Synthesis and Smooth Muscle Calcium Channel Antagonist Effects of Dialkyl 1,4-Dihydro-2,6-dimethyl-4-aryl-3,5-pyridinedicarboxylates Containing a Nitrooxy or Nitrophenyl Moiety in the 3-Alkyl Ester Substituent

Nadeem Iqbal and Edward E. Knaus*

Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8

Key Words: Hantzsch 1,4-dihydropyridines; nitrooxy; calcium channels; smooth muscle relaxation

Summary

A group of racemic 3-[2-nitrooxyethyl(1,3-dinitrooxy-2-propylor 4-nitrophenylethyl)] 5-isopropyl 1,4-dihydro-2,6-dimethyl-4-[2trifluoromethylphenyl (2-nitrophenyl or 3-nitrophenyl)]-3,5pyridinedicarboxylates 13-15 were prepared using the Hantzsch reaction that involved the condensation of 2-nitrooxyethyl 9a, 1,3-dinitrooxy-2-propyl 9b or 4-nitrophenylethyl 9c acetoacetate with isopropyl 3-aminocrotonate 11 and 2-trifluoromethyl 12a, 2-nitro 12b or 3-nitro 12c benzaldehyde. In vitro calcium channel antagonist activities were determined using a guinea pig ileum longitudinal smooth muscle assay. Compounds 13-15 exhibited superior, or equipotent, calcium channel antagonist activity $(10^{-8} \text{ to } 10^{-10} \text{ M range})$ relative to the reference drug nifedipine (IC₅₀ = 1.43×10^{-8} M). The R¹ C-3 ester substituent was a determinant of calcium channel antagonist activity where the potency order was $CH_2CH_2ONO_2 > CH_2CH_2-C_6H_4-4-NO_2 \ge CH(CH_2ONO_2)_2$. In contrast, the C-4 R²-aryl substituent (2-CF3-C6H4-, 2-O2N-C6H4or 3-O2N-C6H4-) was not a major determinant of activity. Compounds 13a-15a, which possess a 3-(2-nitrooxyethyl) ester substituent exhibit superior calcium channel antagonist smooth muscle relaxant activity ($IC_{50} = 10^{-10}$ M range) relative to nifedipine, could serve as potential probes to investigate the in vivo release of nitric oxide (NO) which induces vascular muscle relaxation.

Introduction

Organic nitrate compounds such as nitroglycerine (1), isosorbide-dinitrate (2) and nicorandil (3) activate guanylate cyclase to increase the level of cyclic guanosine monophosphate (cGMP) in various vascular smooth muscle tissues which then induces relaxation^[1]. This class of compounds called nitrovasodilators has provided beneficial cardiovascular therapy for the treatment of angina pectoris^[2,3], angina^[4,5] and acute myocardial infarction^[6]. Sala et al.^[7] recently described a class of 3-[(nitrooxy)alkyl]-2H-1,3-benzoxazin-4(3H)-ones (4), which were designed to be devoid of the potassium channel agonist effect associated with nicorandil, that exert a preferential relaxant action on large coronary vessels^[7]. Ogawa *et al.*^[8] prepared a class of 1,4-dihydropyridines (5) containing a nitrooxy moiety at the C-3 ester position that increased femoral and vertebral arterial blood flow relative to nifedipine. The discovery that nitric oxide $(NO)^{[9]}$ is an endogenous activator of guanylate cyclase, the enzyme responsible for vascular muscle relaxation, and that

organic nitrovasodilators act in vivo by by-passing the NOgenerating system in the endothelium to deliver NO directly to muscle cells in the walls of the artery prompted us to acquire further structure-activity correlations for Hantzsch 1,4-dihydropyridine calcium channel antagonists having nitrooxy or nitrophenyl group(s) in the C-3 alkyl ester substituent. The nitrooxy compounds, which could also act as releasers of NO, have a number of potential applications including vasodilation, inhibition of platelet aggregation and adhesion, antineoplastic and antiparasitic effects.^[9] In our ongoing program to develop structure-activity correlations for 1,4-dihydropyridine calcium channel antagonists, we now report the smooth muscle calcium channel antagonist activities of dialkyl 1,4-dihydro-2,6-dimethyl-4-aryl-3,5-pyridinedicarboxylates 13-15 having a nitrooxy or nitrophenyl moiety in the C-3 ester substituent.

