as a starting point for further investigation and, encouragingly, this was found to have an A_{2A} K_i of 48 nM and was 13-fold selective over A1 (Table 1).8 1-Benzyl substitution (compound 3) increased potency at A_{2A} and selectivity over A_1 , whilst retaining in vivo activity. Saturation of the phenyl ring of 3 or incorporation of heteroatoms (compounds 4-6) was tolerated, but did not improve affinity significantly. Extension of the linker between the phenyl ring and pyrazole by one methylene group (compound 7) was detrimental to A_{2A} potency, but further extension (compounds 8 and 9) regained A_{2A} potency at the expense of A_1 selectivity. Elaboration of the 2-amino substituent was also explored, but its replacement with a 2-aminoethanol or 2-dimethylamino substituent (10 and 11) reduced A_{2A} potency.

Given the encouraging data on the benzyl analogue 3, the effects of substitution around the phenyl ring were explored (Table 2). *Meta*-substitution with a range of electron-rich and deficient substituents was tolerated, with the 3-chlorobenzyl analogue 14 showing increased A_{2A} potency and selectivity over A_1 . *Ortho-* and *para*-substitution was largely detrimental to the desired biological profile, although 2-fluoro substitution (compound 23) was tolerated. Further work was

^{*} Corresponding author. Tel.: +44 (0) 1223 895555; fax: +44 (0) 1223 895556; e-mail: d.williamson@vernalis.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2008.03.072

Table 1. Binding affinity and in vivo activity of pyrazolo[3,4-d]pyrimidines 2-11

Compound	\mathbf{R}^1	\mathbb{R}^2	$A_{2A} K_i (nM)^8$	$A_1 K_i (nM)^8$	HaloLMA activity ^{4–6}
2	Н	NH ₂	48	647	Active
3	Benzyl	NH_2	3	468	Active
4	Cyclohexylmethyl	NH_2	45	763	Active
5	Pyridin-3-ylmethyl	NH_2	28	1953	Active
6	Furan-2-ylmethyl	NH_2	36	709	Active
7	Phenethyl	NH_2	110	462	Inactive
8	3-Phenylpropyl	NH_2	4	17	Active
9	Benzylaminocarbonyl	NH_2	1	13	Active
10	Phenethyl	NH(CH ₂) ₂ OH	135	175	Inactive
11	Phenethyl	NMe ₂	1891	7255	

Table 2. Binding affinity and in vivo activity of pyrazolo[3,4-d]pyrimidines 2-3 and 12-33, and 9-substituted-6-(furan-2-yl)-9H-purin-2-ylamines 34-47

