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Abstract
Chemical inhibition of chromatin-mediated signaling involved proteins is an established strategy to drive expression net-
works and alter disease progression. Protein methyltransferases are among the most studied proteins in epigenetics and, in 
particular, disruptor of telomeric silencing 1-like (DOT1L) lysine methyltransferase plays a key role in MLL-rearranged 
acute leukemia Selective inhibition of DOT1L is an established attractive strategy to breakdown aberrant H3K79 methylation 
and thus overexpression of leukemia genes, and leukemogenesis. Although numerous DOT1L inhibitors have been several 
structural data published no pronounced computational efforts have been yet reported. In these studies a first tentative of 
multi-stage and LB/SB combined approach is reported in order to maximize the use of available data. Using co-crystallized 
ligand/DOT1L complexes, predictive 3-D QSAR and COMBINE models were built through a python implementation of 
previously reported methodologies. The models, validated by either modeled or experimental external test sets, proved to 
have good predictive abilities. The application of these models to an internal library led to the selection of two unreported 
compounds that were found able to inhibit DOT1L at micromolar level. To the best of our knowledge this is the first report 
of quantitative LB and SB DOT1L inhibitors models and their application to disclose new potential epigenetic modulators.
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Py-3-D_QSAR	� Python version of 3-D QSAutogrid/R 
procedure

COMBINE	� COMpatative BINding Energy analysis
COMBINEr	� Revisited COMBINE
Py-COMBINEr	� Python version of COMBINEr
PRMT	� Protein arginine methyl transferase
MLL1	� Myeloid/lymphoid or mixed-lineage 

leukemia 1
LB	� Ligand-based
LBDD	� Ligande-based drug design
SB	� Structure-based
SBDD	� Structure-based drug design
GRID	� Systematic grid spacing variation
VPO	� Variable pre-treatment optimization
CV	� Cross validation
LOO	� Leave one out
L5O	� Leave some out with 5 groups
LHO	� Leave half out, leave some out with 2 

groups
ELE	� Per residues electrostatic interaction 

energies calculated by Autogrid
STE	� Per residues steric interaction energies 

calculated by Autogrid
DRY	� Per residues hydrophobic interaction 

energies calculated by Autogrid
HB	� Per residues hydrogen bonding interac-

tion energies calculated by Autogrid
EC	� Experimental conformation
RC	� Randomized conformation
RD	� Re-docking
CD	� Cross-docking
DA	� Docking accuracy
ECRD	� Experimental conformation re-docking
RCRD	� Random conformation re-docking
ECCD	� Experimental conformation 

cross-docking
RCCD	� Random conformation cross-docking
RMSD	� Root mean square deviation
MTS	� Modeled test set
CTF	� Crystal test set
MPS	� Modeled prediction set
MIF	� Molecular interaction field
PLS	� Partial least square or projection of 

latent structures
PC	� Principal compontent
SDEC	� Standard deviation error of calculation
SDEP	� Standard deviation error of prediction
r2	� Conventional squared correlation 

coefficient
q2	� Cross-validated correlation coefficient
COEFs	� PLS coefficients
HP	� Histogram plot
AC	� Activity contribution

AAC​	� Average activity contribution
MRAC​	� Molecule–residue activity contribution
MRAAC​	� Molecule–residue average activity 

contribution
MRIs	� Molecule–residues interactions
AMRIs	� Average molecule–residues interactions

Introduction

The switch between heterochromatin and euchromatin is 
epigenetically controlled by covalent modifications that 
occur mainly at histone tails lysine and arginine residues. 
Recently, enzymes that catalyze histone tails’ methylation 
have attracted scientists’ attention for their implications in 
cancer. Histone methylation and related involved enzymes 
are among the most studied epigenetic mechanisms [1]. 
These enzymes belong to three distinct protein families: 
protein arginine methyltransferases (PRMTs), histone SET-
domain-containing lysine methyltransferases (SUZ39, SET1, 
SET2, EZH1/2, RIZ, SMYD, SUZ4-20 and a few orphan 
members such as SET7/9 and SET8), and the non-SET-
domain lysine methyltransferases (DOT1/DOT1L) [2–4]. 
DOT1L (disruptor of telomeric silencing 1-like), recently 
renamed KMT4 [5], is a 1537 amino acids enzyme with five 
α helices and two pairs of short β strand hairpins (Fig. 1). 
DOT1L transfers from one to three methyl groups on histone 
H3 lysine 79 (H3K79) through a SN2 type reaction [1] by 
means of S-(5′-adenosyl)-l-methionine (SAM) as co-sub-
strate, which binds in a pocket defined mainly by Thr139, 
Asp161, Gln168, Glu186 and Asp222 residues (Fig. 1).

H3K79 methylation has been reported as a biomarker for 
active gene transcription, and DOT1L was found to play an 
essential part in transcriptional elongation, DNA repair and 
cell cycle regulation [6]. DOT1L was also reported to play 
a functional role in normal cellular and biological processes 
such as cardiac development and function [7–10], erythro-
poiesis [11, 12] and leukemia development [13]. Misregu-
lation of DOT1L is observed in the development of MLL-
rearranged mixed lineage leukaemia 1. This cancer derives 
from chromosomal translocations of MLL1 gene. MLL1 is 
a SET containing histone H3 lysine 4 (H3K4) methyltrans-
ferase [14–16] involved in the “on state” of various genes. 
Indeed, H3K4 methylation represents an active transcrip-
tion marker for gene expression. When chromosomal 11q23 
translocation occurs, there is the KMT2A fusion with a sub-
set of partners protein, including AF4, AF9 and AF10.

The resulting oncogenic fusion complex [6, 17, 18] have 
been reported to recruit active DOT1L. The latter com-
plex activity results in aberrant methylation of H3K79 (the 
DOT1L substrate) instead of H3K4 as in normally func-
tioning MLL activity [19]. This off-gene epigenetic modi-
fication was found to be in high correlation with the mixed 
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lineage leukemia (MLL)-rearranged leukemia insurgence, 
in which 11q23 translocation was found in > 70% of infants 
and > 10% of adults [20]. Due to this pathological profile, 
selective DOT1L inhibition has been proposed as a new 
approach to treat MLL-type rearranged leukemia-affected 
patients [21, 22]. Indeed, a survey on ChEMBL [23, 24] 
(database version 21) revealed hundreds of compounds 
tested in DOT1L-related assays (https://www.ebi.ac.uk/
chembl/target/inspect/CHEMBL1795117), many more 
are available through patents [25–27] and in not yet listed 
ChEMBL articles [25, 28–31]. Moreover, several DOT1L 
co-crystallized with inhibitors are available through the Pro-
tein Data Bank (http://www.rcsb.org. PDB) [32]. In addition, 
molecular docking studies have also been reported [28–30, 
33–35]. However, no comprehensive computational analysis 
has been carried out in order to develop a methodology to 
design novel inhibitors of DOT1L, yet.

The present study reports a multi-stage and combined 
approach through ligand-based (LB) and structured-based 
(SB) computational studies on a series of SAM-competitive 
DOT1L inhibitors. The study was conducted by maximizing 
the use of both available structural data present in the PDB 
and literature available information. The obtained results 
can be used both to perform virtual screening and to guide 
the rational design and discovery of new potential DOT1L 
ligands. To the best of our knowledge, this is the first report 
of quantitative LB and SB models applied to disclose new 
DOT1L inhibitors.

Computational strategy

To build predictive LB and SB models a procedure was set 
up by firstly inspecting the PDB seeking for all possible 
structural information on DOT1L co-crystallized ligands. 
The retrieved available complexes were subjected to a clean-
ing step in which all unresolved residues were built by means 
of homology modeling software. The completed complexes 
were then added of missing hydrogens and their geometries 

optimized to relax steric clashes. The optimized complexes 
were divided in ligand (key) and protein (lock) and used in 
a docking assessment protocol to select, from a list of free 
for academic, the best docking program. In parallel keys and 
key/lock pairs were used to develop 3-D QSAR and COM-
BINE models, respectively. The models were internally and 
externally validated for their reliability as predictive tools to 
select or prioritized potential DOT1L ligands.

The procedure workflow is depicted in Fig. 2 in which 
different sections are highlighted: (1) training set structural 
preparation (dark green paths) and collection of the related 
biological activities, (2) SB and LB models’ building (light 
and dark red paths), (3) docking assessment (black curved 
paths), (4) test sets preparation (cyan paths for the crystal 
test set, dark blue paths for the modeled test sets) for external 
models’ predictive ability evaluation (yellow paths). Each 
section is described in details in the following paragraphs.

