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Benzofuran-substituted urea analogs have been identified as novel P2Y1 receptor antagonists. Structure–
activity relationship studies around the urea and the benzofuran moieties resulted in compounds having
improved potency. Several analogs were shown to inhibit ADP-mediated platelet activation.

� 2010 Elsevier Ltd. All rights reserved.
Purinergic receptor antagonists have recently demonstrated ther- have been disclosed.7 In an effort to identify new non-nucleotide-

apeutic potential for the treatment of a variety of diseases, including
thrombosis, diabetes, cystic fibrosis, and cancer.1 The P2Y1 and P2Y12

receptors play key roles in platelet aggregation and thrombus forma-
tion.2 The nucleotide adenosine diphosphate (ADP) acts as the
endogenous activator for both of these receptors on the platelet sur-
face. The binding of ADP to the P2Y1 receptor results in an agonist
response followed by a transitory increase in intracellular Ca+, and fi-
nally platelet shape change and reversible aggregation. Activation of
the P2Y12 receptor reduces cyclic adenosine monophosphate (cAMP)
levels causing an amplification of the platelet response and stabiliza-
tion of the resulting aggregates.

Inhibition of the P2Y12 receptor is a well-established strategy
for anti-thrombotic therapy; Plavix� (clopidogrel), an irreversible
P2Y12 receptor antagonist, is the number one selling drug on the
market for antiplatelet therapy.3 However, P2Y1 is a relatively
new target being explored for anti-thrombotic therapies. Several
studies have shown that exclusive inhibition of the P2Y1 receptor
can effectively prevent platelet aggregation and thrombus forma-
tion both in vitro4 and in vivo.5 Therefore, P2Y1 receptor antago-
nists offer great potential as novel anti-thrombotic agents.

A number of potent nucleotide-based inhibitors of P2Y1 such as
16 (Fig. 1) have been reported, and a few non-nucleotide inhibitors
All rights reserved.

i).
based P2Y1 antagonists, we conducted a high throughput screen of
the GSK compound collection using a FLIPR-based cellular assay.8

This afforded tetrahydro-quinolinamine 2, (the lead optimization
of which we have discussed in a previous publication7a) and pyri-
dyl-urea analog 3 (Fig. 1) as micromolar hits. Interestingly, com-
pound 3 is structurally related to previously reported aryl-urea
antagonists of the P2Y1 receptor such as 4.7b Based on the promising
FLIPR activity observed for 3, we initiated lead optimization efforts
to identify novel urea-based inhibitors with improved potency. To-
wards this end, we designed benzofuran analogs 5 (Fig. 1) in order
to probe the effect of constraining the aryl-ether group of 3. Herein,
we present a structure–activity relationship (SAR) study of these no-
vel P2Y1 receptor antagonists.

The benzofuran analogs 5a–m were prepared according to the
sequence outlined in Scheme 1.9 Selective ortho-iodination of
2-nitrophenol (6) was achieved using thallium acetate.10 Sona-
gashira coupling of 7 with the appropriate alkyne11 proceeded
smoothly to form intermediate 8. In situ cyclization afforded the
desired nitro-benzofuran intermediate 9. Reduction of the nitro-
group using SnCl2–H2O, followed by addition of the appropriate
isocyanate afforded benzofuran analogs 5a–m.

All compounds were initially evaluated in the P2Y1 FLIPR assay.8

Hits were then followed up in a competitive binding assay employ-
ing radiolabeled ADP ([33P]-2-SMe-ADP) to confirm P2Y1 specific
activity (see Tables 1 and 2).8 SAR studies around R1 when
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Figure 1. P2Y1 receptor antagonists.
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Scheme 1. Reagents and conditions: (a) Tl(OAc)2, I2, CH2Cl2, 25 �C; (b) (PPh3)2PdCl2, CuI, piperidine, DMF, 60 �C; (c) SnCl2–2H2O, 25 �C; (d) R2NCO, CH2Cl2, 25 �C.
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R2 = 4-OCF3-Ph indicate that ortho-substitution of the phenyl ring
is essential for activity (Table 1). The 3-CF3 analog 5a was inactive
while the 2-CF3 analog 5b displayed weak activity. Larger groups at
the ortho-position seem to improve activity, and this trend is most
evident in the binding assay. The 2-i-Pr (5c) and 2-t-Bu (5d) deriv-
atives showed roughly a fivefold improvement in binding activity
over the 2-CF3 analog 5b. The 2-Cl derivative 5e is inactive, most
likely due to the relatively small size of the chlorine atom. A similar
enhancement of P2Y1 activity with ortho-substitution was also re-
ported for a structurally similar aryl-ether series (4).7b In the ben-
zofuran series, electronics also seem to play an important role, as
the bulky but more electron-donating 2-i-PrO analog 5f is inactive.

Due to the potency and ease of synthesis of the 2-i-Pr analog 5c,
the 2-i-Pr group at the R1 position was maintained in conducting
SAR studies around R2 (Table 2). Several new analogs (5g–k) were
found to be more potent than 5c in the cellular assay. Polar substit-
uents such as NMe2 (5l) result in significant reduction of activity,
while non-polar groups such as n-pentyl (5h) and t-Bu (5i) im-
prove both the cellular and binding activity relative to 5c. The
observation that polarity can disrupt activity is also seen in com-
paring the more polar BuO analog 5j to the analogous n-pentyl
derivative 5h.

The effect of several benzofuran analogs on ADP-mediated
platelet alpha-granule release was measured by detecting surface
expression of P-selectin (CD62P) using flow cytometry.8 The results
are reported in Table 3. Analogs 5c, 5g, and 5i all show significant
inhibition of P-selectin expression demonstrating that this class of
P2Y1 inhibitors is functionally active.

In conclusion, we have identified benzofuran-ureas (5) as a no-
vel class of P2Y1 receptor antagonists. SAR studies showed that a



Table 2
Cellular and binding assay results for compounds 5g–m

N
H
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N
H
R

O
2

Compound R2 FLIPR IC50
a (lM) Ki

a (lM) or %I at 10 lM

5g 3-CF3-4-Me-Ph 1.6 69%
5h 4-n-Pentyl-Ph 0.63 0.14
5i 4-t-Bu-Ph 1.3 72%
5j 4-BuO-Ph 2.0 0.64
5k 4-Cl-Ph 2.0 0.76
5l 4-Me2N-Ph 15.8 nd
5m 3-CF3-Ph 5.0 60%

a Values are means of at least three determinations with a standard devia-
tion 6 0.3 log units (nd, not determined).

Table 1
Cellular and binding assay results for compounds 5a–f

N
H

O

N
H

O OCF3

R1

Compound R1 FLIPR IC50
a (lM) Ki

a (lM)

5a 3-CF3 >25 nd
5b 2-CF3 6.3 2.5
5c 2-i-Pr 4.0 0.6
5d 2-t-Bu 4.0 0.4
5e 2-Cl >25 nd
5f 2-i-PrO >25 nd

a Values are means of at least three determinations with a standard devia-
tion 6 0.3 log units (nd, not determined).

Table 3
P-selectin assay results

Compound %I at 10 lM

5c 49%
5g 79%
5i 100% (300 nM IC50

a)

a Value is a mean for n = 2 independent donors with a standard deviation 6 0.25
log units.
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large, relatively non-polar ortho-phenyl substituent on the benzo-
furan ring is required for optimal activity. We also observed that
alkyl-substituted aryl groups are optimal substituents on the urea.
Finally, we have demonstrated that the benzofuran-substituted
urea analogs are functional P2Y1 inhibitors that affect ADP-medi-
ated platelet activation.
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