Compound	Х	Y	\mathbb{R}^1	\mathbb{R}^2	$A_{2A} K_i (nM)^6$	$A_1 K_i (nM)^6$	HaloLMA activity
2	CH	Ν	Н	Furan-2-yl	48	647	Active
3	CH	Ν	Benzyl	Furan-2-yl	3	468	Active
12	CH	Ν	3-Methylbenzyl	Furan-2-yl	3	252	Active
13	CH	Ν	2-Chlorobenzyl	Furan-2-yl	9	721	Inactive
14	CH	Ν	3-Chlorobenzyl	Furan-2-yl	1	206	Active
15	CH	Ν	3-Methoxybenzyl	Furan-2-yl	2	284	Active
16	CH	Ν	3-Methoxycarbonylbenzyl	Furan-2-yl	4	779	Active
17	CH	Ν	2-Nitrobenzyl	Furan-2-yl	26	1605	Inactive
18	CH	Ν	3-Nitrobenzyl	Furan-2-yl	4	497	Active
19	CH	Ν	4-Nitrobenzyl	Furan-2-yl	119	1610	Inactive
20	CH	Ν	2-Aminobenzyl	Furan-2-yl	8	320	Active
21	CH	Ν	3-Aminobenzyl	Furan-2-yl	4	123	Active
22	CH	Ν	3-Carboxybenzyl	Furan-2-yl	1322	6321	Inactive
23	CH	Ν	2-Fluorobenzyl	Furan-2-yl	4	264	Active
24	CH	Ν	2,6-Difluorobenzyl	Furan-2-yl	2	130	Active
25	CH	Ν	4-Trifluoromethylbenzyl	Furan-2-yl	6	47	Inactive
26	CH	Ν	4-Methylsulfonylbenzyl	Furan-2-yl	340	1126	Inactive
27	CH	Ν	2-Fluorobenzyl	Thiophen-2-yl	9	193	_
28	CH	Ν	2-Fluorobenzyl	Pyridin-2-yl	12	519	Active
29	CH	Ν	2-Fluorobenzyl	Pyrazol-3-yl	16	1642	Active
30	CH	Ν	2-Fluorobenzyl	Thiazol-2-yl	17	504	Inactive
31	CH	Ν	2-Fluorobenzyl	(1,2,4)Triazol-3-yl	71	1993	Active
32	CH	Ν	2-Fluorobenzyl	1-Methylimidazol-2-yl	1616	6219	Inactive
33	CH	Ν	2-Fluorobenzyl	Imidazol-2-yl	2086	4900	
34	Ν	CH	Н	Furan-2-yl	261	4951	Active
35	Ν	CH	Benzyl	Furan-2-yl	40	3324	Active
36	Ν	CH	3-Methylbenzyl	Furan-2-yl	6	1083	Active
37	Ν	CH	3-Chlorobenzyl	Furan-2-yl	8	984	Inactive
38	Ν	CH	3-Methoxybenzyl	Furan-2-yl	7	1680	Active
39	Ν	CH	3-Methoxycarbonylbenzyl	Furan-2-yl	45	1938	Inactive
40	Ν	CH	3-Nitrobenzyl	Furan-2-yl	85	3920	Inactive
41	Ν	CH	4-Nitrobenzyl	Furan-2-yl	372	5765	_
42	Ν	CH	3-Aminobenzyl	Furan-2-yl	23	4027	Active
43	Ν	CH	3-Carboxybenzyl	Furan-2-yl	4105	6470	
44	Ν	CH	2-Fluorobenzyl	Furan-2-yl	5	1444	Active
45	Ν	CH	2,6-Difluorobenzyl	Furan-2-yl	3	612	Active
46	Ν	CH	4-Trifluoromethylbenzyl	Furan-2-yl	6	3288	Active
47	Ν	СН	4-Methylsulfonylbenzyl	Furan-2-yl	779	7628	_

undertaken to optimise the 4-(furan-2-yl) substituent of **23** since, in some compounds, this moiety is prone to oxidative metabolism, which can lead to the formation of reactive species capable of forming covalent adducts.⁹ This iterative approach is complementary to database mining and molecular similarity approaches, which have been used to identify other classes of non-furan containing A_{2A} antagonists.¹⁰ The resulting compounds **27–33** showed reduced affinity for A_{2A} , although the pyrazol-3-yl analogue **29** displayed increased A_1 selectivity, whilst retaining in vivo activity.

Despite many pyrazolo[3,4-*d*]pyrimidine examples showing in vivo activity following intraperitoneal administration, none were active when given orally. Modification of the core template of this series to a purine was investigated, with a view to obtaining orally active compounds. The 6-arylpurine **34** had weaker binding affinity for A_{2A} (K_i 261 nM) than compound **2**, but had similar selectivity over A_1 (K_i 4951 nM). Additionally, **34** caused reversal of haloperidol-induced hypolocomotion in mice dosed at 10 mg/kg ip and, encouragingly, at 1 mg/kg po.

As with the pyrazolo[3,4-*d*]pyrimidine examples, benzylic substitution (compound **35**) at the 9-position of compound **34** was beneficial to affinity for the A_{2A} receptor and also selectivity over A_1 . This compound was also active in vivo when dosed at 30 mg/kg ip, but inactive when administered orally at the same dose. In comparison with the analogous pyrazolo[3,4-*d*]pyrimidine **3**, however, compound **35** was 13-fold less potent against A_{2A} . Further studies were carried out to optimize compound **35**. These augment the work of Kiselgof et al.,¹¹ published subsequent to our patent disclosure.¹² Appropriate substitution on the phenyl ring led to increased potency, with some examples displaying affinity for A_{2A} at a similar level to their pyrazolo[3,4-*d*]pyrimidine counterparts, as well as greater selectivity over A₁. The 2,6-difluorophenyl analogue **45** was the most potent example in this sub-series (A_{2A} K_i 3 nM, A_1 K_i 612 nM). Whilst several analogues were active in vivo following ip administration, the 3-aminobenzyl analogue **42** was the only example which showed in vivo efficacy, when dosed orally at 30 mg/kg.