Training set selection and structure preparation

At the beginning of the project, 15 DOT1L/ligand com-
plexes were listed in the PDB [32, 36] (Table 1) and were all 
retrieved and subjected to a cleaning procedure as recently 
reported [37]. The procedure led to the preparation of SB-
aligned minimized complexes from which three-dimensional 
quantitative structure–activity relationships (3-D QSAR, 
LB approach) or comparative molecular binding energy 
(COMBINE, SB approach) models were built using either 
extracted DOT1L inhibitor or ligand/protein pairs, respec-
tively. While the manuscript was under preparation further 
10 DOT1L crystal structure were released and promptly 
collected (see below Crystal Test Set preparation). Either 
crystal structures are all of good resolutions with an average 
value of 2.43 Å, ranging from 2.05 and 3.15 Å (Supplemen-
tary Material Table S1) and thus a good source of structural 
information.

Fig. 1   Full view and binding 
site zoom of DOT1L crys-
tal structure bound to SAM 
co-substrate (PDB entry code 
1NW3, resolution at 2.5 Å). 
The residues that interact with 
the SAM co-substrate (residues 
139, 161, 168, 188, 222) are 
shown in green colored carbon 
atoms, co-crystallized SAM is 
depicted in cyan. Water mol-
ecules as found in the PDB file 
are also displayed as red points

https://www.ebi.ac.uk/chembl/target/inspect/CHEMBL1795117
https://www.ebi.ac.uk/chembl/target/inspect/CHEMBL1795117
http://www.rcsb.org
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Training set biological activity collection

Training set ligands’ biological activities were collected 
from literature (Table 1). However, available bioactivities 
were not all homogeneous. In particular, for 10 out of the 
15 co-crystallized ligands’ Ki or Km values (K-group) were 
available, while for five IC50 values were reported (IC-group) 
(Table 1). A recent report on a complete kinetic model for 
PRMT1 [44] displayed for SAM binding k2 < < k−1 and 
comparison of DOT1L and PRMT1 co-substrate binding 
sites revealed bound DOT1L SAM bound conformation fully 
superimposed to PRMT bound SAH (and hence SAM) (Sup-
plementary Material Fig. S1). These data support the Km 
≈ Ki approximation. To fully homogenate the training set 
activity type further literature investigation allowed to find 
for 3SX0, 4EKI and 3QOX bound inhibitors with both Ki 
and IC50 values. The three Ki/IC50 pairs displayed a squared 
correlation coefficient r2 of 0.99 and the related regression 
equation (Supplementary Material Equation S1), in good 

agreement with Cheng-Prusoff [45] concept, was use to 
convert the five pIC50s into the corresponding pKi values 
(Supplementary Material Table S2).

3‑D QSAR and COMBINEr models building

3‑D QSAR (LB model)

A python implementation of 3-D QSAutogrid/R procedure 
[46] (Py-3-D_QSAR) was used to develop partial least 
square (PLS) field-based 3-D QSAR models (8 separated 
atom probes were used in turn, Supplementary Material 
Table S1), using the co-crystallized 15 inhibitors listed in 
Table 1 as training set (M-group). Systematic grid spac-
ing variation (GRID) and variable pre-treatment optimi-
zation (VPO) let to determine the optimal GRID-VPO 
pretreatment parameters and derive the best PLS models. 
3-D QSAR models robustness was estimated through dif-
ferent cross-validation (CV) techniques, leave-one-out 

Fig. 2   Scheme of LB and SB 
computational approach. Dark 
green lane indicates the SB 
training and test sets selection 
and preparation. Black curved 
arrows represent the alignment 
rules by docking assessment. 
Light and dark red arrows des-
ignate the core models’ build-
ing; dark blue routes specify 
test sets preparation; cyan and 
yellow paths indicate external 
models’ prediction evaluation
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Table 1   DOT1L 2-D structures 
of co-crystallized inhibitors 
retrieved from the PDB and 
used as training set

PDB code 2-D chemical structure pActa

4EKG [38] 7.89b

3SX0 [39] 7.11c

4ER6 [40] 9.422c

3QOWe [41]
1NW3e [42]

5.35d

4EKIf [38]
4ER5f [40]

9.52c

4EK9 [38] 4.42b
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Table 1   (continued) PDB code 2-D chemical structure pActa

4ER0 [40] 8.29c

3SR4 [39] 6.54c

4ER7 [40] 8.19c

3UWP [40] 3.95c
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(LOO, simplest CV, minimal perturbation), leave-five-out 
(leave some out with 5 groups, L5O, 20% perturbation), 
and leave-half-out (leave some out with 2 groups LHO, 
50% perturbation). Y-scrambling technique in conjunction 
with CV was used to verify final model’s lack of chance 
correlation [47]. Analysis of the Py-3-D_QSAR models 
was carried out by means of molecular graphical software 
(UCSF Chimera) by superimposing 3-D QSAR contour 

plots on the training set molecules and DOT1L binding 
site residues.

COMBINE (SB model)

The above-described 15 ligand/protein complexes were used 
to develop a series of COMBINE models. Herein a python 
implementation of the COMBINEr procedure [48] was used 

Table 1   (continued) PDB code 2-D chemical structure pActa

4HRA [43] 10.10b

3QOX [41] 6.22c

4EQZ [40] 6.99c

The related experimental bioactivities pAct (pIC50, Ki or Km) and entry codes are also listed
a Bioactivities expressed as pAct = − Log10 [activity expressed in molarity]
b Bioactivities available as pIC50
c Bioactivities available as pKi
d Bioactivities available as pKm
e Co-crystals containing the same inhibitor but in different binding conformations
f Co-crystals containing the same inhibitor but in different binding conformations



	 Journal of Computer-Aided Molecular Design

1 3

(Py-COMBINEr) to investigate the correlation among pKis 
and four per-residue-based energetic interactions, namely 
electrostatic (ELE), steric (STE), desolvation (DRY) and 
hydrogen bonding (HB), each featured by a different con-
tribution. Similarly, as in the Py-3-D_QSAR derived mod-
els, LOO, L5O and LHO cross-validation coupled with 
Y-scrambling were used to evaluate Py-COMBINEr mod-
els’ robustness and lack of chance correlation. Analysis of 
the Py-COMBINEr models was carried out by means of 
histogram plots and most important binding site residues 
were characterized and graphically displayed with molecular 
graphical software (UCSF Chimera).

Docking assessment

In developing 3-D QSAR models a crucial step is repre-
sented by the alignment rules [49]. SB derived 3-D QSARs, 
like those herein defined, lack predetermined alignment 
rules to be applied to external test sets. A procedure to align 
the molecules under prediction (external test sets) need to 
be carefully carried out and assessed. Of course this apply 
also to COMBINE models were poses of ligands not yet 
co-crystallized need to carefully simulated. Therefore, 
SB alignment was set up by using open source molecular 
docking programs (AutodockVina [50] [herein just Vina], 
Surflex-dock [51] [herein just Surflex] and Plants [52]) 
considering its three different scoring functions, (Chemplp, 
plp and plp95). Docking algorithms are not yet fully opti-
mized as the proteins are still mainly considered rigid [53] 
not including protein conformational and domain changes 
as consequence of ligand and protein binding (induced-fit). 
Herein cross-docking (or ensemble docking) was used to 
model MTS, JMCTS and MPS compounds. To this purpose 
experimental (EC) or randomized (RC) ligand conformation 
re-docking (RD) and cross-docking (CD) methods were used 
to assess the software ability in reproducing experimental 
binding modes of known co-crystallized inhibitors (docking 
assessment) [37, 54, 55]. As reported [37, 56] RMSD values, 
calculated between experimental and docked conformations, 
were used to evaluate docking accuracy (DA) [54, 57]. DA 
can be used to test how a given molecular docking software 
is capable to predict a ligand pose as close as possible to 
the experimentally observed, and can be calculated by the 
following equation:

whereas frmsd ≤ a and frmsd ≤ b represent the fraction of 
aligned ligands showing an RMSD value less than or equal 
to a and b cutoffs, respectively. The widely accepted stand-
ard for small molecule is that the correctly docked conforma-
tions are those displaying an RMSD value lower than 2 Å 
on all heavy atoms from the crystallographic structure of 
the ligand conformation as found in the inhibitor–enzyme 

DA = frmsd ≤ a + 0.5(frmsd ≤ b − frmsd ≤ a)

complex. Conformation docked with RMSD between 2 and 
3 Å are considered partially docked, whereas those showing 
RMSD values > 3 were mis-docked and thus not considered 
in the DA calculation.