Figure 1. Structures of nitroglycerine (1), isosorbide-dinitrate (2), nicorandil (3), 3-[(nitrooxy)alkyl]-2H-1,3-benzoxazin-4(3H)-ones (4) and 3-nitrooxy analogs of Hantzsch 1,4-dihydropyridines (5).

Chemistry

1,3-Dinitrooxy-2-propyl acetoacetate (**9b**) was synthesized by the reaction of diketene (**6**) with 1,3-dibromo-2-propanol (**7**) to afford **8** which was then converted to the title compound upon reaction with silver nitrate in 40% overall yield. A related reaction of **6** with 4-nitrophenylethanol (**10**) yielded 4-nitrophenylethyl acetoacetate (**9c**, 81%). The 3-nitrooxyalkyl (or 4-nitrophenylethyl) 5-isopropyl 1,4-dihydro-2,6-dimethyl-4-(aryl)-3,5-pyridinedicarboxylates (**13–15**) were

Scheme 1. Reagents and conditions: (a) Et₃N catalyst, 80 °C, 1 h; (b) AgNO₃, MeCN, 25 °C, 48 h.

Scheme 2. Reagents and conditions: (a) iPrOH, reflux, 3 h.

prepared using the Hantzsch reaction. Thus, condensation of the respective acetoacetate analog (**9a–c**) with isopropyl 3-aminocrotonate (**11**) and the respective aldehyde (**12a–c**) afforded the title compounds in 11–40% yields as illustrated in Scheme 2 and summarized in Table 1.

Results and Discussion

The concomitant use of a calcium channel antagonist and a nitrate vasodilator increases antihypertensive activity with few side effects^[10]. In view of the encouraging results of Ogawa *et al.*^[8], a group of 1,4-dihydropyridine compounds **13–15** was investigated to determine whether incorporating both a *nitro-like* and a calcium channel antagonist moiety into a hybrid molecule would provide superior calcium channel smooth muscle relaxant activity. It was anticipated that compounds possessing a nitrooxy moiety could also serve as releasers of nitric oxide which has a number of potential therapeutic applications as described previously^[9].

The *in vitro* calcium channel activities of compounds **13–15** were determined using guinea pig ileum longitudinal smooth muscle (GPILSM). The calcium channel antagonist activities of **13–15**, determined as the concentration required to produce 50% inhibition of GPILSM contractility,^[11] are presented in Table 1. Compounds **13–15** exhibited superior/equipotent calcium channel antagonist activity (10^{-8} to 10^{-10} M range) relative to the reference drug nifedipine (IC₅₀ = 1.43 × 10^{-8} M). A comparison of the relative potency order for **13a–c** (R² = 2-CF₃-C₆H₄-), **14a–c** (R² = 2-O₂N-C₆H₄-) and

15a-c ($R^2 = 3$ -O₂N-C₆H₄-) showed that the R^1 -substituent was a determinant of calcium channel antagonist activity where the activity profile was $CH_2CH_2ONO_2 > CH_2CH_2$ - $C_6H_4-4-NO_2 \ge CH(CH_2ONO_2)_2$, [13a > 13c > 13b; 14a > $14c \ge 14b$; $15a > 15c \ge 15b$]. In contrast, the R²-substituent (2-CF₃-C₆H₄-, 2-O₂N-C₆H₄- or 3-O₂N-C₆H₄-) was not a major determinant of activity since the differences in activity between 13a-15a (R¹ = CH₂CH₂ONO₂) and 13c-15c (R¹ = CH₂CH₂-C₆H₄-4-NO₂) were generally small, although the activities of 13b–15b $[R^1 = CH(CH_2ONO_2)_2]$ varied over a one-log unit range. These results indicate that compounds **13a–15a** possessing a R^1 = CH₂CH₂ONO₂ substituent exhibit superior calcium channel antagonist smooth muscle relaxant activity ($IC_{50} = 10^{-10}$ M range) relative to nifedipine. Compounds 13a-15a (R¹ = CH₂CH₂ONO₂) could serve as potential probes to investigate the in vivo release of nitric oxide which induces vascular muscle relaxation^[9].