With the intention of further optimising the in vivo profile of the 6-arylpurine series, it was noted that the urea analogue 9 of the pyrazolo[3,4-d]pyrimidine series had an A_{2A} K_i of 1 nM and was 13-fold selective over A_1 . The analogous 6-arylpurine compound 48 was synthesised, and was found to have a very similar level of potency for A_{2A} and selectivity over A_1 (Table 3). The phenyl analogue 49 had a similar in vitro profile to the unsubstituted compound 34, but the introduction of an extra two methylene spacers (50) led to improved selectivity over A_1 and incorporation of an (S)- α -methylbenzyl substituent (51) enhanced A_{2A} potency whilst maintaining >100-fold selectivity over A_1 . A range of heteroaryl and substituted phenyl analogues (53-58) was shown to be highly potent at A_{2A} , selective for A_1 and active in vivo when dosed ip. Additionally, compounds 53, 54 and 56 were shown to be orally active in vivo at 30, 10 and 30 mg/kg, respectively.

SAR at the 6-position of the purine ring was investigated, with the furan-2-yl ring of compound **48** being replaced with thiophen-2-yl, phenyl or thiazol-5-yl groups

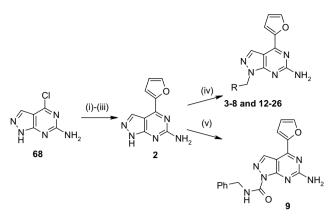
Table 3. Binding affinity and in vivo activity of pyrazolo[3,4-d]pyrimidine 9 and 6-aryl-9H-purin-9-ylcarboxamides 48-65

Compound	Х	Y	\mathbf{R}^1	R ²	R ³	$A_{2A} K_i (nM)^8$	$A_1 K_i (nM)^8$	HaloLMA activity ^{4–6}
9	CH	Ν	Benzyl	Furan-2-yl	NH ₂	1	13	Active
48	Ν	CH	Benzyl	Furan-2-yl	NH_2	1	17	Active
49	Ν	CH	Phenyl	Furan-2-yl	NH_2	206	4960	Active
50	Ν	CH	Phenethyl	Furan-2-yl	NH_2	6	624	Active
51	Ν	CH	(S)-1-Phenylethyl	Furan-2-yl	NH_2	2	231	Active
52	Ν	CH	(R)-1-Phenylethyl	Furan-2-yl	NH_2	26	1856	Inactive
53	Ν	CH	Thiophen-2-ylmethyl	Furan-2-yl	NH_2	1	28	Active
54	Ν	CH	Furan-2-ylmethyl	Furan-2-yl	NH_2	2	170	Active
55	Ν	CH	4-Fluorobenzyl	Furan-2-yl	NH_2	1	70	Active
56	Ν	CH	3-Methylbenzyl	Furan-2-yl	NH_2	1	26	Active
57	Ν	CH	4-Methylbenzyl	Furan-2-yl	NH_2	1	76	Active
58	Ν	CH	2-Chlorobenzyl	Furan-2-yl	NH_2	1	26	Active
59	Ν	CH	Benzyl	Thiophen-2-yl	NH_2	13	127	Inactive
60	Ν	CH	Benzyl	Phenyl	NH_2	17	60	Active
61	Ν	CH	Benzyl	Thiazol-5-yl	NH_2	56	835	Active
62	Ν	CH	Benzyl	Furan-2-yl	OMe	8	534	_
63	Ν	CH	Benzyl	Furan-2-yl	SMe	13	547	Inactive
64	Ν	CH	Benzyl	Furan-2-yl	NMe ₂	23	748	Inactive
65	Ν	CH	Benzyl	Furan-2-yl	Me	102	2726	

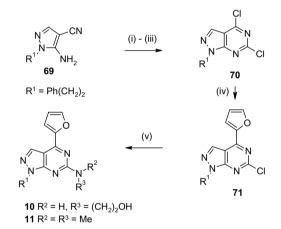
(59–61). In all cases, potency at A_{2A} and selectivity over A_1 was reduced. Replacement of the 2-amino group of compound 48 with OMe, SMe, NMe₂ or Me (62–65) was detrimental to A_{2A} potency, but gave enhanced selectivity over A_1 .

