First characterization of a compound with a tin-germanium double bond: the dimesityl(diisitylstanna)germene (Is)₂Sn=Ge(Mes)₂

Marie-Anne Chaubon, Jean Escudié,* Henri Ranaivonjatovo and Jacques Satgé

Hétérochimie Fondamentale et Appliquée, UPRES A associée au CNRS n° 5069, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France

The dimesityl(diisitylstanna)germene 4 [isityl (Is) = 2,4,6triisopropylphenyl] is synthesized by dehydrofluorination of the corresponding (fluorostannyl)germane 1 by *tert*-butyllithium at low temperature; its structure is evidenced at -20 °C by ¹¹⁹Sn NMR spectroscopy (δ + 360), by addition of water and methanol to the tin–germanium double bond and by a [2 + 2] cycloaddition with benzaldehyde; warming the stannagermene 4 to room temperature affords the dimesityl(tetraisityldistanna)germirane 8.

Dimetallaalkenes > M=M < with two identical heavy elements of group 14, such as disilenes,^{1,2} digermenes^{1,3} and distannenes¹ are now well known. By contrast, 'unsymmetrical' dimetallaalkenes > M=M' <, with two different group 14 elements, are still very rare since of the three possible classes of compounds > Ge=Si <, > Sn=Si < and > Sn=Ge <, only a germasilene [the tetramesitylgermasilene (Mes)₂Ge=Si(Mes)₂] has been obtained by Baines *et al.*⁴ by thermolysis or photolysis of the corresponding digermasilirane and characterized by ²⁹Si NMR spectroscopy and chemical trapping.

We present the first chemical and physicochemical characterization of the dimesityl(diisitylstanna)germene $(Is)_2Sn=Ge(Mes)_2 4$ [isityl (Is) = 2,4,6-triisopropylphenyl, mesityl (Mes) = 2,4,6-trimethylphenyl].

This stannagermene was synthesized (Scheme 1) by dehydrofluorination of the (fluorostannyl)germane 1^{+}_{+} with Bu^ILi in Et₂O-toluene (30:70). The reaction was monitored by ¹¹⁹Sn NMR between -80 °C and room temperature. The lithio compound **2**, formed immediately at -80 °C, was evidenced by a new signal {doublet due to the coupling with ¹⁹F [δ (¹¹⁹Sn)

Scheme 1

124.9, ${}^{1}J_{119SnF}$ 1650.5 Hz] whereas a doublet of doublets was observed for 1 (coupling with F and H)} and by quenching with methyl iodide to afford 3.†‡ Addition of water regenerates 1 quantitatively.

When the reaction mixture was warmed to -20 °C, a new signal appeared at δ +360 in the ¹¹⁹Sn NMR spectrum attributed to the stannagermene **4**. The chemical shift lies, as expected, at low-field as in other doubly bonded tin derivatives substituted by two isityl groups on tin [*e.g.* (Is)₂Sn=Sn(Is)₂, δ + 427;⁶ (Is)₂Sn=PAr (Ar = 2,4,6-tri-*tert*-butylphenyl), δ +499.5;⁸ (Is)₂Sn=CR₂ (CR₂ = fluorenylidene), δ + 288;⁵ (Is)₂Sn=CR'₂ (CR'₂ = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene), δ + 710;⁹ see also ref 1(*a*) and 10 for δ (¹¹⁹Sn) of other doubly bonded tin compounds]. Orange–red solutions of **4** are air- and moisture-sensitive.

Compound 4 has been characterized by trapping reactions; thus, addition of methanol or water to an orange solution of 4 at -20 °C caused immediate decoloration, with the formation of the (methoxystannyl)- or the (hydroxystannyl)-germanes 5† and 6 respectively†‡ [5, δ (¹¹⁹Sn) -39.3; 5 is moisturesensitive and gives 6 upon hydrolysis], [6, δ (¹¹⁹Sn) -65.4, δ (¹H) 5.71 (s, GeH); v(GeH) 2024 cm⁻¹]. Only 5 and 6 were obtained and not the reverse regioisomers; one of the reasons for this regiospecific reaction is the polarity Sn⁵⁺Ge⁵⁻ of the tingermanium double bond, although this polarity is probably very low.