Test set selection and preparation

Modeled test set (MTS)

A list of 24 DOT1L inhibitors (Supplementary Material 
Table S3) with known activities and unknown binding 
modes were collected from literature. MTS was compiled 
with molecules structurally related to those of the train-
ing set in order to test models’ predictive abilities while 
avoiding any extrapolation. Test set molecules’ starting 
conformations were directly modeled from the closest 
structurally related co-crystallized DOT1L inhibitor listed 
in Table 1. Their randomized conformations were gen-
erated and cross-docked into all training set of DOT1L 
apo-proteins. Docked MTS was used to assess 3-D QSAR 
and COMBINE models’ predictive abilities with modeled 
conformations. During the preparation of the manuscript, 
Wang et al. [58] reported the application of SB techniques 
to disclose new non-nucleoside DOT1L inhibitors binding 
in the SAM pocket. Promptly, the reported active com-
pounds were modeled (herein named Journal Medicinal 
Chemistry Test Set, JMCTS, Supplementary Material 
Table S4). The JMCTS structures were prepared similarly 
as for MTS.

Crystal test set (CTS)

While SB and LB models were under interpretation for 
manuscript preparation further DOT1L crystal structures 
were released in the PDB database. Among these, ten of 
them contained an inhibitor co-crystallized and promptly 
the newly available complexes were treated analogously as 
training set to prepare an external test set with known bound 
ligands’ conformation (Supplementary Material Table S5). 
The CTS ligands and ligand/protein pairs were used to assess 
3-D QSAR and COMBINE models’ predictive abilities with 
experimental derived conformations.

Modeled prediction set (MPS)

An in-house library of untested compounds (not shown) 
was modeled similarly as MTS. The most promising MPS 
compounds were subsequently assayed for enzymatic bioac-
tivities to evaluate real 3-D QSAR and COMBINE models’ 
predictive abilities.
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Results and discussion

Training set composition validation by means of 3‑D 
QSAR predictive ability

Preliminary 3-D QSAR models based on eight different 
probes (Supplementary Material Table S6) were built using 
only K-group and were found statistically satisfying with 
high r2 and cross-validated r2 (q2) values (Supplementary 
Material Table S7). IC-group molecules and associated 
pIC50s values, used as external test, were correctly predicted 
with predictive squared correlation coefficients (r2

pred) up to 
more than 0.7 (Supplementary Material Table S7 and Figs. 
S2 and S3), indicating IC50 as predictive for Ki values. More-
over, direct linear relationship found using three pKi/pIC50 
pairs (Supplementary Material Table S2 and Equation S1) 
supported the pIC50 to pKi conversion and the merging all 
the 15 inhibitor/complexes in a single training set (M-group) 
to develop chemically wider 3-D QSAR and COMBINE 
model without including a great source of error.

Py‑3‑D_QSAR models definition on M‑group

Molecular interaction fields (MIFs) were computed using 
a grid spacing of 1 Å to build eight initial 3-D QSAR 
models with the training set composed with M-group. 
Using standard variable pretreatment, initial models indi-
cated a high level of MIF-activity correlation with sat-
isfactory r2 and q2

LOO values ranging from 0.75 to 0.99 
and from 0.45 to 0.66, respectively (Table S8 and Sup-
plementary Material Figs. S4–S11). LOO, L5O and LHO 
CV statistical coefficients showed the models to be stable 

to perturbations. On the other hand, the LHO CV (50% 
perturbation) creates temporary random sub-model with 
only eight molcules indicating the limits of this CV appli-
cation with relatively small training sets. Subsequently, 
GRID-VPO analysis were run with LOO CVs leading to 
statistically enhanced models without further optimization 
or variable selection (Table 2 and Supplementary Mate-
rial Tables S9–S16). Considering r2, q2

LOO and SDEPLOO 
values, models 4 and 5, listed in Table 2, obtained with 
OA and N probes respectively, showed the best results. 
Therefore, they were further analyzed for either robustness 
or lack of chance correlation (Fig. 3 and Supplementary 
Material Figs. S12–S17). Indeed, GRID-VPO optimization 
lead to more robust OA (model 4) and N (model 5) probe 
based 3-D QSAR models with up to 21% higher q2 values 
(compare q2 values of Table S8 with those in panel C of 
Fig. 3). Y-scrambling procedure showed the model was not 
to be affected by any chance correlation as either r2

YS or 
q2

YS values were much lower than obtained with unscram-
bled models (Supplementary Material Figs. S12–S17).

Analysis of CV predicted values clearly indicated that 
low potent compounds (i.e. 3UWP in Supplementary 
Material Figs. S12–S17) have higher error of predictions 
(around 2 pKi units) whereas higher potent are predicted 
with low errors, this reflects a J shaped distribution point 
in the recalculated/predicted versus experimental pKis 
plots (Fig. 3). This is an expected scenario in a 3-D QSAR 
study, in fact during CV run, low potent compounds shar-
ing similarities with the reduced training set were pre-
dicted more potent. In parallel, highly active compounds 
were predicted less potent but with lower errors of predic-
tion. Models 4 and 5 were selected for the subsequent 3-D 
QSAR graphical interpretations.

Table 2   GRID-VPO analysis for 
all considered probes

Only best VPO parameters are shown
PC principal components/latent variables, GRID grid spacing, CutOff maximum and minimum grid energy 
cutoff value, Zeroing zeroing cutoff, MinStd minimum standard deviation cutoff
a Conventional square-correlation coefficients
b Cross-validation correlation coefficients obtained from L5O CV
c Standard deviation error of prediction in L5O CV

# Probe r2a q2
LOO

b SDEPLOO
c PC GRID Cut off Zeroing Min STD

1 A 0.92 0.72 0.99 2 2.30 5 0.009 0.005
2 C 0.92 0.72 0.99 2 2.30 5 0.010 0.005
3 HD 0.95 0.72 0.98 2 2.60 5 0.003 0.040
4 OA 0.97 0.78 0.88 3 2.30 4 0.010 0.025
5 N 0.97 0.80 0.84 3 2.30 5 0.010 0.030
6 NA 0.97 0.77 0.86 3 2.30 5 0.010 0.030
7 e 0.99 0.77 0.82 5 0.85 5 0.008 0.005
8 d 0.85 0.78 0.87 2 1.95 1 0.009 0.015
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Py‑3‑D_QSAR models graphical analysis

A representative feature of any MIF-based 3-D QSAR is the 
intrinsic skill to correlate graphically fragments of training 
set molecules with their biological activities. Consequently, 
for a given SB-aligned molecule, this correlation can involve 
the binding site with which the fragments interact. Superim-
position of corresponding crystal structures on the classical 
3-D QSAR contour plots represents a tool to explore the 
model’s biophysical rationale. Average activity contribution 
(AAC) contour plots obtained by MIF average values and 
the PLS coefficients (COEFs) scalar products are of marked 
use. Differently from most common CoMFA plots, obtained 
by the scalar product of MIF standard deviation and COEFs 
values, in case of steric interactions, AACs are of direct 
use and have only two combinations of values: positive and 
negative. Positive values indicate regions around training set 
molecules that explain positive activity contribution, while 
negative values correlate with negative contributions. At 
higher resolution, further information can be gathered by 
means of activity contribution (AC) plots obtained by indi-
vidual molecules’ MIF values and COEFs scalar product. 
MIF and COEF plots can also be used to aid AAC and AC 

plots interpretation and all together they are useful to design 
molecules starting from training set compounds from a LB 
perspective. Being amide nitrogen atom mainly involved in 
steric interactions, superimposition of OA and N derived 
AAC plots (AAC​N and AAC​OA) shows that the foremost 
feature of the MIF/activity relationships (3-D QSAR) is 
related to the bound conformations’ molecular volumes. The 
only small notable difference is in proximity of the ribose 
hydroxyl groups (Fig. 4, Supplementary Material Figs. S18, 
S19 and movies S1–S16).