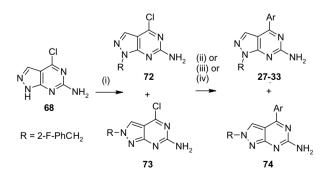
Selected pyrrolo[2,3-*d*]pyrimidine analogues were also prepared, allowing comparison with the direct analogues in the pyrazolo[3,4-*d*]pyrimidine series (Table 4). Examples **66** and **67** showed that replacement of N-2 with CH resulted in a significant drop in potency at A_{2A} , along with a smaller drop in selectivity over A_1 .

Pyrazolo[3,4-d]pyrmidines were prepared using the folmethodology.¹³ lowing 4-Chloro-1H-pyrazolo[3,4d]pyrimidin-6-ylamine **68**¹⁴ underwent Boc-protection and then arylation with 2-(tributylstannyl)furan in the presence of bis(triphenylphospine)palladium(II) dichloride, followed by deprotection to afford compound 2 (Scheme 1). Subsequent treatment with sodium hydride, followed by a benzyl or alkyl bromide, afforded compounds 3-8, 12-19 and 23-26 as largely the desired N1-substituted regioisomer.¹⁵ Reduction of the nitrobenzyl analogs 17 and 18 with tin(II) chloride afforded the aminobenzyl analogs 20 and 21, respectively, and hydrolysis of the methyl ester 16 afforded the carboxylic acid 22. The benzyl urea 9 was synthesized by treatment of 4-(furan-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-6-ylamine 2 with benzyl isocyanate and 4dimethylaminopyridine.


An alternative synthetic strategy (Scheme 2) involved hydrolysis of 5-amino-1-phenethyl-1*H*-pyrazole-4-carbonitrile **69**¹⁶ with sulfuric acid, followed by cyclocondensation of the resulting acid with urea and treatment with phenylphosphonic dichloride, which afforded 4,6dichloro-1-phenethyl-1*H*-pyrazolo[3,4-*d*]pyrimidine **70**. Subsequent arylation with 2-(tributylstannyl)furan in the presence of bis(triphenylphospine)palladium(II) dichloride afforded compound **71**. The 6-Cl of **71** underwent displacement by primary and secondary amines to afford **10** and **11**.

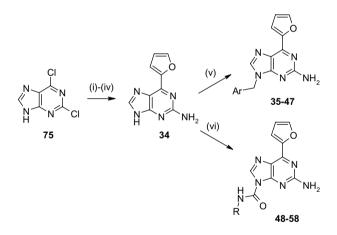
Scheme 3 outlines the synthesis of compounds 27–33. 4-Chloro-1*H*-pyrazolo[3,4-*d*]pyrimidin-6-ylamine **68** was treated with sodium hydride, followed by 1-bromo-


Table 4. Comparison of in vitro binding activity and in vivo activity of pyrazolo[3,4-*d*]pyrmidines 2 and 23, and pyrrolo[2,3-*d*]pyrimidines 66 and 67

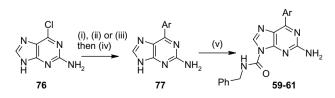

Compound	R	Х			HaloLMA activity ^{4–6}
2	Н	Ν	48	647	Active
66	Н	CH	242	2765	Active
23	2-Fluorobenzyl	Ν	4	264	Active
67	2-Fluorobenzyl	CH	16	709	_

Scheme 1. Reagents and conditions: (i) Boc₂O, Et₃N, DMAP, DMF, rt, 23%; (ii) 2-(tributylstannyl)furan, PdCl₂(PPh₃)₂, DMF, rt, 99%; (iii) Me₂NH_(aq) (40% w/v), Δ, 70%; (iv) NaH, DMF, 0 °C; RCH₂Br, rt, 34– 100%; (for 20 and 21) SnCl₂·2H₂O, concd HCl, EtOH, 50–70 °C, 94%; (for 22) 1 M NaOH_(aq), MeOH, Δ, 95%; (v) PhCH₂NCO, DMAP, DMF, rt, 24%.