 $15c_1 R^1 = CH_2CH_2 - C_6H_4 - 4 - NO_2; R^2 = 3 - O_2N - C_6H_4 - A - NO_2; R^2 = 3 - O_2N - C_6H_4 - A - NO_2; R^2 = 3 - O_2N - C_6H_4 - A - NO_2; R^2 = 3 - O_2N - C_6H_4 - A - NO_2; R^2 = 3 - O_2N - C_6H_4 - A - NO_2; R^2 = 3 - O_2N - O_2N$

Acknowledgments

We are grateful to the Medical Research Council of Canada (Grant No. MT-8892) for financial support of this research. The authors would also like to acknowledge the technical assistance of C.-A. McEwen.

Experimental

Melting points were determined using a Thomas-Hoover capilliary apparatus and are uncorrected. ¹H NMR spectra were recorded on a Bruker AM-300 spectrometer. The assignment of exchangeable protons (NH) was confirmed by the addition of $[D_2]H_2O$. Infrared spectra were acquired using

 Table 1. Physical and calcium channel antagonist activities of 3-nitrooxyalkyl (or 4-nitrophenylethyl) 5-isopropyl 1,4-dihydro-2,6-dimethyl-4-(aryl)-3,5-pyridinedicarboxylates (13–15).

Cmpd	R ¹	R ² Cryst. solvent		mp, °C	% Yield	Formula	Anal. ^[a] Calcium channel antagonist act:IC ₅₀ (M) ^[b]	
13a	CH ₂ CH ₂ ONO ₂	2-CF ₃ -C ₆ H ₄ -	NA ^[c]	oil	21	C ₂₁ H ₂₃ F ₃ N ₂ O ₇	C,H,N	$9.51 \pm 0.12 \times 10^{-10}(3)$
13b	CH(CH ₂ ONO ₂) ₂	2-CF3-C6H4-	NA ^[c]	oil	11	C ₂₂ H ₂₄ F ₃ N ₃ O ₁₀	C,H,N	$2.29 \pm 0.27 \times 10^{-8}$ (3)
13c	(CH ₂) ₂ -C ₆ H ₄ -4-NO ₂	2-CF ₃ -C ₆ H ₄ -	NA ^[c]	40	30	$C_{27}H_{27}F_3N_2O_6$	C,H,N ^[d]	$5.81 \pm 0.35 \times 10^{-9}$ (3)
14a	CH ₂ CH ₂ ONO ₂	2-O ₂ N-C ₆ H ₄ -	CH ₂ Cl ₂ - <i>i</i> Pr ₂ O	145	40	$C_{20}H_{23}N_3O_9$	C,H,N	$6.59 \pm 0.87 \times 10^{-10} (3)$
14b	CH(CH ₂ ONO ₂) ₂	2-O ₂ N-C ₆ H ₄ -	NA ^[c]	72	24	$C_{21}H_{24}N_4O_{12}$	C,H,N ^[e]	$6.01 \pm 0.66 \times 10^{-9}$ (3)
14c	(CH ₂) ₂ -C ₆ H ₄ -4-NO ₂	2-O ₂ N-C ₆ H ₄ -	NA ^[c]	60	22	$C_{26}H_{27}N_3O_8$	C,H,N	$3.91 \pm 0.12 \times 10^{-9}$ (3)
15a	CH ₂ CH ₂ ONO ₂	3-O ₂ N-C ₆ H ₄ -	EtOAc-hexane	128–129 [[]	^{f]} 35	C ₂₀ H ₂₃ N ₃ O ₉	C,H,N	$5.77 \pm 0.37 \times 10^{-10}$ (3)
15b	CH(CH ₂ ONO ₂) ₂	3-O ₂ N-C ₆ H ₄ -	EtOAc-hexane	130-131	26	$C_{21}H_{24}N_4O_{12}$	C,H,N ^[g]	$2.65 \pm 0.03 \times 10^{-9}$ (3)
15c	(CH ₂) ₂ -C ₆ H ₄ -4-NO ₂	3-O ₂ N-C ₆ H ₄ -	<i>i</i> Pr ₂ O	95–97	33	C ₂₆ H ₂₇ N ₃ O ₆	C,H,N	$1.01 \pm 0.03 \times 10^{-9}$ (3)
Nifedipi	ne							$1.43 \pm 0.38 \times 10^{-8}$ (8)