For the N probe, an average negative contribution is 
associated with the two hydroxyls (slightly more on sugar 
position 3′-OH). On the contrary, a positive cyan polyhe-
dron for AAC​OA overlaps indicating that a possible com-
promise would be to maintain hydrogen bonding donator 
atom (ligand’s counter part for OA probe interaction). Inter-
estingly, comparing the most (4HRA) and a less (3RS4) 
potent ligand conformations, the latter’s hydroxyl group is 
shifted away of more than 1.4 Å from the above described 
positive polyhedron (Supplementary Material Fig. S19). In 
fact, smaller MIFOA polyhedron can be observed around 
3′-OH (compare Supplementary Material Figs. S18E and 
S19E) of 3RS4 leading to decreased ACOA associated one 

Fig. 3   a Recalculated (blue dots), LOO CV predicted (red dots), 
L5O-CV predicted (green dots) and LHO-CV (yellow dots) pKis 
from OA (panel a) and N (panel b) probes derived 3-D QSAR mod-
els. Models’ 4 and 5 statistical PLS results are reported in panel c: 
aModel number as in Table  2. bProbe atom to calculate MIF. cPC: 

optimal principal components. dConventional square-correlation coef-
ficients. eStandard deviation error of calculation. fCross-validation 
correlation coefficients obtained from CV. gStandard deviation error 
of prediction
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(compare Figs. S18G and S19G). Regarding the activity-
related steric influence, by comparison of the training set 
most (4HRA) and low (3SR4) potent molecules-associated 
MIF and AC plots, it is possible to note the presence of big 
positive AC areas (either N or OA probes) overlapping the 
4HRA phenylimidazole moiety which extends further the 
natural SAM co-substrate methionine group. This area is 
commonly occupied by all most potent compounds sharing 
bulky groups instead of the SAM methionine as outlined in 
the AAC countour plots (Fig. 4). A second steric featured 
difference among 4HRA and 3SR4 AC plots is related to the 
alkyl side chain (isopropyl for 4HRA) bound to the nitrogen 
replacing the SAM sulphur atom, which fulfills an impor-
tant AC green polyhedron (Fig. S18H). Whereas the area 
is missing for the least potent S-adenosyl-l-homocysteine 
(SAH) ligand analogue 3SR4 (Supplementary Material Fig. 
S19). Finally, small negative AACs aeras are visible in Fig. 4 
around the adenine amino group and, as it results by inspec-
tion of the ACs plots, the negative activity contribution is 
greater for 3SR4 where a methyl group is replacing one of 
the two hydrogen atoms.

As anticipated, overlap of DOT1L corresponding binding 
sites with AAC or AC contour plots allows implementing the 
LB nature of the 3-D QSAR models with SB information, 
thus allowing deeper analysis and consideration (Supple-
mentary Material Fig. S21 and movies S17–S32). Actually, 
AAC maps overlapped to DOT1L SAM binding sites resi-
dues display a good complementarity. In particular, refer-
ring to 4HRA ligand/protein complex, the important positive 
contributing steric interactions (AAC and AC maps) around 
the tert-butylphenylimidazole fulfill a deep pocket delimited 
mainly by Pro133, Leu143, Met147, Val169, Phe239, Val 

267 and Tyr312 side-chains; the isopropyl group-associated 
AAC and AC contours fit a small cleft formed by Asn241 
and Phe245 side chains. Positive contributing AAC small 
polyhedrons close to 2′- and 3′-ribose hydroxyl groups cor-
rectly describe the interfaces with Lys187 amide nitrogen 
and Glu186 γ-carboxylate, respectively. Small positive AAC 
and AC plots are also observable in a pocket defined by 
Val185, Gly221 and Asp222 main chains and side chains 
indicating adenine C2 position located in pyrimidine ring 
as a possible modification point to potentially increase the 
activity. The negatively contributing polyhedron around the 
adenine amine group designates that deamination could be 
favorable for the activity. To complete the description, the 
two small areas around adenine nitrogen N7 account for 
3SX0 and 3UWP steric interaction of bromine and iodine 
atoms, respectively. Regarding molecule 3RS4, in general 
the associated AC plots are not fulfilling the SAM binding 
site correctly indicating the lack of activity contribution. On 
the other hand, greater negative contribution maps around 
adenine amino group specify some steric hindrance exerted 
by the methyl substituents, likely due to negative interactions 
with Leu224 side chain.

The above observation suggested that a linear correla-
tion could exist between pKis and classical QSAR calcu-
lated parameters. Indeed, mono parametric linear regressions 
(LR) performed with molecular weight (MW), molecular 
refractivity (MR), logarithm of n-octanol/water partition 
coefficients (LogP), total polar Surface Area (TPSA), num-
ber of heavy atom (HAC), number of hydrogen acceptor 
atoms (HA), number of hydrogen donor (HD), number of 
rotatable bonds (RB) and number of rings (RC) returned r2 
values up to 0.86 being the higher those obtained with MW, 

Fig. 4   AAC contour plots. AAC​
N are displayed in surface style 
(positive values in green and 
negative values in yellow). AAC​
OA are in mesh style (posi-
tive values in cyan lines and 
negative values in orange lines). 
Aligned training set is displayed 
colored by element (grey: car-
bon, red: oxygen, blue: nitrogen, 
yellow: sulphur). Hydrogen 
atoms are not displayed for 
sake of clarity. AAC surfaces 
iso-contribution values were not 
filtered
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MR and HAC (Supplementary Material Table S17). The 
simple QSARs thus confirmed that actually a correlation 
exists between inhibitory activities and steric parameters 
supporting the above 3-D QSAR analysis.

COMBINE models definitions

Through application of the Py-COMBINEr protocol, four 
ligand/residues energetic fields were investigated: electro-
static (ELE), steric (STE), desolvation (DRY) and hydrogen 
bond (HB), and all the possible 11 field combinations (Sup-
plementary Material Table S18). For each single field and 
their combination, the corresponding COMBINE model’s 
robustness and lack of chance correlation were evaluated 
by means of LOO, L5O and LHO cross-validations. High 
level of models’ robustness was achieved without the need 
of any optimization as evinced by the most restrictive q2

LHO 
values ranging from 0.36 to 0.66 (Supplementary Material 
Table S18). Furthermore, the models developed with block 
scaled data showed to be slightly better than those obtained 
with unscaled data.

Among the COMBINE models, the one endowed with 
the best statistical values (r² = 0.94 and q² = 0.66 at three 
principal components and LHO CV) was the one obtained 
with STE and HB field combination (Fig. 5). Optimum num-
ber of PC was calculated by checking percentage decrease 
of standard deviation error of prediction (SDEP) values, 
setting as significant the next component with a SDEP 
decrease (SDEP%) higher than 5% (Supplementary Mate-
rial Table S19 and Figs. S22–S66), this procedure is used 
in the GOLPE program, a software used to develop either 
3-D QSAR or COMBINE models [59]. Consequently, all 
the subsequent analyses were conducted on the STE + HB 
field-derived COMBINE model at 3 PCs.

COMBINE model analysis

Similarly as for the above analyzed 3-D QSAR models, rep-
resentative features for COMBINE models are the graphi-
cal correlations of training set molecules with their biologi-
cal activities by means of histogram plots (HPs) that aid to 
individuate protein fragments more involved in modulating 

Fig. 5   Recalculated (blue dots), 
LOO CV predicted (red dots), 
L5O-CV predicted (green dots) 
and LHO-CV (yellow dots) 
pKis from STE-HB derived 
COMBINE model. Statistical 
PLS results for model 7 s are 
also reported: amodel number as 
in Table S12. bField combina-
tion. cPC: optimal principal 
components. dConventional 
square-correlation coefficients. 
eStandard deviation error of 
calculation. fCross-validation 
correlation coefficients obtained 
from CV. gStandard deviation 
error of prediction
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inhibitors’ activities. Thus, molecule–residue average activ-
ity contribution (MRAAC) HPs obtained by average mol-
ecule–residues interactions (AMRIs) values and the PLS 
coefficients (COEFs) scalar product are used to deeply ana-
lyze COMBINE models (Supplementary Material Fig. S67). 
As AACs, MRAACs have only two combination of values: 
positive and negative. Positive values indicate protein resi-
dues that are in close proximity to the training set molecules, 
while negative values indicate negative contributions due to 
the protein residues with which the interaction is penalizing. 
In particular, from the histogram plot reported in Fig. S67 
residues Gly163, Lys187, Asn241 are those more involved 
in positively modulating the ligand/residues steric interac-
tions with average MRAAC values of about 0.54, 0.81 and 
0.59 pKis units, respectively. Lys187 is involved in maintain-
ing positive contacts with the SAM’s adenine moiety, while 
Gly163 and Asn241 that form part of the SAM binding site 
hosting the modified methionine sulphur atom (changed to 
an alkylated nitrogen) of the more potent DOT1L inhibitor 
(Fig. 6a). Only a few of residue displayed slightly negative 
steric MRAAC values. Among these it is interesting to point 
that more of them are located in a DOT1L flexible loop 
(Pro130–Thr139) which is unstructured in the complexes 
containing potent inhibitors (Supplementary Material Fig. 
S68). The coordinates of this loop are not always present in 
the PDB structures, therefore were modeled by homology 
modelling. COMBINE data connected with this modeled 
loop may contain source of errors; in any case, the model 
recorded the residues of this flexible loop as important resi-
due to which an inhibitor should not set up non-bonding 
interactions. Indeed, regarding HB ligand/residues interac-
tions Asp161, Gly163 and Asp222 are those mainly respon-
sible for positive average activity contributions (Fig. 6b). 
Inspecting the most potent DOT1L inhibitor, at least four 

hydrogen bonds (Fig. S69) mostly account for its picomolar 
activity (pKi = 10.10, Table 1). Although engaged in hydro-
gen bonding to compounds bearing a carboxylate group 
similarly to the SAM, Asn241 seems detrimental for the 
activity with an MRAAC value lower than − 0.6 pKis (Sup-
plementary Material Fig. S67). The negative activity contri-
bution associated with a hydrogen bond seems paradoxical, 
but comparing 4HRA and 3UWP ligands (Fig. 7 and Sup-
plementary Material Fig. S67) the loss of a hydrogen bond 
(3UWP) is fulfilled by three new ones (4HRA). Therefore, 
the PLS algorithm correctly assigned a positive COEF value 
to turn into negative the MRAAC cost.