Scheme 2. Reagents and conditions: (i) 9 M H₂SO_{4(aq)}, 60 °C, 47%; (ii) CO(NH₂)₂, 180 °C, quant.; (iii) PhPOCl₂, 165 °C, 23%; (iv) 2-(tributylstannyl)furan, PdCl₂(PPh₃)₂, DMF, rt, 99%; (v) (for **10**) HO(CH₂)₂NH₂, NMP, 100 °C, 57%; (for **11**) Me₂NH_(aq) (40% w/v), *i*-PrOH, Δ, 67%.


Scheme 3. Reagents and conditions: (i) NaH, DMF, 0 °C; 1-bromomethyl-2-fluorobenzene, 0 °C to rt, 34%; (ii) (for 27), ArB(OH)₂, Pd(PPh₃)₄, satd NaHCO_{3(aq)}, THF, Δ , 20%; (iii) (for 28) 2-bromopyridine, *n*-BuLi, THF, -78 °C; 1 M ZnCl₂ in Et₂O, -78 °C to rt; 72 and 73 (as 1:1 mixture), Pd(PPh₃)₄, Δ , 19%; (iv) (for 30 and 32) ArH, *n*-BuLi, THF, -78 °C; 1 M ZnCl₂ in Et₂O, -78 °C to rt; 72 and 73 (1:1 mixture), Pd(PPh₃)₄, Δ , 19–21%; (iv) (for 29, 31 and 33) *N*-SEM-ArH, *n*-BuLi, THF, -78 °C; 1 M ZnCl₂ in Et₂O, -78 °C to rt; 72 and 73 (1:1 mixture), Pd(PPh₃)₄, Δ , 2 h, 31%; 4 M HCl in 1,4-dioxane, rt, 23–40%.

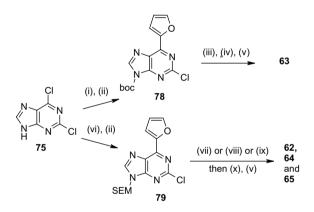
methyl-2-fluorobenzene, to give a 1:1 mixture of N1 and N2 benzylated derivatives **72** and **73**. This mixture then underwent a range of Suzuki couplings with an aryl boronic acid or Negishi couplings with an aryl zinc reagent. The desired N1-benzylated regiosomers 27-33 were then isolated from the undesired N2-benzylated regioisomers of type 74.¹⁵


6-Aryl purines were prepared as follows.¹² 2,6-Dichloropurine **75**¹⁷ underwent Boc-protection followed by 6arylation with 2-(tributylstannyl)furan (Scheme 4). Displacement of the 2-Cl with veratrylamine followed by TFA deprotection afforded compound **34**. Alkylation of **34** with a benzyl bromide afforded compounds **35– 41** and **44–47**. Reduction of the 3-nitrobenzyl analogue **40** with tin(II) chloride afforded the aniline **42**, and basic hydrolysis of the methyl ester **39** afforded the carboxylic acid **43**. Treatment of compound **34** with the appropriate isocyanate afforded ureas **48–58**.

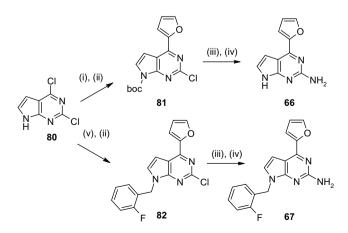
THP-protection of 2-amino-6-chloropurine **76**, followed by Suzuki or Stille arylation and then deprotection, afforded compounds of type **77**, which underwent treatment with benzyl isocyanate to afford ureas **59–61** (Scheme 5).

2,6-Dichloropurine 75 underwent Boc- or SEM-protection and subsequent arylation with 2-(tributylstan-

Scheme 4. Reagents and conditions: (i) Boc_2O , Et_3N , DMAP, THF, rt, quant.; (ii) 2-(tributylstannyl)furan, $PdCl_2(PPh_3)_2$, DMF, 96%; (iii) veratrylamine, NMP, 120 °C, 50%; (iv) CF_3CO_2H , 60 °C, 57%; (v) NaH, DMF, 0 °C; ArCH_2Br, 20–88%; (for 42 only) $SnCl_2'2H_2O$, concd HCl, EtOH, 50 °C, 22%; (for 43 only) 1 M NaOH_(aq), MeOH, Δ , 95%; (v) RNCO, DMAP, DMF, 65 °C, 28–97%.