^[a] Microanalytical analyses were within $\pm 0.4\%$ of theoretical values, unless otherwise indicated.

^[b] The molar concentration of antagonist test compound causing a 50% decrease in the slow component, or tonic contractile response, (IC₅₀ ± SEM) in guinea pig ileal longitudinal smooth muscle by the muscarinic agonist carbachol $(1.6 \times 10^{-7} \text{ M})$ was determined graphically from the dose-response curves. The number of experiments is shown in brackets.

^[c]NA = not applicable, since the compound undergoes partial decomposition in solution during attempted recrystallization.

^[d] 1/2 molecule of water of hydration.

^[e] N: calcd, 10.68; found, 10.21.

^[f] Lit. mp 126–127 °C^[8]

^[g]C: calcd, 48.10; found, 48.59.

a Nicolet 5DX-FT spectrometer. Silica gel column chromatography was carried out using Merck 7734 (60–200 mesh) silica gel. Microanalyses were within \pm 0.4% of theoretical values for all elements listed, unless otherwise stated. 2-Nitrooxyethyl acetoacetate (**9a**) was prepared according to the reported procedure.^[8] Diketene (**6**) and isopropyl 3-aminocrotonate (**11**) were purchased from the Aldrich Chemical Co.

1,3-Dinitrooxy-2-propyl Acetoacetate (9b)

Diketene (0.84 g, 10 mmol) was added dropwise with stirring to 1,3-dibromo-2-propanol (2.17 g, 10 mmol) preheated to 50-60 °C in the presence of a catalytic amount of Et₃N (5 drops). Diketene was added at a rate such that the temperature of the reaction mixture did not exceed 80 °C, and then the reaction was allowed to proceed for 1 h at 80 °C. Distillation of the mixture afforded 1,3-dibromo-2-propyl acetoacetate 8 which was used immediately in the subsequent reaction (bp 150 °C/1 mm, 2.15 g, 71%); IR (neat): v = 1754, 1720 cm⁻¹ (C=O).- ¹H NMR (CHCl₃-d₁): δ 2.26 (s, 3 H, Me), 3.50–3.66 (m, 6 H, CH₂), 5.17 (quint, J = 6 Hz, 1 H, CH). Silver nitrate (4.07 g, 24 mmol) was added to a solution of 8 (3.01 g, 10 mmol) in acetonitrile (20 ml) and the reaction was allowed to proceed at 25 °C for 48 h with stirring. Removal of the precipitate by filtration, washing the precipitate with acetonitrile (10 ml) and then removal of the solvent in vacuo from the combined filtrates gave a residue which was purified by silica gel column chromatography using EtOAc-hexane (30:70, ν/ν) as eluent to afford **9b** as a pale yellow oil (1.5 g, 56%); IR (neat): v = 1761, 1728 cm⁻¹ (C=O).- ¹H NMR (CHCl₃-d₁): δ 2.26 (s, 3 H, Me), 3.54 (s, 2 H, COCH₂), 4.60 (dd, J_{gem} = 12, J_{vic} = 6 Hz, 2 H, CH_aH_bONO₂), 4.74 (dd, J_{gem} =12, J_{vic} = 4 Hz, 2 H, CHa'Hb'ONO2), 5.40-5.48 (m, 1 H, CO2CH).