At higher resolution, further information can be gathered 
with molecule–residue activity contribution (MRAC) his-
togram plots obtained by individual molecules’ molecule/
residue interactions (MRIs) and COEFs related values. 
Focusing on the most and least potent ligands, 4HRA and 
3UWP, and comparing their MRACs values (Fig. 7) it is 
possible to get further details on the ligand/residues inter-
actions that account for almost six orders of magnitude in 
potency spectrum (see Table 1, ΔpKi = 6.15). Focusing to 
absolute MRACs values > 0.15 pKi units, only 5 and 12 
residues for 3UWP and 4HRA, respectively, delineate the 
most important sterical ligand/protein per residues interac-
tions accounting for a ΔpKi of about 2.7. While for hydrogen 
bonding for the most active ligand (4HRA) a high positive 
contribution is associated with Gly163 and on the contrary 
for the least one (3UWP) there is a high negative contribu-
tion related to Glu186 (Fig. 7). A straightforward graphical 
picture is displayed by plotting the residues associated with 
positive and negative activity contributions (Supplementary 
Material Figs. S70–S73). For the most potent compound, a 
wider positive area promptly delineates the positive residues. 
In particular, the highest activity of 4HRA is mainly due to 

Fig. 6   Representation of positively and negatively contribution resi-
dues as depicted from COMBINE model 7s (Table S12, Supplemen-
tary Material) analysis (see text). STE MRAACs (a) are depicted 
with surfaces colored in green (positive) and yellow (negative). HB 

MRAACs (b) are depicted with surfaces colored in blue (positive) 
and red (negative). Figure are made to directly compare the STE and 
HB surfaces. All training set DOT1Lis are depicted in atom type 
colored atoms
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a greater extent of positive ligand/residues STE interactions, 
while the 3UWP lower potency can be ascribed to both a 
sterical and hydrogen bonding unfavorable complementarity 
(Fig. S74).

Combined 3‑D QSAR and COMBINE analysis

The use of two computational approaches (LB and SB) can 
complement each to other and compensate respective weak-
nesses, realizing a synergism to increase the SBDD poten-
tialities. Combining 3-D QSAR graphical results with those 
of COMBINE has double advantage: first, the overlapping 
models can be used to confirm goodness of each other; sec-
ond, as an ultimate analysis, it can give a broader scenario 

to design new molecules. Effectively, as shown in Fig. S75 
(see also associated movies in Supplementary Material), the 
LB and SB approaches display a high level of agreement and 
with respect to 4HRA ligand sections (adenine, ribose and 
replaced methionine moiety). Thus some structure–activ-
ity relationship rules about potential new derivatives can 
be derived (Fig. 8). Concerning the adenine ring, the C6 
amino group can be deleted to reduce negative steric inter-
action with Asp222 and Leu224 side chains; N1 is impor-
tant for a hydrogen bond with Phe223 amide NH which can 
be replaced by a carbonyl group to strengthen the binding; 
N7 can be replaced with a carbon atom while inserting a 
bulky branching; C2 and N3 should be maintained or at least 
replaced with a two carbon atoms moiety. About the ribose, 

Fig. 7   Representation of 
positively and negatively con-
tribution residues as depicted 
from COMBINE model 7s 
(Table S12, Supplementary 
Material)

Fig. 8   4HRA ligand and potential modification points are suggested. Steric, hydrogen bonding acceptor and hydrogen binding donating features 
are indicated by S1−4, HA and HD1−2, respectively
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the 3′-hydroxy group is important for a hydrogen bond with 
Glu186 carboxylate as it could be replaced with SH or NH2, 
and also a methylene can be inserted. The 2′-hydroxy group 
is less prone to establish hydrogen bond but C–OH can be 
replaced by a NH to convert the tetrahydrofuran ring into 
tetrahydrooxazole. Regarding the replaced SAM methionine 
group, the models confirmed that bulky groups are needed to 
destructure the Pro130–Thr139 DOT1L loop also supported 
by a good correlation with classical steric QSAR paramenter 
such as MW and MR; finally, branching is not tolerated in 
the methionine binding site.

SB alignment assessment

The validity of any applied docking methodology needs 
to be established (docking assessment) by evaluating the 
binding modes reproduction of the ligands for which X-ray 
structures are available. As previously reported [54–56], 
docking assessment was used to evaluate the most suitable 
docking program among a list of five program/scoring func-
tion combinations (Vina, Plants [with three scoring function, 
chemplp, plp and plp95] and Surflex) through experimental 
conformation re-docking (ECRD), random conformation re-
docking (RCRD), experimental conformation cross-dock-
ing (ECCD), random conformation cross-docking (RCCD) 
procedures [54]. Analysis of calculated docking accuracy 
percentages (DA%) revealed Surflex as the program display-
ing the highest DA% value in all four procedures (ECRD-
DA% = 100, ECCD-DA% = 86.7, RCRD-DA% = 93.3 and 
RCRD-DA% = 90, Table 3 and Supplementary Material 
Tables S20–S23). These results indicate that in case of an 
effective DOT1L inhibitor Surflex is expected to predict its 
binding mode with a reasonable low error.

3‑D QSAR and COMBINE models’ predictive ability 
evaluation through external test sets

Modeled test sets (MTS)

In view of the above docking assessments, Surflex was 
selected (SB alignment rules) to dock the MTS molecules. 
Due to high structural similarity with training set molecules, 
the obtained MTS docked conformation were found to over-
lap quite well those of the training set (Supplementary Mate-
rial Fig. S76). The MTS conformations were then directly 
used to evaluate the predictive abilities of either 3-D QSAR 
or COMBINE models for compounds with unknown experi-
mental binding modes. In general, the model over predicted 
low potent compounds and under predicted high potent ones. 
Nevertheless, the models proved to have predictive abilities 
at different extents (Supplementary Material Table S24), 
STE.HB COMBINE model based showed the lowest pre-
dictive SDEP (SDEPpred = 1.58), whereas OA and N-based 
3-D QSAR models had a lower predictive power with higher 
SDEPpred values of 1.78 and 1.80, respectively.

For a prospective consensus scoring function application 
combining LB and SB techniques, the average SDEPpred was 
also calculated to be 1.67 Apart the SDEPpred values, the 
models were also evaluated for their propensity to discrimi-
nate high from low potent compounds: in general, the mod-
els displayed a high capability in identifying highly potent 
compounds with low propensity to false negatives (highly 
potent compounds predicted with low pKi values). The 3-D 
QSAROA model displayed a higher accuracy prediction for 
more potent compounds (smaller under-prediction), whereas 
the COMBINE one had a balanced over and under-predic-
tion profile (Supplementary Material Fig. S77).

During the preparation of the manuscript, Wang et al. 
reported the application of SB techniques to disclose new 
non-nucleoside DOT1L inhibitors binding in the SAM 
pocket [58]. Promptly the reported active compounds were 
modeled (herein named JMCTS), cross-docked and used 
as a further external modeled test set. The 3-D QSAR and 
COMBINE models correctly predicted the micromolar range 
potencies with SDEP values as low as 0.91 for the consensus 
scoring (Table 4).