Addition of benzaldehyde affords the (3-oxa-2-stanna)germetane 7†¶ in good yield (65%) by a [2 + 2] cycloaddition. A regiospecific reaction was observed with the sole formation of the four-membered heterocycle containing an Sn–O bond. This regiochemistry was established by the presence of an Is₂Sn–O fragment in the mass spectrum and by ¹³C NMR which revealed an ¹¹⁹Sn–O–C coupling constant of 26.6 Hz characteristic of ${}^{2}J_{SnC}$.¹¹

Warming a solution of 4 at room temperature afforded the distannagermirane 8 along with other unidentified products. Owing to its low solubility, 8 was easily isolated from the reaction mixture by crystallization from pentane. The mechanism of the formation of 8 from the stannagermene 4 has not yet been elucidated: a disproportionation of 4 into stannylene $:Sn(Is)_2$ and germylene $:Ge(Mes)_2$ can be postulated (i) with further addition of stannylene to the Sn=Ge double bond, (ii) or with dimerisation of two stannylenes and addition of germylene to the Sn=Sn double bond. However head-to-head or head-totail dimerisations of 4 to the corresponding distannadigermetanes Ge-Ge-Sn-Sn or Ge-Sn-Ge-Sn followed by extrusion of germylene to give a three-membered ring cannot be excluded; of course such elimination would be more probable from the strained head-to-head dimer. Attempts to trap germylene: Ge(Mes)₂ failed, probably owing to the low temperature of the experiment. Mass spectrometry of 8 revealed two possible [2 + 1] decomposition routes of the three-membered ring: (a) $(Is)_2Sn=Sn(Is)_2 + :Ge(Mes)_2$ and $(b) (Is)_2Sn=Ge(Mes)_2 + :Ge(Mes)_2 + :Ge(Me$:Sn(Is)₂. Route (b) is by far the most important, suggesting that the distannagermirane should, upon thermolysis, be a good precursor of stannagermene 4.

Chem. Commun., 1996 2621

The study of the reactivity of this new tin-germanium double bond, which is of importance, is now under active investigation.

Footnotes

† Detailed physicochemical data [1H, 13C, 19F and 119Sn NMR, mass spectrometry (74Ge, 120Sn), IR, elemental analysis, mp] and experimental procedures for compounds 1, 3, 5-8 are available from the authors upon request.

 $\ddagger 1$ was synthesized by reaction of 8.5 mmol of (Is)₂SnF₂⁵ [obtained from $(Is_2SnO)_3^6$ and HF] with 1 equiv. of $(Mes)_2Ge(H)Li^7$ prepared from $(Mes)_2GeH_2$ and Bu¹Li in thf at -40 °C. 1 was separated from by-products, such as (Mes)₂GeH₂ and (Mes)₂Ge(H)Ge(H)(Mes)₂, by fractional crystallization from pentane (mp 171 °C, yield = 31%). δ (¹¹⁹Sn) (ref. SnMe₄) $\begin{array}{l} -24.4 \ (\text{dd}, \ {}^{1}J_{119}{}_{\text{SnF}} \ 2430.7, \ {}^{2}J_{119}{}_{\text{SnH}} \ 217.2 \ \text{Hz}); \ \delta({}^{19}\text{F}) \ (\text{ref. } \mathbf{CF}_{3}\text{CO}_{2}\text{H}) \\ -121.4; \ \delta({}^{1}\text{H}) \ 5.79 \ [\text{d}, \ {}^{3}J_{\text{FH}} \ 20.8 \ \text{Hz}, \ \text{GeH}); \ \text{IR} \ 2018.3 \ \text{cm}^{-1} \ [\text{v}(\text{GeH})]; \ \text{MS} \end{array}$ (EI), m/z 837 (M - F, <1), 645 [(Is)₂Sn(Mes), 1], 545 [(Is)₂SnF, 4], 526 [(Is)₂Sn, 22], 322 [(Is)Sn-H, 100], 313 [(Mes)₂GeH, 10]; Anal. Calc. for C48H69FGeSn: C, 67.32, H, 8.12. Found: C, 67.24; H, 8.53%.

3: $\delta(^{119}\text{Sn}) - 29.9$ (d, $^1J_{119_{\text{SnF}}}$ 2411.4 Hz); $\delta(^{14}\text{H})$ 1.33 (d, $^4J_{\text{FH}}$ 2.6 Hz, Me); $\delta(^{13}\text{C})$ 7.00 (d, $^3J_{\text{FC}}$ 6.4 Hz, Me); $\delta(^{19}\text{F})$ -118.9; MS (DCI–CH₄, ⁷⁴Ge, ¹²⁰Sn): 526 [(Is)₂Sn, 1]; 346 [(Mes)₂Ge(Me)F, 9], 327 [(Mes)₂GeMe, 47], 227 [(Mes)Ge(Me)F, 100]. Anal. Calc. for C49H71FGeSn: C, 67.62, H 8.22. Found: C, 67.32; H, 8.27% 6: δ (¹¹⁹Sn) -65.4; δ (¹H) 5.71 (s, GeH); IR 2024 cm⁻¹ [v(GeH)]; MS (EI); m/z 854 (M, 1); 837 (M -- OH. 1). 645[(Is)₂Sn(Mes), 2], 543[(Is)₂Sn(OH), 28], 526 [(Is)₂Sn, 50], 322 [(Is)Sn H. 1001.