4-Nitrophenylethyl Acetoacetate (9c)

Reaction of diketene (0.84 g, 10 mmol) with 4-nitrophenylethanol (10 mmol) in the presence of Et₃N (5 drops) and distillation of the product, using the procedure described for the preparation of **9b**, afforded **9c** as a pale yellow oil (2.04 g, 81%), bp 180 °C/1.5 mm; IR (neat): v = 1750, 1720 cm⁻¹ (C=O), 1417, 1320 (NO₂).– ¹H NMR (CHCl₃–d₁): δ 2.18 (s, 3 H, *Me*), 3.03 (t, *J* = 7 Hz, 2 H, CO₂CH₂CH₂), 3.42 (s, 2 H, COCH₂), 4.36 (t, *J* = 7 Hz, 2 H, CO₂CH₂CH₂), 7.36 (d, *J* = 8 Hz, 2 H, phenyl H-2, H-6), 8.08 (d, *J* = 8 Hz, 2 H, phenyl H-3, H-5).

General Method for the Preparation of 3-[2-Nitrooxyethyl (1,3-Dinitrooxy-2-propyl or 4-Nitrophenylethyl)] 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(aryl)-3,5-pyridinedicarboxylates **13–15**

A mixture of the respective acetoacetate **9a, 9b**, or **9c** (5.0 mmol), isopropyl 3-aminocrotonate (0.71 g, 5.0 mmol) and the respective aldehyde **12a, 12b** or **12c** (5.0 mmol) in isopropanol (25 ml) was refluxed for 3 h with stirring. Removal of the solvent *in vacuo* afforded a residue which was purified by silica gel column chromatography using hexane-EtOAc (60:40, v/v) as eluent to yield the respective product. The recrystallization solvent when applicable, mp when applicable, and % yield of products **13-15** are summarized in Table 1.

3-(2-Nitrooxyethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(2-trifluoromethylphenyl)-3,5-pyridinedicarboxylate 13a.

IR (neat): $v = 3328 \text{ cm}^{-1}$ (NH), 1679 (C=O), 1640, 1285 (ONO₂).– UV (EtOH): λ_{max} (log ε) 206 nm (4.54), 236 (4.37), 355 (3.85).– ¹H NMR (CHCl₃-d₁): δ 1.06 and 1.18 (two d, *J*_{CH,Me} = 6 Hz, 3 H each, CH*Me*₂), 2.21 (s, 6 H, C-2 and C-6 *Me*), 4.17 (dt, *J*_{gem} = 12, *J*_{vic} = 6 Hz, 1 H, CH_aH_bONO₂), 4.38 (dt, *J*_{gem} = 12, *J*_{vic} = 6 Hz, 1 H, CH_aH_bONO₂), 4.56 (t, *J* = 6 Hz, 2 H, CO₂CH₂), 4.93 (sept, J = 6 Hz, 1 H, CHMe₂), 5.52 (s, 1 H, H-4), 6.41 (br s, 1 H, NH), 7.19 (dd, $J_{3,4} = 8$, $J_{4,5} = 8$ Hz, 1 H, phenyl H-4), 7.37 (dd, $J_{4,5} = 8$, $J_{5,6} = 8$ Hz, 1 H, phenyl H-5), 7.43–7.51 (m, 2 H, phenyl H-3 and H-6).

3-(1,3-Dinitrooxy-2-propyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(2-trifluoromethylphenyl)-3,5-pyridinedicarboxylate 13b

