LETTER 2591

Synthesis of New 2,2,5,5-Tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl Radicals and 2-Substituted-2,5,5-trimethylpyrrolidin-1-yloxyl Radicals Based α -Amino Acids

Mária Balog, a Tamás Kálai, a József Jekő, b Heinz-Jürgen Steinhoff, Martin Engelhard, d Kálmán Hideg*a

- ^a Institute of Organic and Medicinal Chemistry, University of Pécs, P. O. Box 99, 7602 Pécs, Hungary Fax +36(72)536219; E-mail: kalman.hideg@aok.pte.hu
- ^b ICN Hungary Ltd., P. O. Box 1, 4440 Tiszavasvári, Hungary
- Department of Physics, University of Osnabrück, Barbara Str. 7, 49069 Osnabrück, Germany
- ^d Max Planck Institute of Molecular Physiology, P.O. Box 50 02 47, 44202 Dortmund, Germany Received 17 August 2004

Abstract: Unnatural paramagnetic α -amino acids with 2,2,5,5-tetramethyl-2,5-dihydro-1*H*-pyrrol-1-yloxyl-3-yl radical or 2,5,5-trimethylpyrrolidin-1-yloxyl-2-yl radical side-chains, including a lysine mimic azido precursor and their derivatives, are described. The new set of paramagnetic amino acids presented in this work with different (polar, nonpolar, aliphatic, aromatic, etc.) side-chains offers a useful tool for the ESR study of the protein structure and function after incorporation, fulfilling diverse structural requirements

Key words: amino acids, azides, free-radicals, O'Donnell synthesis, protecting groups

Unnatural amino acids have been the focus of biophysical, biochemical, and synthetic and medicinal chemical studies, particularly as they are applied to design of novel peptides.^{1,2} One main group of unnatural amino acids have fluorophores or paramagnetic labels in the side chain, which allows to follow them by biophysical methods.³⁻⁶ There are two main approaches to modifying peptides with spin labels. One approach is site-directed spin labeling, which requires synthesis of cysteine mutants which can be modified afterwards with paramagnetic methanethiosulfonates.⁷ The other approach includes the incorporation of a paramagnetic amino acid in a step-by-step synthesis, e. g. Merrifield synthesis or nonsense suppression methodology.² For the ESR studies of proteins, a variety of paramagnetic α -amino acids, ^{3–5,8} β -amino acids ⁹ and γ -amino acids¹⁰ have been synthesized. In several cases naturally occurring amino acids were modified by alkylation or acylation with functionalized pyrrol-1-yloxyl radicals to obtain a paramagnetic protein building block¹¹ and very recently paramagnetically modified cysteine and tyrosine were inserted using nonsense incorporation in Xenopus Oocytes. 12 TOAC, 3 (4-amino-1-oxyl-2,2,6,6-tetramethyl-piperidine-4-carboxylic acid) by far the most popular among the above mentioned α-amino acids, was incorporated into α-melanocyte stimulating hormone without loss of biological activity.¹³ Very recently, from our laboratory, paramagnetic amino acids obtained by O'Donnell synthesis,4 including conformationally conmainly 3-substituted 2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl radicals have been used for the synthesis of paramagnetic amino acids. In this paper, we report the extension of the above procedure for 3,4-disubstituted 2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl radicals and 2-substituted 2,5,5-trimethylpyrrolidine-1-yloxyl radicals with different alkyl and aromatic substituents and spacers, leading to second generation of paramagnetic α -amino acids. The introduction of 2-substituted 2,5,5-trimethylpyrrolidine-1-yloxyl radicals generates a new α -amino acid series with a proline-like side chain with an orientation different from amino acids containing 3-substituted 2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl radicals (Figure 1).

strained amino acids have been reported.8 Until now,

$$\begin{array}{c|c}
R & Y & CO_2H \\
\hline
NHPG & Y & NHPG \\
\hline
N & O & O & NHPG
\end{array}$$

Figure 1 Chemical structure of paramagnetic amino acids.