Scheme 5. Reagents and conditions: (i) 3,4-dihydro-2*H*-pyran, 1 M HCl in Et₂O, DMF, 60 °C, 78%; (ii) (for **59** and **60**) ArB(OH)₂, Pd(PPh₃)₄, satd NaHCO_{3(aq)}, THF, Δ, 51–72%; (iii) (for **61**) ArSnBu₃, Pd(PPh₃)₂Cl₂, DMF, 80 °C, 75%; (iv) Amberlyst, MeOH, Δ; NH₃, MeOH, rt, 72–89%; (v) PhCH₂NCO, DMAP, DMF, 70 °C, 76–87%.


nyl)furan to give intermediates 78 or 79 (Scheme 6). 2-Chloro displacement, followed by deprotection and subsequent treatment with benzyl isocyanate afforded 62-65.

4-(Furan-2-yl)-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-ylamines 66 and 67 were prepared as follows (Scheme 7).¹⁸ 2,4-Dichloro-7*H*-pyrrolo[2,3-*d*]pyrimidine **80**¹⁹ underwent Boc-protection and then 4-arylation with 2-(tributylstannyl)furan to give compound **81**. Displacement of the 2-chloro substituent of **81** with veratrylamine, followed by treatment with trifluoracetic acid, gave compound 66. Compound 67 could be prepared by benzylation of **80**, followed by arylation to give intermediate **82** and then subsequent amine displacement and treatment with trifluoracetic acid.

In conclusion, a series of pyrazolo[3,4-d]pyrimidine, pyrrolo[2,3-d]pyrimidine and 6-arylpurine adenosine A_{2A} antagonists was described. Many examples were highly

Scheme 6. Reagents and conditions: (i) Boc₂O, Et₃N, DMAP, THF, rt, quant.; (ii) 2-(tributylstannyl)furan, PdCl₂(PPh₃)₂, DMF, 96%; (iii) NaSMe, NMP, 110 °C, 61%; (iv) 4 M HCl in 1,4-dioxane, 1,4-dioxane, rt, 87%; (v) PhCH₂NCO, DMAP, THF, DMF, 35–82%; (vi) SEMCl, NaH, THF 0 °C to rt, 78%; (vii) (for **62**) MeONa, MeOH, Δ , 67%; (viii) (for **64**) NHMe₂, *i*-PrOH, Δ , 86%; (ix) (for **65**) Me₃Al, Pd(PPh₃)₄, Cl(CH₂)₂Cl, Δ , 30%; (x) 1 M TBAF in THF, THF, Δ , 43–76%.

Scheme 7. Reagents and conditions: (i) Boc_2O , Et_3N , DMAP, THF, rt, 52%; (ii) 2-(tributylstannyl)furan, $PdCl_2(PPh_3)_2$, DMF, rt, 61%; (iii) veratrylamine, NMP, 100 °C, 88%; (iv) CF_3CO_2H , 50 °C, 51%; (v) NaH, DMF, 0 °C; 1-bromomethyl-2-fluorobenzene, rt, 76%.

 Table 5. Comparison of binding affinity and in vivo activity (following ip and po dosing) of selected 6-arylpurines

Compound	$\begin{array}{c} A_{2A} K_{i} \\ \left(nM\right)^{8} \end{array}$	$\begin{array}{c} A_1 K_i \\ (nM)^8 \end{array}$	HaloLMA activity ^{4–6}		
			MED (mg/kg) ip	MED (mg/kg) po	
34	261	4951	10	1	
42	23	4027	10	30	
53	1	28	≪30	30	
54	2	170	<30	10	
56	1	26	1	30	

selective against the human A_1 receptor sub-type and showed efficacy in a mouse haloperidol-induced hypolocomotion model of Parkinson's disease, following ip administration. 6-Arylpurines 42, 53, 54 and 56 showed efficacy in this model following oral administration, but each had an MED greater than that for the parent purine 34 (Table 5). In comparison with 34, the urea and benzyl derivatives are more lipophilic and, although rat PK studies showed good brain penetration, they had low oral bioavailability. Studies also showed that the urea side-chains were vulnerable to cleavage in vivo, and so these compounds were not progressed further. Subsequent work in this area will be disclosed in due course.