IR (neat): $v = 3344 \text{ cm}^{-1}$ (NH), 1696 (C=O), 1638, 1282 (ONO₂).– UV (EtOH): λ_{max} (log ε) 206 nm (4.48), 352 (3.49).– ¹H NMR (CHCl₃-d₁): δ 1.14 and 1.21 (two d, $J_{\text{CH,Me}} = 6 \text{ Hz}$, 3 H each, CHMe₂), 2.22 and 2.31 (two s, 3 H each, C-2 and C-6 Me), 4.35 (dd, $J_{gem} = 12$, $J_{vic} = 6 \text{ Hz}$, 1 H, CH-CH_aH_b), 4.46–4.60 (m, 2 H, CH-CH_aCH_b, CH-CH_a'H_b'), 4.68 (dd, $J_{gem} = 12$, $J_{vic} = 4 \text{ Hz}$, 1 H, CH-CH_a'H_b'), 4.98 (sept, J = 6 Hz, 1 H, CHMe₂), 5.30–5.38 (m, 1 H, CO₂CH), 5.49 (s, 1 H, H-4), 6.07 (br s, 1 H, NH), 7.25 (dd, $J_{3,4} = 8$, $J_{4,5} = 8 \text{ Hz}$, 1 H, phenyl H-4), 7.42 (dd, $J_{4,5} = 8$, $J_{5,6} = 8 \text{ Hz}$, 1 H, phenyl H-5), 7.50 (dd, $J_{3,4} = J_{5,6} = 8 \text{ Hz}$, 2 H, phenyl H-3, H-6).

3-(4-Nitrophenylethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(2-trifluoromethylphenyl)-3,5-pyridinedicarboxylate **13c**

IR (KBr): v = 3336 cm⁻¹ (NH), 1687 (C=O), 1491. 1351 (NO₂).– UV (EtOH): λ_{max} (log ε) 204 nm (4.37), 237 (4.23), 269 (4.06), 354 (3.73).–¹H NMR (CHCl₃-d₁): δ 1.02 and 1.14 (two d, $J_{CH,Me} = 6$ Hz, 3 H each, CH Me_2), 2.12 and 2.18 (two s, 3 H each, C-2 and C-6 Me), 2.84-3.02 (m, 2 H, CO₂CH₂CH₂), 4.16–4.36 (m, 2 H, CO₂CH₂CH₂), 4.92 (sept, J = 6 Hz, 1 H, CH Me_2), 5.48 (s, 1 H, H-4), 6.86 (br s, 1 H, NH), 7.15–7.98 (m, 8 H, aryl hydrogens).

3-(2-Nitrooxyethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylate 14a

IR (KBr): v = 3336 cm⁻¹ (NH), 1696 (C=O). 1638, 1491, 1365, 1277 (ONO₂. NO₂). – UV (EtOH): λ_{max} (log ε) 205 nm (4.34), 226 (4.22), 277 (3.75), 314 (3.65). – ¹H NMR (CHCl₃-d₁): δ 1.00 and 1.24 (two d, $J_{CH,Me} = 6$ Hz, 3 H each, CH Me_2), 2.31 and 2.36 (two s, 3 H each, C-2 and C-6 Me), 4.18–4.26 (m, 1 H, C $H_{a}H_{b}ONO_{2}$), 4.33–4.41 (m, 1 H, C $H_{a}H_{b}ONO_{2}$), 4.54–4.67 (m, 2 H, CO₂C H_2), 4.97 (scpt, J = 6 Hz, 1 H, C HMe_2), 5.73 (br s, 1 H, NH), 5.86 (s, 1 H, H-4), 7.26 (ddd, $J_{3,4} = J_{4,5} = 8.5$, $J_{4,6} = 1.5$ Hz, 1 H, phenyl H-4), 7.44–7.55 (m, 2 H, phenyl H-5), H-6), 7.76 (dd, $J_{3,4} = 8.5$, $J_{3,5} = 1.5$ Hz, 1 H, phenyl H-3).