Crystal test set (CTS)

As already above cited, during the preparation of this man-
uscript a new series of DOT1L complexes were released 
(Supplementary Material Tables S1, S5 and S25). Thus, the 
3-D QSAR and COMBINE models were promptly applied 
to these complexes to evaluate their predictive ability with 
experimental data. As expected, the models showed low 
errors of prediction (Supplementary Material Table S25 
and Fig. S78). As a support to the above consensus scoring 

Table 3   The docking results obtained from the random conformation 
cross-docking software used

a The scoring function names as implemented in the plants docking 
programs
b Minimum value of RMSD obtained for each docking software used
c Maximum value of RMSD obtained for each docking software used
d Average value of RMSD obtained for each docking software used
e Standard deviation value
f Docking accuracy as defined in the experimental section

Statistical data Plants Surflex Vina

Chemplpa plpa plp95a

Minb 0.53 0.61 1.32 0.46 1.21
Maxc 11.93 11.74 12.41 10.32 18.56
Averaged 3.56 6.25 4.76 1.73 7.24
StDeve 3.01 3.91 3.49 2.42 4.96
DA%f 50.00 23.33 40.00 90.00 20.00
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function application, the average SDEPpred values was lower 
between 7 and 24% than the single models’ SDEPpred values. 
Nevertheless, most of the CTS ligands bound conformations 
were only partially overlapped to those of the training set 
(Supplementary Material Fig. S78), thus explaining the non-
perfect predictions.

4ER5 and 5JUW ligands are those more closely related to 
the training set structures and were predicted with low errors 

by the models; whereas 4WVL although strictly related to 
4ER0, bears an acetyllysine-like side-chain on the adenine 
amino group extending the interactions not fully represented 
in the 3-D QSAR and COMBINE models was slightly over-
predicted. Ligands contained in 5DRT, 5DRY, 5DSX, 5DT2, 
5DTM, 5DTQ and 5DTR complexes were only partially 
superimposed to the ligand training set and although were 
all over-predicted by either models SDEP values were still 
not too high (Table S25).

Modeled predictive set (MPS)

A series of 87 compounds taken from our in-house library 
(not shown) was modeled and subjected to both Py_3-D_
QSAR and Py-COMBINEr models. Among the virtually 
screened compounds, only two of them (1MPS and 2MPS) 
showed predicted pKi in the low micromolar or even sub-
micromolar range and were therefore promptly assayed as 
DOT1L inhibitor by using AlphaLISA technology (Perki-
nElmer) and then confirmed by radioactive assay (Table 5 
and Supplementary Material Fig. S80).

Chemistry

The synthetic route for the preparation of the final thiobar-
biturates 1MPS and 2MPS is depicted in Scheme 1. On one 
hand, treatment of commercially available 4-(chloromethyl)-
1,1′-biphenyl with commercial 4-hydroxybenzaldehyde 
in the presence of anhydrous potassium carbonate and 
sodium iodide in dry acetonitrile at reflux brought to the 

Table 4   Experimental and predicted pIC50 for JMCTS

a Compound enumeration as in the original article
b pKi derived from the experimental pIC50 using Supplementary 
Material Equation S1
c Average of predicted activities by the three models

#a Exp 
pKi

b
Predicted pKis

3-D QSAR COM-
BINE

Averagec

Probe OA Probe N

6 4.34 5.77 6.44 4.98 5.37
9 4.63 3.82 4.14 3.96 3.89
10 4.46 5.74 5.91 4.53 5.13
15 4.70 5.94 6.11 4.72 5.33
16 4.33 6.01 5.97 4.41 5.21
17 4.64 4.32 4.43 4.57 4.44
21 3.91 5.32 5.43 3.88 4.60
39 4.69 6.11 6.07 4.81 5.46
40 3.97 6.78 7.31 4.69 5.73
SDEP – 1.52 1.73 0.40 0.91

Table 5   Structures of 1MPS and 2MPS and their 3-D QSAR and COMBINE models’ predictions for DOT1L inhibition

Experimental data are also reported for comparison
a Average of predicted activities by the three models
b pKi derived from the experimental pIC50 using Supplementary Material Equation S1

1MPS 2MPS

# Predicted pKis Experimental pIC50 (pKi)b

3-D QSAR COMBINE Averagea AlphaLISA Radioactive assay

Probe OA Probe N

1MPS 6.52 6.42 5.54 6.16 5.14 (4.40) 5.02 (4.27)
2MPS 6.81 7.05 5.04 6.3 5.10 (4.35) 4.11 (3.22)
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4-([1,1′-biphenyl]-4-ylmethoxy)benzaldehyde intermedi-
ate 3MPS. On the other hand, the 4-(benzo[d] [1,3] dioxol-
5-ylmethoxy)benzaldehyde intermediate 4MPS was achieved 
by a Mitsunobu reaction performed between the commer-
cially available benzo[d] [1,3] dioxol-5-ylmethanol and the 
4-hydroxybenzaldehyde in the presence of triphenylphos-
phine and diisopropyl azodicarboxylate (DIAD) in dry THF. 
The two aldehydes were then condensed with commercial 
2-thiobarbituric acid in ethanol at reflux to give the required 
final products 1MPS and 2MPS.

Enzyme assays

To test 1MPS and 2MPS, human recombinant DOT1L (resi-
dues 1-416) containing an N-terminal GST-tag was used as 
enzyme source, and purified oligonucleosomes from HeLa 
cells and SAM were used as substrate and co-substrate, 
respectively (AlphaLISA technology) (Tables  5, 6 and 
Fig. S80). To confirm the inhibition data, 1MPS and 2MPS 
were also tested in radioactive assay with human DOT1L and 
oligonucleosomes/3H-SAM, in a 10-dose IC50 mode with 
twofold serial dilution starting from 100 µΜ (Tables 4, 5). In 
the two enzyme assays,1MPS displayed similar IC50 values 
(7.91 µM in AlphaLISA and 9.48 µM in radioactive assay) 
while 2MPS was 10-fold less effective in the radioactive assay 
(77.7 µM) respect to the AlphaLISA test (7.22 µM). The rel-
ative dose-dependent inhibition curves for the two inhibitors 
obtained with the both methods are reported in Fig. 9. These 
values confirmed the 3-D QSAR and COMBINE models as 
effective tools to design new inhibitors (compare predic-
tion and actual values in Table 4). Again, as for the MTS 
and CTS, MPS compounds were overpredicted by the 3-D 

QSAR models and underpredicted by Py-COMBINEr ones, 
the average predictions being the most accurate.

To check the selectivity of 1MPS and 2MPS towards 
DOT1L respect to other methylatransferases, the two com-
pounds were further against G9a and SET7/9 (two other his-
tone lysine methyltransferases) PRMT1(an arginine meth-
yltranferase), but it was not possible to determine any IC50 
value for 1MPS and 2MPS against these enzymes (Table 6).

Binding mode of 1MPS and 2MPS into the DOT1L 
structure

Inspection of 1MPS and 2MPS Surflex-proposed bound confor-
mations revealed some differences in their binding modes. 
Although to any trained classical medicinal chemist the two 
compounds share visible molecular resemblance, although 
on the basis of calculated molecular fingerprints as imple-
mented in openbabel [60], 1MPS and 2MPS showed Tanimoto 
coefficient T ranging from 0.38 to 1.00 (Supplementary 
Material Table S26). The values obtained with fp3 and fp4 
methods are based on small number of bits (55 and 307 for 
fp3 and fp4, respectively) that normally should not be used 
to describe drug like molecules [61]. Considering that two 
structures can be considered similar at T > 0.85 [62] the 
two molecules for 9 out of 10 methods have lower values 
and therefore can be considered to be of very low molecular 
similarity in agreement with the performed molecular dock-
ing simulations.

Although not superimposed, 1MPS and 2MPS thiobarbi-
turic moieties are both buried into the SAM binding site 
to fill part of the methionine pocket (Fig. 9), even if to 
a different extent. In particular, 1MPS sulfur atom points 
towards a sub-pocket formed by the Asp161–Gln169 loop 
making a weak hydrogen bond with Val169 NH (S⋯N 
distance 3.97 Å), while one of the thiobarbituric carbonyl 
oxygen is engaged in a hydrogen bond with Asn241 NH 
(O⋯N distance 2.93 Å). Differently, the 2MPS thiobar-
bituric portion is placed in the distal SAM methionine 
carboxylic group, almost superimposed to the ureidic por-
tion of 4ER5 co-crystallized ligand, with the sulfur atom 

Scheme 1   Synthesis of 
Compounds 1MPS and 2MPS: 
Reagents and conditions: (a) 
4-(chloromethyl)-1,1′-biphenyl, 
K2CO3, NaI, dry CH3CN, 
reflux, 4 h; (b) benzo[d] [1,3] 
dioxol-5-yl-methanol, PPh3, 
DIAD, dry THF, N2, 0 °C→rt, 
16 h; (c) 2-thiobarbituric acid, 
EtOH, 80 °C, 6.5 h
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Table 6   Selectivity of 1MPS and 2MPS towards DOT1L inhibition

Compd. IC50, µM

DOT1L G9a SET7/9 PRMT1

1MPS 7.906 ± 0.012 No inhibition No inhibition No inhibition
2MPS 7.211 ± 0.011 No inhibition No inhibition No inhibition
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pointing on the same space occupied by the 4ER5 ligand 
tert-butylphenyl moiety delimitated by Ser140, Leu143 
and Val144 main- and side-chains. This position allows 
one of the thiobarbituric carbonyl oxygen to be involved 
in a hydrogen bond with Asn241 NH (O⋯N distance 
2.77 Å).