§ Mass spectrometry of 1, 6 and 7 displays (Is)₂Sn(Mes) fragments due to migration of a mesityl group from germanium to tin. Similar migrations of mesityls from germanium to silicium⁴ or to germanium¹² have been reported. In 7, migration of isityl from tin to germanium is also observed. ¶ 7: mp 92 °C; $\delta(^{119}$ Sn) 69.7; $\delta(^{1}$ H) 6.53 (s, OCH); $\delta(^{13}$ C) 91.68 ($^{2}J_{119}$ SnC 26.6 Hz, OCH). The two methyls of each Prⁱ group, as well as the two isityl groups, are diastereotopic; thus four doublets (6 H each) are observed for the methyls of the o-Prⁱ groups. For the methyls of p-Prⁱ groups only two doublets (instead of the four expected) are observed due to their large distance from the chiral centre. The two mesityl groups are also diastereotopic: thus four singlets are observed for the methyls. MS (EI), m/z645 [(Is)₂Sn(Mes), 1], 598 [(Is)₂SnGe, 4], 555 [(Is)₂Sn(OCH), 3], 542 $[(Is)_2SnO, 1], 524 [(Is)_2Sn - 2H, 5], 514 [(Is)SnGe(Mes), 6], 478 [(Is)_2Ge$

- 2H, 9], 396 [(Is)SnGe + H, 49], 353[(Is)Sn(OCH) + H, 7], 322 [(Is)Sn-H, 50], 277 [(Is)Ge, 100].

 $\|$ **8**: mp 142 °C; $\delta(^{119}Sn) - 361.6 (^{1}J_{119}Sn^{117}Sn} 1440 Hz) \{a similar high field \}$ chemical shift was observed for the tristannirane [(Is)₂Sn]₃⁶}. Because of the significant steric congestion, hindered rotation is observed for the Is groups; thus eight doublets (6 H each) are observed for the o-methyls of the Pri groups and two doublets (12 H each) for the p-methyls. MS (FAB), m/z 1050 [(Is)₂SnSn(Is)₂, 1], 836 [(Is)₂SnGe(Mes)₂, 45], 644 [(Is)SnSn(Is), 11], 525 [(ls)₂Sn - H, 100].

References

- 1 For reviews on stable > M=M < compounds, see (a) M. A. Chaubon, H. Ranaivonjatovo, J. Escudié and J. Satgé, Main Group Met. Chem., 1996, 19, 145; (b) T. Tsumuraya, S. A. Batcheller and S. Masamune, Angew. Chem., Int. Ed. Engl., 1991, 30, 902.
- 2 R. West, Angew. Chem., Int. Ed. Engl., 1987, 26, 1201; M. Weidenbruch, Coord. Chem. Rev., 1994, 130, 275; G. Raabe and J. Michl, in The Chemistry of Organic Silicon Compounds, ed. S. Patai and Z. Rappoport, Wiley, 1989, ch. 17, p. 1015.
- 3 J. Escudié, C. Couret, H. Ranaivonjatovo and J. Satgé, Coord. Chem. Rev., 1994. 130, 427.
- 4 K. M. Baines and J. A. Cooke, Organometallics, 1991, 10, 3419; 1992, 11, 3487; K. M. Baines, J. A. Cooke, C. E. Dixon, H. W. Liu and M. R. Netherton, Organometallics, 1994, 13, 631; K. M. Baines, J. A. Cooke and J. J. Vittal, Heteroatom Chem., 1994, 5, 293.
- 5 G. Anselme, H. Ranaivonjatovo, J. Escudié, C. Couret and J. Satgé, Organometallics, 1992, 11, 2748.
- 6 S. Masamune and L. R. Sita, J. Am. Chem. Soc., 1985, 107, 6390.
- 7 A. Castel, P. Rivière, J. Satgé and Y. H. Ko, J. Organomet. Chem., 1988, 342. C1.
- 8 H. Ranaivonjatovo, J. Escudié, C. Couret and J. Satgé, J. Chem. Soc., Chem. Commun., 1992, 1047.
- 9 A. Schäfer, M. Weidenbruch, W. Saak and S. Pohl, J. Chem. Soc., Chem. Commun., 1995, 1157.
- 10 A. Kandri Rodi, H. Ranaivonjatovo, J. Escudié and A. Kerbal, Main Group Met. Chem., 1996, 19, 199.
- 11 B. Wrackmeyer, Ann. Rep. NMR Spectrosc., 1985, 16, 73.
- 12 T. Tsumuraya, Y. Kabe and W. Ando, J. Organomet. Chem., 1994, 482, 131

Received, 18th July 1996; Com. 6/050371