3-(1,3-Dinitrooxy-2-propyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylate **14b**

IR (KBr): $v = 3385 \text{ cm}^{-1}$ (NH), 1687 (C=O), 1646, 1482, 1359, 1277 (ONO₂, NO₂).– UV (EtOH): λ_{max} (log ε) 206 nm (4.31), 236 (4.13), 323 (3.49), 371 (3.42).– ¹H NMR (CHCl₃-d₁): δ 1.07 and 1.21 (two d, $J_{CH,Me} = 6 \text{ Hz}$, 3 H each, CH Me_2), 2.32 and 2.38 (two s, 3 H each, C-2 and C-6 Me), 4.35 (dd, $J_{gem} = 12$, $J_{vic} = 6 \text{ Hz}$, 1 H, CH-CH_aH_b), 4.50 (dd, $J_{gem} = 12$, $J_{vic} = 4 \text{ Hz}$, 1 H, CH-CH_aCH_b), 4.61–4.74 (m, 2 H, CH₂). 4.98 (sept, J = 6 Hz, 1 H, CH-Me₂), 5.32–5.40 (m, 1 H, CO₂CH), 5.76 (br s, 1 H, NH), 5.88 (s, 1 H, H-4), 7.24–7.76 (m, 4 H, aryl hydrogens).

3-(4-Nitrophenylethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylate **14c**

IR (KBr): $v = 3377 \text{ cm}^{-1}$ (NH), 1687 (C=O), 1482, 1343 (NO₂).– UV (EtOH): λ_{max} (log ε) 204 nm (4.29), 236 (4.10), 267 (3.95), 324 (3.56).–¹H NMR (CHCl₃-d₁): δ 1.01 and 1.24 (two d, $J_{\text{CH,Mc}} = 6$ Hz, 3 H each, CHMe₂), 2.25 and 2.37 (two s, 3 H. each, C-2 and C-6 Me), 2.92–3.10 (m, 2 H, CO₂CH₂CH₂), 4.18–4.26 (m, $J_{gem} = 7.5$, $J_{vic} = 4$ Hz, 1 H, CO₂CH₃H_b), 4.30–4.38 (m, $J_{gem} = 7.5$, $J_{vic} = 4$ Hz, 1 H, CO₂CH₄H_b), 4.98 (sept, J = 6 Hz, 1 H, CHMe₂), 5.68 (br s, 1 H, NH), 5.82 (s, 1 H, H-4), 7.22–8.06 (m, 8 H, aryl hydrogens).

3-(2-Nitrooxyethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate **15a**

IR (KBr): v = 3435 cm⁻¹ (NH), 1696 (C=O), 1645, 1480, 1335, 1277 (ONO₂, NO₂).– UV (EIOH): λ_{max} (log ϵ) 206 nm (4.37), 237 (4.32), 356 (3.71).– ¹H NMR (CHCl₃-d₁): δ 1.12 and 1.27 (two d, *J*_{CH.Me} = 6 Hz, 3 H

each, CH*Me*₂), 2.34 and 2.35 (two s, 3 H each, C-2 and C-6 *Me*), 4.25–4.39 (m, 2 H, C*H*₂), 4.62 (t, *J* = 6 Hz, 2 H, CH₂), 4.96 (sept, $J_{CH,Me} = 6$ Hz, 1 H, C*H*Me₂), 5.05 (s, 1 H, H-4), 5.86 (br s, 1 H, N*H*), 7.38 (dd, $J_{4,5} = J_{5,6} = 8$ Hz, 1 H, phenyl H-5), 7.62 (d, $J_{5,6} = 8$ Hz, 1 H, phenyl H-6), 8.04 (dd, $J_{4,5} = 8$, $J_{2,4} = 2$ Hz, 1 H, phenyl H-4), 8.12 (d, $J_{2,4} = 2$ Hz, 1 H, phenyl H-2).

3-(1,3-Dinitrooxy-2-propyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate **15b**

