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Abstract The detosylation of N-tosyl alkoxyamines was realized by
treatment with benzaldehyde and bistrifluoromethane sulfonimide as
the catalyst to afford the corresponding oxime ethers. The reaction is
chemoselective as N-tosyl amines are not deprotected. A mechanism is
proposed for this deprotection.
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Protection and subsequent deprotection of amines are
routine procedures used in multistep synthesis of polyfunc-
tionalized molecules. Among the diverse protecting groups
of amines, the tosyl group is one of the most versatile one.

N-Tosyl amines are readily formed, easy to purify, and
are stable under a variety of conditions. However, the ro-
bustness of N-tosyl amines can be a disadvantage and they

Table 1 Optimization Studies: Effect of the Acid
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are notoriously difficult to cleave. A number of methods has
been reported such as electrolysis,! Li/naphthalene,? Birch
reduction conditions,? refluxing in HCI,* Ni(acac),/iPrMgCl,>
TiCl,,* Mg/MeOH,” Bu;SnH/AIBN,® Na/K metal on silica,’
Mg/Me;ColLi,’® Sml,/HMPA or Sml,/DMPU,'" Sml,/ROH,?
and Sml,/H,0/amine.'3

During our study dealing with the reactivity of N-tosyl
alkoxyamines,'# we observed that, when a N-tosyl alkoxy-
amine was treated with an aromatic aldehyde under acidic
conditions, a detosylation occurred and an oxime ether was
formed (Scheme 1).

PhCHO

RO—NHTs  ————»  RO=N=
Ht Ph
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Scheme 1 One-step N-detosylation/oximation under acidic conditions

Our study started with N-tosyl alkoxyamine 1 (Table 1).
When this N-tosyl alkoxyamine was treated with benzalde-
hyde (PhCHO, 2 equiv) in the presence of different Brensted

aC|d 10 mol%) /\/YO 4\©
18h 0.25M

Entry Acid Solvent Temp (°C) X equiv Conversion (%) Yield (%)?
1 MeCO,H CH,Cl, 40 2 5 0
2 CF,CO,H CH,Cl, 40 2 13 0
3 PTSA CH,Cl, 40 2 24 18
4 HNTF, CH,Cl, 40 2 100 65
5 HNTF, CH,Cl, 40 1 60 40
6 FeCl, CH,Cl, 40 2 8 0

2 |solated yield.
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acids (10 mol%) with increasing acidity such as CH;CO,H,
CF;CO,H, PTSA only a low conversion of 1 was noticed and
no identifiable compounds were formed, except in the pres-
ence of PTSA as 9 was isolated with a yield of 18% (Table 1,
entry 3). By using a very strong Brensted acid such as bistri-
fluoromethane sulfonimide!> (HNTf,, 10 mol%), in CH,Cl, at
40 °C, the conversion of 1 was total and oxime 9 was isolat-
ed with a yield of 65% (Table 1, entry 4). By decreasing
benzaldehyde from 2 to 1 equivalent, the conversion of 1
was decreased (60% instead of 100%) and the yield of 9 was
only 40% (Table 1, entry 5). It is worth mentioning that the
use of a Lewis acid such as FeCl; induced a very low conver-
sion of 1 and 9 was not observed (Table 1, entry 6).

As HNTf, was revealed to be the best Brgnsted acid to
convert 1 into oxime 9,'%!7 in the presence of 2 equivalents
of benzaldehyde, a screening of the conditions, e.g., solvent,
temperature, and concentration of 1 was undertaken (Table
2). This screening revealed that CH,Cl, was the best solvent
(Table 2, entries 1-3) and 40 °C the optimum temperature
(Table 2, entries 4and 5). The best yield of 9 was obtained
when 10 mol% of HNTf, were used (Table 2, entry 6). In ad-
dition, a decrease in the concentration of 1 led to a decrease
in the yield of 9 (Table 2, entry 7).