Alkylation of ethyl N-diphenylmethylene glycine with paramagnetic allylic bromide 1a,14 1b obtained from the corresponding alcohol¹⁵ 1c, ¹⁶ 1d¹⁷ obtained from 3,4bis(bromomethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1*H*pyrrol-1-yloxyl radical, 18 1e¹⁹ and benzylic bromide 1f²⁰ under phase transfer conditions²¹ gave the monoalkylated product 2a-f, which could be readily hydrolyzed under acidic conditions to the corresponding amine 3a-f, without affecting the N-oxyl radical moiety. The treatment of DL-amino acid esters with t-butoxycarbonyl anhydride gave the corresponding protected N-Boc amino acid ethyl esters 4a-f, which can be hydrolyzed to acids 5a-f allowing utilization in Merrifield synthesis (Scheme 1). Incorporation of amino acid 5c as a bromine containing compound is not only a spin label but may support proteomic analysis by mass spectrometry with the diagnostic unique twin peaks arising from the bromine isotopes.²² Compound 5d is designed to convert ε-azidobutyl sidechain to ε-aminobutyl side-chain after incorporation into a protein or it can be used for protein immobilization or aiding cross-links by Staudinger ligation,²³ while synthe2592 M. Balog et al. LETTER

Scheme 1 Reagents and conditions: (a) $Ph_2C=NCH_2CO_2Et$ (1.0 equiv), 10% aq NaOH, CH_2CI_2 , Bu_4NHSO_4 (0.5 equiv), r.t., 2 h, 50–78%; (b) 5% aq H_2SO_4 , EtOH, 30 min., r.t., then solid K_2CO_3 to PH=8, 15–84%; (c) PH=80 (1.1 equiv), PH=81 (2.1 equiv), PH=82 (d) 10% aq NaOH, PH=83 (d) 10% aq NaOH, PH=84 (e) PH=85 (e) PH=86 (e) PH=86 (f) PH=86

sis of compounds **5e**—**f** were intended to mimic the natural amino acids with aromatic side chain such as phenylalanine.

The other approach to the synthesis of paramagnetic amino acids by the O'Donnell method uses 2-substituted 2,5,5-trimethylpyrrolidine-1-yloxyl radicals as alkylating agents.

These alkylating agents are readily available from 2,5,5trimethyl-1-pyrroline N-oxide (TMPO)²⁴ by Grignard reaction of propargyl alcohol²⁵ or 4-(dimethoxymethyl)phenyl bromide²⁶ followed by functional group transformations. Although quite simple, this method has the disadvantage that a second chiral center is introduced into the molecule, necessitating a final purification step to resolve the two diastereomers. Alkylation of ethyl N-diphenylmethylene glycine with paramagnetic propargylic 6a, 25 allylic 6b25 and benzylic bromide 6c26 under phasetransfer conditions gave the monoalkylated product **7a–c**, which could be readily hydrolyzed under acidic conditions to the corresponding amine 8a-c. Treatment of racemic amino acid esters with t-butoxycarbonyl anhydride gave the protected N-Boc amino acid ethyl esters 9a-c which can be hydrolyzed to the corresponding N-protected amino acids 10a-c as described above (Scheme 2). The paramagnetic 10a propargyl glycine, 10b allyl glycine and 10c phenylalanine with different orientation, spacer rigidity and saturation forms a novel paramagnetic amino acid series.

In conclusion, new N-protected α -amino acids²⁷ with paramagnetic side chains with different length, orientation, shape and polarity have been synthesized. The resolution of these new, second-generation paramagnetic amino acids with chiral chromatography as well as their incorporation into peptides are in progress as part of another ongoing project.

Acknowledgment

This work was supported by grant from Hungarian National Research Foundations (OTKA T34307) and Deutsche Forschungsgemeinschaft (EN87/12-1 for M. E., Hi 823/1-1 for K. H. and STE 640/4-3 for H.-J. S). The authors thank N. Lazsányi for elemental analyses and Mária Szabó for mass spectral measurements (ICN, Hungary).

References

- (a) Williams, R. M. Synthesis of Optically Active α-Amino Acids; Pergamon Press: Oxford, 1989.
 (b) Park, K.-H.; Kurth, M. J. Tetrahedron 2002, 58, 8629.
 (c) Watanabe, L. A.; Jose, B.; Kato, T.; Nishino, N.; Yoshida, M. Tetrahedron Lett. 2004, 45, 491.
- (2) Dougherty, D. A. Curr. Opin. Chem. Biol. 2000, 4, 645.
- (3) Rassat, A.; Rey, P. Bull. Soc. Chim. Fr. 1967, 815.
- (4) Lex, L.; Hideg, K.; Hankovszky, H. O. Can. J. Chem. 1982, 60, 1448.
- (5) Hideg, K.; Hankovszky, H. O. Spin Labeling Theory and Applications, In Biological Magnetic Resonance, Vol. 8; Berliner, L. J.; Reuben, J., Eds.; Plenum Press: New York, 1989, 427.