The 1MPS and 2MPS central 1,4-disubstituted phenyl 
rings are shifted of about 3.6 Å and rotated of about 
65 degrees so working as to two different bridges con-
necting the diphenyl (1MPS) or the methylendioxyphenyl 
(2MPS) groups. The distal phenyl group of 1MPS diphe-
nyl is placed in a sub-pocked formed by that is Lys187, 
Leu224 and Val249 side-chains. Interestingly, in this 
area bromine (3SX0, 4ER6 and 4ER7) and iodine atoms 
(3UWP) were also found, bound to experimentally co-
crystallized ligands adenine mimetics. In this scenario, 
noteworthy the diphenyl moiety fully overlaps the 4WVL 
acetyllysine-like side-chain. With this binding mode, 
1MPS closely binds in a SAM- or nucleoside DOT1L 
inhibitor-like mode. Differently, 2MPS methylendioxy-
phenyl group is placed in a different sub-pocket (Lys124, 
Leu125, Asn126, Glu186, Ala188 and Pro191), always 
free in all co-crystallized complexes, thus highlighting a 
possible new anchor point to be filled during the design 
of new non-nucleoside DOT1Li. Binding modes of 1MPS 
and 2MPS were obtained from cross-docking all 25 experi-
mental DOT1L binding sites (Training Set + CTS locks) 
and are the lowest energy docked conformations of two 
ensembles of 25 low energy poses (Supplementary Mate-
rial Fig. S81).

Conclusion

In this study, 3-D QSAR, COMBINE and molecular dock-
ing procedures were applied to a series of DOT1L co-
crystallized SAM-competitive inhibitors, obtaining models 
with remarkable statistical results and predictive capabili-
ties. Furthermore, it has been demonstrated that computa-
tional technologies such as 3-D QSAR and COMBINE can 
benefit from accurately conducted docking studies as they 
crucially rely on how molecular conformations are cho-
sen and overlaid. Through external tests sets the combined 
methodologies displayed good descriptive and predictive 
capabilities. Analysis of 3-D QSAR contour plots (AAC, 
COEFs, MIFs, ACs) together with COMBINE histograms 
(MRAACs, COEFs, AMRIs, MRIs and MRACs) allowed a 
deep description of chemical features leading to an overall 
LB/SB derived pharmacophore model (Fig. 8), potentially 
useful to design new molecules by maximizing ligand/pro-
tein interactions. In a real drug design application, the 24 
compounds listed in Table S2 (MTS) would have repre-
sented a predictive test set. Arbitrarily selecting the top 20% 
predicted compounds, two active compounds at nanomolar 
(23MTS and 24TS) ranges would have been disclosed. Only 
one false positive (3MTS) would have resulted thus leading 
to a success rate of 80%, a much higher value than those 
reported in SB virtual screening applications [63]. This pre-
dictive trend was also observed in the case of the CTS, an 
experimentally aligned derived test set. As pointed above, 
compound displaying bound conformations comprised in the 
training set space the 3-D QSAR and COMBINE models 

Fig. 9   Binding mode of 1MPS 
(carbon atoms colored in blue) 
and 2MPS (carbon atoms colored 
in yellow). For comparison 
purpose, 4ER5 ligand (carbon 
atoms colored in grey) and 
the surface of 4ER5 protein 
(colored by atom type) are also 
represented
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showed to perfectly predict the experimental potency (check 
experimental and predicted pKis for 4ER3 and 5JUW in 
Supplementary Material Table S21). On the other hand, 
greater errors of prediction were found associated to those 
complexes containing bound inhibitors displaying some dif-
ferences in either structures or binding modes (see values 
in Supplementary Material Table S21 for 4WVL, 5DRT, 
5DRY, 5DSX, 5DT2, 5DTM, 5DTQ and 5DTR).

Finally, the models’ predictive ability was experimen-
tally evaluated through their application to an internal 
library of 87 available compounds with unknown DOT1L 
inhibition aptitude. The model indicated compounds 1MPS 
and 2MPS as promising DOT1L inhibitors. Enzymatic assay 
confirmed their inhibitory potency at low micromolar level 
(Tables 4, 5). Interestingly, the models revealed that 2MPS 
binds DOT1L differently from all the other ligands (training 
set, MTS and CTS), and nonetheless the low IC50 it can be 
considered a potential hit from which draw out some ideas 
to design new DOT1L inhibitors. This additional testing 
fully qualified the models as effective tools for the design 
of DOT1L inhibitors. Application of the models to wider 
chemical libraries for virtual screenings is in due course.

Experimental section

Computational procedures

All calculations were done on a 6 blades (8 Intel-Xeon 
E5520 2.27 GHz CPU and 24 GB DDR3 RAM each) clus-
ter (48 CPU total) running Debian GNU/Linux “Jessie” 8.5 
64 bit operating system.

Training set preparation

The 15 DOT1L/inhibitors complexes (Table 1) were sub-
mitted to a similar previously reported [56] molecular 
modeling protocol. At the time we started this study only 
SAM competitive compounds co-crystallized with DOT1L 
were available. During the analysis of the results and man-
uscript preparation other complexes were released. Never-
theless, no new SAM competitive co-cristallized inhibitor 
were present at the time of submission. The complexes 
were loaded through UCSF Chimera v1.10.1 and visu-
ally inspected. Some of these complexes showed missing 
residues, therefore the incomplete complexes were first 
processed with Modeller [64], to fill the gaps. The com-
pleted DOT1L complexes were SB aligned using the alpha 
carbon atoms (UCSF Chimera MatchMaker [65] module) 
using 1NW3 as template (the one with the most complete 
structure and best resolution combination, 416 residues, 
2.50 Å resolution). After hydrogen addition (UCSF Chi-
mera addh command) the complexes were geometrically 

optimized by means of GROMACS 5.0.5 in a single point 
minimizarion. The AMBER99 sb-ildn force filed was 
used to create the protein topology, then the complexes 
were collocated in a cubic box and solvated with water 
molecules (TIP4P models) and neutralized with either 
Na+ or Cl− ions. For the single point minimization was 
used the steepest descendent algorithm with maximum 
50,000 steps. The minimized complex were SB realigned 
(1NW3 as template) and separated into proteins (locks) 
and ligands (keys), the latter were directly used to com-
pose the SB aligned training set for the subsequent 3-D 
QSAR and COMBINEr models.

External test set selection and preparation

All of the MTS and JCTS compounds were modeled begin-
ning from the co-crystalized inhibitors though UCSF Chi-
mera (Build structures module). MPS compounds were 
modeled starting from SMILES format and treated with 
openbabel [66] to generate a randomized initial conforma-
tion. The new DOT1L complexes were subjected to the same 
procedure of the training set described above.

3‑D QSAR modeling

A python implementation of 3-D QSAutogrid/R procedure 
[46] was used. All details will be given elsewhere. Briefly 
the autogrid module of the latest autodock suites [67, 68] 
was used to calculate the molecular interaction fields (MIFs). 
All statistical analysis and validations were implemented by 
means of the scikit-learn python module [69].

For the preliminary 3-D QSAR models, MIFs for each 
probe were computed using a grid spacing of 1 Å. The xyz 
coordinates (in angstroms) of the cuboid grid box used for 
the computation were Xmin/Xmax = − 10.979/11.021, 
Ymin/Ymax = 12.857/50.857, Zmin/Zmax = 6.523/28.523 
to embrace all the minimized inhibitors spanning 10 Ǻ in all 
three dimensions. Data for graphical analysis were stored in 
cube format and read in UCSF Chimera.