Having optimized conditions,!® the generalization of the
reaction was studied. N-Tosyl alkoxyamine 1 was applied in
the detosylation/oxime formation with different aldehydes
in the presence of 10 mol% of bistrifluoromethane sul-
fonimide (HNTf,, 10 mol%), and the results are reported in
Table 3.

When electron-rich aromatic aldehydes were used, the
conversion of 1 and the yield in the corresponding oxime
ethers (17'° and 18%°) was lower than when using benzal-
dehyde (Table 3, entries 2-4). When aliphatic aldehydes

Table 2 Optimization Studies: Reaction Conditions
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were reacted with 1, the conversion of 1 was low and no
traces of the corresponding oxime ethers were detected by
'H NMR analysis of the crude reaction mixtures (Table 3,
entries 5-8).

With the optimized conditions, the scope was further
examined by treating different N-tosyl alkoxyamines with 2
equivalents of benzaldehyde and 10 mol% of HNTf,, at 40 °C
in CH,Cl,. Whatever the nature of the N-tosyl alkoxyamine,
the yields were in the range of 57-73%. The results are re-
ported in Scheme 2.

o
o o\\s// PhCHO (2 equiv) O
2O HNTf, (10 mol%)
_—
H CHoClp, 40 °C
1-8 18h 9-16
O =~
= N
/\/\r /\© ©\/O\N&\©
9 (65%) 10 (66%)

=
x Pz °N N
11 (71%) 2 (73%)
13 (60%) 14 (69%)

15 (62%) 16 (57%)

Scheme 2 Scope of the reaction. Isolated yields are given.
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Entry Solvent Temp c y Conversion (%) Yield (%)?
Qe (M)
1 CH,Cl, 40 0.25 10 100 65
2 CHCl, 40 0.25 10 86 60
3 THF 40 0.25 10 55 37
4 CH,Cl, r.t. 0.25 10 52 38
5 CH,Cl, 70° 0.25 10 82 53
6 CH,Cl, 40 0.25 5 60 40
7 CH,Cl, 40 0.10 10 60 36

3 [solated yield.
b With microwave irradiation.
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Table 3 Optimization Studies: Effect of the Aldehyde
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2 |solated yield.

It is worth mentioning that the reaction is chemoselec-
tive. When 5 and N-tosyl sulfonamide 19 were treated with
benzaldehyde in the presence of HNTf,, only the N-tosyl
alkoxyamine 5 was transformed into the oxime ether 13,*!

and 19 was recovered (Scheme 3).
/\Q/ONHTS /\Q/O\NA

Ph

5 13 (61%)
PhCHO
. (4 equiv) .
HNT,
Ph\rPh (20 o) PhYPh
| CH,Cly, 40 °C |
Ts" “H 18h Ts" “H
19 19 (96%)

Scheme 3 Reactivity of N-tosyl alkoxyamine vs N-tosyl amine

With this latter result, we can exclude the activation of
the N-tosyl group by HNTf,. Thus, the formation of oxime
ethers B from N-tosyl alkoxyamines A can be explained by
the activation of benzaldehyde by HNTf,, with A being
nucleophilic enough to attack the activated benzaldehyde.
Intermediate C can be produced, which after 1,3-prototro-
py, leads to D. The nucleophilic attack of H,O on D then pro-
duces B and TsOH (Scheme 4).

In summary, the use of bistrifluoromethane sulfonim-
ide in the presence of benzaldehyde allows the chemoselec-
tive N-detosylation/oximation of N-tosyl-alkoxyamines.
This metal-free method can be useful to prepare biological-
ly active oxime ether derivatives.
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Scheme 4 Proposed mechanism
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114.3,105.3, 98.2, 78.5, 55.5, 55.4, 34.9, 29.7, 19.8. MS (EI) m/z:
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(21) Spectroscopic Data for 13

IR: v = 3073, 2925, 1573, 1448, 1340, 1273, 1210, 1046, 944,
913 cm-". 'H NMR (400 MHz, CDCl,): 8 = 8.09 (s, 1 H), 7.60-7.55
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