Scheme 2 Reagents and conditions: (a) $Ph_2C=NCH_2CO_2Et$ (1.0 equiv), 10% aq NaOH, CH_2Cl_2 , Bu_4NHSO_4 (0.5 equiv), r.t., 2 h, 39–70%; (b) 5% aq H_2SO_4 , EtOH, 30 min, r.t., then solid K_2CO_3 to PH=8, 34–56%; (c) PH=80, PH=81, PH=82, PH=83, 49–59%.

- (6) Dufau, I.; Mazarguil, H. Tetrahedron Lett. 2000, 41, 6063.
- (7) Hubbell, W. L.; Altenbach, C.; Hubbell, C. M.; Khorana, H. G. Adv. Protein. Chem. 2003, 63, 243.
- (8) Balog, M.; Kálai, T.; Jekő, J.; Berente, Z.; Steinhoff, H.-J.; Engelhard, M.; Hideg, K. Tetrahedron Lett. 2003, 44, 9213.
- (9) Wright, K.; Crisma, M.; Toniolo, C.; Török, R.; Péter, A.; Wakselman, M.; Mazaleyrat, J. P. Tetrahedron Lett. 2003, 44, 3381
- (10) Hideg, K.; Hankovszky, H. O.; Halász, H. A.; Sohár, P. *J. Chem. Soc., Perkin Trans. 1* **1988**, 2905.
- (11) (a) Cornish, V. W.; Benson, D. R.; Altenbach, C. A.; Hideg, K.; Hubbell, W. L.; Schultz, P. G. *Proc. Natl. Acad. Sci. U.S.A.* 1994, 91, 2910. (b) McNulty, J. C.; Thompson, D. A.; Carrasco, M. R.; Millhauser, G. L. *FEBS Lett.* 2002, 529, 243. (c) Cerasi, A.; Millo, E.; Ottaviani, F. M.; Damonte, G.; Cangiotti, M.; Benatti, U.; Chiarintini, L. *Tetrahedron Lett.* 2003, 44, 8701. (d) Liu, J.; Zhao, M.; Wang, C.; Peng, S. *Bioorg. Med. Chem. Lett.* 2003, 13, 4065.
- (12) Shafer, A. M.; Kálai, T.; Liu, S. Q. B.; Hideg, K.; Voss, J. Biochemistry 2004, 43, 8470.
- (13) Barbosa, S. R.; Cilli, E. M.; Lamy-Freund, M. T.; Castrucci, A. M. L.; Nakaie, C. R. FEBS Lett. 1999, 446, 45.
- (14) Hankovszky, H. O.; Hideg, K.; Lex, L. Synthesis 1980, 914.
- (15) Hideg, K.; Hankovszky, H. O.; Lex, L.; Kulcsár, G. Synthesis 1980, 911.
- (16) Kálai, T.; Balog, M.; Jekő, J.; Hideg, K. Synthesis 1998, 1476.
- (17) **Synthesis of 1d:** To a stirred solution of 3,4bis(bromomethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1*H*pyrrol-1-yloxyl radical (326 mg, 1.0 mmol) in acetone (10 mL) NaN₃ (65 mg, 1.0 mmol) dissolved in H₂O (2 mL) was added and the mixture was stirred for 3 h at 40 °C. The acetone was evaporated off and after adding of H₂O (5 mL) the mixture was extracted with CHCl3 (2 \times 10 mL). The organic layer was separated, dried (MgSO₄), filtered and evaporated. Purification of the residue by flash column chromatography (hexane–Et₂O) gave compound **1d** 106 mg (37%), mp 70–72 °C, $R_f = 0.28$ (hexane–Et₂O, 2:1). IR (nujol): $v = 2095 \text{ cm}^{-1}$. MS (EI): m/z (%) = 287/289 (10/10) [M⁺], 193 (37), 152 (67), 41 (100). The side product is 3,4bis(azidomethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1Hpyrrol-1-yloxyl radical, 68 mg (27%), mp 90–92 °C, R_f = 0.24 (hexane–Et₂O, 2:1).
- (18) Kálai, T.; Balog, M.; Jekő, J.; Hideg, K. Synthesis 1999, 973.
- (19) Sár, C. P.; Jekő, J.; Hideg, K. Synthesis 1998, 1497.
- (20) Kálai, T.; Balog, M.; Jekő, J.; Hubbell, W. L.; Hideg, K. *Synthesis* **2002**, 2365.
- (21) O'Donnell, M. J.; Boniece, J. M.; Earp, S. E. Tetrahedron Lett. 1978, 30, 2641.
- (22) Hamdan, M.; Righetti, P. G. Mass Spectrom. Rev. 2002, 21, 287.
- (23) Soellner, M. B.; Dickson, K. A.; Nilsson, B. L.; Raines, R. T. J. Am. Chem. Soc. 2003, 125, 11790.

