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Levoglucosenone, a chiral a,b-unsaturated ketone derived from cellulose, undergoes a stereoselective
domino oxa-Michael–aldol reaction with 2-hydroxybenzaldehydes affording optically active pyr-
ano[3,4-b]chromenes. The latter are further converted into 2H-chromenes via a Beckmann fragmentation
reaction.

� 2011 Elsevier Ltd. All rights reserved.
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Scheme 1. Domino oxa-Michael–aldol reaction.
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A number of biologically active natural compounds contain the
2H-chromene structural motif, and interest in the synthesis of
these compounds is growing rapidly.1 Reaction of 2-hydroxyben-
zaldehydes with a,b-unsaturated carbonyl compounds, or other
activated alkenes represents a possible synthetic approach to 2H-
chromenes1,2 (Scheme 1).

In particular, such reactions with cyclic a,b-unsaturated car-
bonyl compounds (i.e., cyclohexenones3 or pyranones4) afford
fused chromenes. The use of a chiral catalyst in these transforma-
tions can result in the formation of optically active chromene
derivatives,5 though ee values are not always high. Another possi-
ble approach to the latter compounds requires the use of suitable
chiral substrates. Thus, levoglucosenone (1) [(1S,5R)-6,8-dioxabi-
cyclo[3.2.1]oct-2-ene-4-one], an unsaturated ketone prepared by
acid-catalyzed pyrolysis of cellulose,6 is known to undergo stereo-
selective addition reactions on the C@C bond on the side opposite
to the anhydro bridge,7,8 resulting in its application for the synthe-
sis of optically active compounds.9

With 2-hydroxybenzaldehydes, levoglucosenone 1 undergoes a
stereoselective domino oxa-Michael–aldol reaction3a,10 (the phe-
nolate-anion attacks from the side opposite to the anhydro
bridge11) (Scheme 2).

In most cases, these reactions proceed smoothly and in high
yields12 (Table 1), however, with 5-nitrosalicylaldehyde the reac-
tion was much slower and the yield was lower (cf. Ref. 3a). This
is probably due to the poor nucleophilicity of the nitrophenolate-
anion.
ll rights reserved.
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The reaction of pyranochromene 2a with nucleophiles
(Nu = OMe�, SPh�) in MeOH or EtOH failed to yield the anticipated
adducts A (cf. Ref. 3a), but instead produced a mixture of epimer
2a011 and products of an unusual recyclization 3 (Scheme 3).

Most probably, the mechanism involves SN
02 substitution with

concomitant chromene ring-opening to yield intermediate B. The
latter could undergo either intramolecular nucleophilic SN

02 attack
by the phenolate-anion with ring-closure, resulting in epimer 2a0

[pathway (a)] or SN
02 attack by the external nucleophile affording

the recyclization products 3a,b via intermediate C [pathway (b)]
(Scheme 4).
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Figure 1. X-ray structure of product 3b (ORTEP presentation).

Table 1
Yields of products 2 and 4

R Yield of 2a (%) Yield of 4 (%)

H (a) 84 69
5-Br (b)b 86 67
3-MeO (c)b 91 59
5-NO2 (d)b 36c(52d)

a Performed at rt for 5 h.
b Position of substituents on the 2-hydroxybenzaldehydes is indicated.
c Reaction run for 72 h.
d Reaction run for 10 days.
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Scheme 3. Reaction of 2a with nucleophiles.
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The structure of product 3b was confirmed by X-ray diffrac-
tion13 (Fig. 1).

The structure of 3a was assigned based on similarities in the
NMR spectra with those of 3b. In particular, the chemical shifts
of C(10a) in the 13C NMR spectra were very close: d 92.60 for 3a
and d 92.32 for 3b.

On reaction with SOCl2, the oximes of pyranochromenes 2 (pre-
pared from 2 and NH2OH�HCl) were converted into 3-cyano-2H-
chromenes 4 in good yields14 (Table 1). The reaction proceeds via
the Beckmann fragmentation15 with cleavage of the intermediate
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1,3-dioxolan-2-ylium cation D by attack of Cl� at the least steri-
cally hindered position16,17 (Scheme 5). Acidic hydrolysis of the
formate 4b affords chlorohydrin 5. The structure of 4b was con-
firmed by X-ray crystallographic analysis, the details of which will
be published elsewhere.

In conclusion, the carbohydrate ketone, levoglucosenone (1)
proved to be a suitable template for the stereoselective synthesis
of optically active functionalized 2H-chromenes via a domino
oxa-Michael–aldol reaction followed by transformation of the car-
bohydrate fragment under Beckmann fragmentation conditions.
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