References and notes

- Xu, K.; Bastia, E.; Schwarzschild, M. Pharmacol. Ther. 2005, 105, 267.
- Cristalli, G.; Cacciari, B.; Dal Ben, D.; Lambertucci, C.; Moro, S.; Spalluto, G.; Volpini, R. *ChemMedChem* 2007, 2, 260.
- Gillespie, R. J.; Cliffe, I. A.; Dawson, C. E.; Dourish, C. T.; Gaur, S.; Giles, P. R.; Jordan, A. M.; Knight, A. R.; Lawrence, A.; Lerpiniere, J.; Misra, A.; Pratt, R. M.; Todd, R. S.; Upton, R.; Weiss, S. M.; Williamson, D. S. *Bioorg. Med. Chem. Lett.* 2008, 18, 2920.
- Reversal of haloperidol-induced hypolocomotion in mice, dosed with 30 mg/kg ip of test compound unless otherwise stated.

- 5. Bezard, E.; Imbert, C.; Gross, C. E. Rev. Neurosci. 1998, 9, 71.
- 6. Mandhane, S. N.; Chopde, C. T.; Ghosh, A. K. Eur. J. Pharmacol. 1997, 328, 135.
- Weiss, S. M.; Benwell, K.; Cliffe, I. A.; Gillespie, R. J.; Knight, A. R.; Lerpiniere, J.; Misra, A.; Pratt, R. M.; Revell, D.; Upton, R.; Dourish, C. T. *Neurology* 2003, 61, S101.
- 8. K_i values are the means of at least three determinations.
- Broughton, H. B.; Watson, I. A. J. Mol. Graphics Modell. 2004, 23, 51.
- Richardson, C. M.; Gillespie, R. J.; Williamson, D. S.; Jordan, A. M.; Fink, A.; Knight, A. R.; Sellwood, D. M.; Misra, A. *Bioorg. Med. Chem. Lett.* 2006, 16, 5993.
- Kiselgof, E.; Tulshian, D. B.; Arik, L.; Zhang, H.; Fawzi, A. Bioorg. Med. Chem. Lett. 2005, 15, 2119.
- Gillespie, R. J.; Lerpiniere, J.; Dawson, C. E.; Gaur, S.; Pratt, R. M.; Stratton, G. C.; Weiss, S. M. PCT Int. Appl. WO 2002055521, 2002.
- Gillespie, R. J.; Lerpiniere, J.; Gaur, S. PCT Int. Appl. WO 2002055082, 2002.
- 14. Seela, F.; Steker, H. Heterocycles 1985, 23, 2521.
- 15. In ¹H NMR spectroscopic studies of compounds 3–8 and 12–33, there was no nuclear Overhauser enhancement (nOe) of the signals pertaining to the protons of the benzyl substituent, following irradiation of the pyrazole 3-H. For compounds of type 74, which were isolable during the synthesis of compounds 27–33, nOe of the signal pertaining to the protons of the benzylic methylene group was observed upon irradiation of the pyrazole 3-H, thus confirming N2 benzyl substitution in compounds of type 74 and, indirectly, confirming that benzylation had occurred at N1 of 3–8 and 12–33. Comparison of ¹H and ¹³C NMR data for compounds 3–8 and 12–33 and that for compounds 10 and 11, which were prepared from the unambiguously N1-substituted pyrazole 69, further supported the structural assignment.
- Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Pineda de las Infantas y Villatoro, M. J.; Zocchi, C.; Dionisotti, S.; Ongini, E. J. Med. Chem. 1996, 39, 1164.
- 17. Obtained from the Sigma Aldrich Company Ltd, Gillingham, Dorset, UK; http://www.sigmaaldrich.com.
- Gillespie, R. J.; Lerpiniere, J. PCT Int. Appl. WO 2002055084, 2002.
- Kazimierczuk, Z.; Cottam, H. B.; Revankar, G. R.; Robins, R. K. J. Am. Chem. Soc. 1984, 106, 6379.