- (24) Delpierre, G. R.; Lamchen, M. J. Chem. Soc. 1963, 4693.
- (25) Bárácz, M. N.; Hankovszky, H. O.; Sár, P. C.; Jerkovich, G.; Hideg, K. *Synthesis* **1996**, 204.
- (26) Gadányi, S.; Kálai, T.; Jekő, J.; Berente, Z.; Hideg, K. Synthesis 2000, 2039.
- Synthesis **2000**, 2039. (27) Compounds were characterized by MS, ESR, IR and elemental analysis. Spectra were consistent in each case with the assigned structures. ESR spectra of all N-Boc protected amino acid were taken in 10⁻⁴ M water solution and all monoradicals gave triplett line $a_N = 15.5-15.8$ G. Representative Synthesis of Compound 5d: To stirred solution of N-diphenylmethylene glycine (801 mg, 3.0 mmol) and compound 1d (864 mg, 3.0 mmol) in CH₂Cl₂ (20 mL), 10% aq NaOH (3 mL) was added followed by addition of Bu₄NHSO₄ (508 mg, 1.5 mmol) and the mixture was stirred at r.t. for 2 h. The organic phase was separated, dried (MgSO₄), filtered and evaporated to give compound 2d as a yellow oil 740 mg (52%). The crude product was immediately subjected to acidic hydrolysis. Compound 2d was dissolved in EtOH (20 mL), 5% aq H₂SO₄ (5 mL) was added, the mixture was allowed to stand at r.t. and the mixture was monitored by TLC. After consumption of compound 2d (ca 30 min) H₂O (10 mL) was added, and the pH = 8 was adjusted by addition of solid K_2CO_3 , extracted with $CHCl_3$ (2 × 20 mL). Then, the organic phase was separated, dried (MgSO₄), filtered, evaporated and the residue was purified by flash column chromatography (CHCl₃-MeOH) to give compound 3d (203 mg, 42%) as a yellow oil. IR (nujol): $v = 3350, 3280, 2095, 1730 \text{ cm}^{-1}$. MS (EI): m/z (%) = 310 (3) [M⁺], 249 (43), 233 (31), 161 (100). Anal. Cald for C₁₄H₂₄N₅O₃: C, 54.18; H, 7.79; N, 22.56. Found: C, 54.01; H, 7.71; N, 22.40. To a solution of compound **3d** (310 mg, 1.0 mmol) in dry THF (15 mL) t-butoxycarbonyl anhydride (240 mg, 1.1 mmol) was added and the mixture was stirred at 40 °C for 30 min. After cooling, Et₂O (20 mL) was added and the organic phase was washed with brine (10 mL). Then, the organic phase was separated, dried (MgSO₄), filtered and evaporated to give crude 4d as a yellow solid 279 mg (68%). This crude 4d was dissolved in EtOH (10 mL), then H₂O (3 mL) and 10% aq NaOH (1 mL) were added and the mixture was allowed to stand at r.t. and monitored by TLC. After consumption of compound 4d (ca 1 h) the solution was acidified to pH = 3 by cautious addition of 5% aq H_2SO_4 . The aqueous phase was extracted with CHCl₃ (2×20 mL), the combined organic phase was dried (MgSO₄), filtered and evaporated. The residue was purified by flash column chromatography (CHCl₃-MeOH) to give compound 5d as a yellow solid 101 mg (39%), mp 160-162 °C. Anal. Calcd for C₁₇H₂₈N₅O₅: C, 53.39; H, 7.38; N, 18.31. Found: C, 53.43;

H, 7.35; N, 18.50. MS was taken with thermospray

technique (TSP): $m/z = 383 \text{ [M + H]}^+$.