IR (KBr): $v = 3361 \text{ cm}^{-1}$ (NH), 1687 (C=O), 1646, 1482, 1351, 1280 (ONO₂, NO₂).– UV (EtOH): λ_{max} (log ε) 206 nm (4.45), 238 (4.48), 361 (3.88).– ¹H NMR (CHCl₃-d₁): δ 1.12 and 1.26 (two d, $J_{\text{CH,Me}} = 6$ Hz, 3 H each, CH Me_2), 2.36 and 2.38 (two s, 3 H each, C-2 and C-6 Me), 4.20 (dd, $J_{gem} = 12$, $J_{vic} = 6$ Hz, 1 H, CH-CH_aH_bONO₂), 4.52 (dd, $J_{gem} = 12$, $J_{vic} = 4$ Hz, 1 H, CH-CH_aCH_bONO₂), 4.62 (dd, $J_{gem} = 12$, $J_{vic} = 6$ Hz, 1 H, CH-CH_aH_bONO₂), 4.74 (dd, $J_{gem} = 12$, $J_{vic} = 4$ Hz, 1 H, CHCH_a'H_b'ONO₂), 4.90–5.06 (m, 2 H, H-4, CHMe₂), 5.30–5.38 (m, 1 H, CO₂CH), 5.85 (br s, 1 H, NH), 7.39 (dd, $J_{4,5} = 3$, $J_{2,4} = 2$ Hz, 1 H, phenyl H-4), 8.10 (d, $J_{2,4} = 2$ Hz, 1 H, phenyl H-2).

3-(4-Nitrophenylethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate **15c**

IR (KBr): $v = 3361 \text{ cm}^{-1}$ (NH), 1687 (C=O), 1482, 1351 (NO₂).– UV (EtOH): λ_{max} (log ε) 205 nm (4.52), 237 (4.43), 353 (3.79).– ¹H NMR (CHCl₃-d₁): δ 1.08 and 1.12 (two d, $J_{\text{CH,Mc}} = 6$ Hz, 3 H each, CH Me_2), 2.30 and 2.32 (two s. 3 H, each, C-2 and C-6 Me), 3.03 (t, J = 7 Hz, 2 H, CO₂CH₂CH₂), 4.34 (t, J = 7 Hz, 2 H, CO₂CH₂CH₂), 4.88–5.00 (m, 2 H, CHMe₂, H-4), 6.27 (br s, 1 H, NH), 7.26–8.08 (m, 8 H, aryl hydrogens).

In Vitro Calcium Channel Antagonist Assay

The calcium channel antagonist activities of compounds **13–15** were determined as the molar concentration of the test compound required to produce 50% inhibition of the muscarinic receptor-mediated (carbachol, 1.6×10^{-7} M) Ca⁺² dependent contraction (tonic response) of guinea pig ileum longitudinal smooth muscle (GPILSM) using the procedure reported previously.^[11] The IC₅₀ value (± SEM) was determined graphically from the dose-response curve.

References

- S. A. Waldman, F. Murad, J. Cardiovasc. Pharmacol. (Suppl. 5) 1988, 12S, 115–118; S. Holzmann, J. Cardiovasc. Pharmacol. 1983, 5, 363– 378.
- [2] R. M. Gunnar, C. Fisch, *Circulation*. **1990**, 82, 664–707.
- [3] J. O. Parker, N. Engl. J. Med. 1987, 316, 1635-1642.
- [4] C. R. Conti, Am. J. Cardiol. 1987, 60, 31H–34H.
- [5] M. McGregor, Am. J. Cardiol. 1983, 74 (6B), 21-27.
- [6] D. O. Williams, E. A. Amsterdam, D. T. Mason, *Circulation*, 1975, 51, 421–427.
- [7] F. Benedini, G. Bertolini, R. Cereda, G. Dona, G. Gromo, S. Levi, J. Mizrahi, A. Sala, J. Med. Chem. 1995, 38, 130–136.
- [8] T. Ogawa, A. Nakazato, K. Tsuchida, K. Hatayama, Chem. Pharm. Bull. 1993, 41, 108–116.
- [9] A. R. Butler, D. L. Williams, *Chem. Soc. Rev.* **1993**, *22*, 233–241; and references cited therein.
- [10] El. Tamini, G. J. Davices, J. C. Kaski, M. Vejar, A. R. Galassi, A. Maseri, Am. J. Cardiol. 1989, 64, 717–724.
- [11] L. Dagnino, M. C. Li-Kwong-Ken, H. Wynn, M. W. Wolowyk, C. R. Triggle, E. E. Knaus, J. Med. Chem. 1987, 30, 640–646.

Received: August 3, 1995 [FP049]