COMBINE modeling

A python implementation of a previously reported COM-
BINEr procedure [48, 70] was used. All details will be given 
elsewhere. Briefly AutoDockTools4 [68] python code was 
imported in python and modified to calculate the per-residue 
ligand–protein interactions. All statistical analysis and vali-
dations were implemented by means of the scikit-learn [69] 
python library. Data for model analysis were stored directly 
in xlsx format to be read in Microsoft Excel.
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Autodock Vina settings

Intermediary steps, such as pdbqt files for protein and ligand 
preparation, were completed using different AutoDock Tools 
(ADT) Scripts. The grid size was expanded 10 Å beyond 
any external ligand atoms with grid spacing of 0.375 Å and 
centered at the mean molecules’ center of mass. For each 
calculation, twenty poses were obtained and ranked accord-
ing to the scoring-functions.

Plants settings

The docking of the target protein with the ligand was per-
formed using Plants v1.2 version with three different scor-
ing functions at default speed (SPEED1). The docking tools 
generated 20 conformations for each docked ligand. The 
docking binding site was centered at the molecules’ mean 
center and enlarged to a radius of 15 Å. Docking was per-
formed using three different scoring functions: Chemplp, 
Plp and Plp95.

Surflex‑dock settings

Version 2.6 of the program was used; the input file was built 
using the mol2 prepared protein structure. The protomol was 
generated using all the ligands structures with a threshold 
of 0.50 and bloat set to 0 (default settings). Ligand were 
prepared as described above and docked as mol2 files.

Ligand random conformation generation

SMILES formatted molecules were treated with openbabel 
[71] to generate unbiased and mass centered to zero Car-
tesian coordinates. Starting from SMILES formatted mol-
ecules, openbabel was used to generate unbiased and mass 
centred to zero Cartesian coordinates.

Synthetic procedure for the preparation of com‑
pounds 1MPS and 2MPS

Chemistry

Melting points were determined on a Buchi 530 melting 
point apparatus. 1H NMR spectra were recorded at 400 MHz 
using a Bruker AC 400 spectrometer; chemical shifts are 
reported in δ (ppm) units relative to the internal reference 
tetramethylsilane (Me4Si). Mass spectra were recorded on 
a API-TOF Mariner by Perspective Biosystem (Stratford, 
Texas, USA), samples were injected by an Harvard pump 
using a flow rate of 5–10 µL/min, infused in the Electrospray 
system. All compounds were routinely checked by TLC and 
1H-NMR. TLC was performed on aluminum-backed silica 
gel plates (Merck DC, Alufolien Kieselgel 60 F254) with 

spots visualized by UV light or using a KMnO4 alkaline 
solution. All solvents were reagent grade and, when neces-
sary, were purified and dried by standard methods. Concen-
tration of solutions after reactions and extractions involved 
the use of a rotary evaporator operating at reduced pressure 
of ∼ 20 Torr. Organic solutions were dried over anhydrous 
sodium sulfate. Elemental analysis has been used to deter-
mine purity of the described compounds, that is > 95%. Ana-
lytical results are within 0.40% of the theoretical values. All 
chemicals were purchased from Sigma Aldrich srl, Milan 
(Italy) or from TCI Europe NV, Zwijndrecht (Belgium), and 
were of the highest purity. As a rule, samples prepared for 
physical and biological studies were dried in high vacuum 
over P2O5 for 20 h at temperatures ranging from 25 to 40 °C, 
depending on the sample melting point.

Preparation of 4‑([1,1′‑biphenyl]‑4‑ylmethoxy)benzalde-
hyde (3MPS)

The 4-hydroxybenzaldehyde (500  mg, 4.09  mmol), 
4-(chloromethyl)-1,1′-biphenyl (1.24 g, 6.14 mmol), K2CO3 
(848.8 mg, 6.14 mmol), NaI (675.1 mg, 4.5 mmol) and dry 
CH3CN (20 mL) were mixed in a round bottom flask and 
stirred at reflux for 4 h. After the completion of the reaction, 
the solvent was evaporated, the residue quenched with water 
(30 mL) and extracted first with AcOEt (4 × 50 mL) and then 
with a mixture CHCl3/iPrOH 4:1 (1 × 30 mL). The combined 
organic layers were washed with brine, dried over anhydrous 
Na2SO4, filtered, and evaporated under reduced pressure to 
give a crude that was purified by silica gel column chro-
matography eluting with a mixture ethyl acetate/n-hexane 
1:13 to give the expected product as a white powder. Yield: 
77%. mp: 161–163 °C. 1H-NMR (DMSO): δ 5.29 (s, 2H, 
OCH2), 7.23–7.25 (d, 2H, CH aromatic ring), 7.38–7.39 (t, 
1H, CH aromatic ring), 7.45–7.49 (t, 2H, CH aromatic ring), 
7.55–7.57 (d, 2H, CH aromatic ring), 7.67–7.71 (t, 4H, CH 
aromatic ring), 7.88–7.90 (d, 2H, CH aromatic ring), 9.88 
(s, 1H, CHO). MS-ESI m/z: 289 [M + H]+.

Preparation of 4‑(benzo[d] [1,3] dioxol‑5‑ylmethoxy)benza-
ldehyde (4MPS)

To a mixture of commercially available benzo[d] [1,3] 
dioxol-5-ylmethanol (292 mg, 1.92 mmol) and 4-hydroxy-
benzaldehyde (234 mg, 1.92 mmol) in dry THF (6.5 mL) 
were added in sequence while cooling at 0–5 °C under a 
nitrogen atmosphere PPh3 (629 mg, 2.4 mmol) and, drop-
wise, a DIAD solution (485 mg, 0.47 mL, 2.4 mmol) in 
dry THF (4 mL). The resulting mixture was then allowed 
to warm to room temperature and stir overnight. After the 
completion of the reaction the solvent was evaporated and 
the resulting crude purified by silica gel column chromatog-
raphy eluting with a mixture ethyl acetate/petroleum ether 
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1:12, to afford the pure 4MPS as a white powder. Yield: 47%. 
mp: 61–63 °C. 1H-NMR (DMSO): δ 5.11 (s, 2H, OCH2-
benzodioxole ring), 5.95 (s, 2H, OCH2O), 6.91–6.99 (m, 
2H, CH benzodioxole ring), 7.04 (s, 1H, CH benzodioxole 
ring), 7.18–7.20 (d, 2H, CH benzene ring), 7.86–7.88 (d, 
2H, CH benzene ring), 9.86 (s, 1H, CHO). MS-ESI m/z: 
257 [M + H]+.

General procedure for the preparation 
of 5‑(benzylidene)‑2‑thioxodihydropyrimi-
dine‑4,6(1H,5H)‑diones 1MPS and 2MPS. Example: 
5‑(4‑(benzo[d] [1,3] dioxol‑5‑ylmethoxy)benzylidene)‑2‑thi-
oxodihydropyrimidine‑4,6(1H,5H)‑dione (2MPS)

4-(Benzo[d] [1,3] dioxol-5-ylmethoxy)benzaldehyde 4MPS 
(112 mg, 0.44 mmol) and 2-thiobarbituric acid (66 mg, 
0.46 mmol) were dissolved in EtOH (15 mL) and then 
refluxed for 6 h 30 min. When TLC showed the disappear-
ance of the starting materials, the yellow solid in suspension 
was filtered from hot EtOH and then washed in sequence 
over filter with hot EtOH and Et2O, to give the pure 2MPS 
as a yellow powder. Yield: 61%. mp: 248–249 °C. 1H-NMR 
(DMSO): δ 5.14 (s, 2H, OCH2-benzodioxole ring), 5.95 (s, 
2H, OCH2O), 6.92–6.98 (m, 2H, CH benzodioxole ring), 
7.01 (s, 1H, CH benzodioxole ring), 7.06–7.10 (d, 2H, CH 
benzene ring), 8.26 (s, 1H, =CH), 8.33–8.34 (d, 2H, CH 
benzene ring), 12.38 (s, 1H, NH), 12.40 (s, 1H, NH). MS-
ESI m/z: 383 [M + H]+.

1MPS

Yield: 89%. mp: > 299 °C. 1H-NMR (DMSO): δ 5.40 (s, 2H, 
OCH2), 6.83 (d, 2H, CH aromatic ring), 7.33–7.58 (m, 5H, 
CH aromatic ring), 7.62–7.90 (d, 4H, CH aromatic ring), 
8.27 (s, 1H, =CH), 8.31–8.47 (d, 2H, CH aromatic ring), 
12.31 (s, 1H, NH), 12.38 (s, 1H, NH). MS-ESI m/z: 415 
[M + H]+.

Enzyme assays

AlphaLISA method DOT1L inhibition assay

Histone H3 lysine-N-methyltransferase assay was performed 
in 384-well plates (Corning, # 3673) with human recom-
binant DOT1L (residues 1-416) containing an N-terminal 
GST-tag (Reaction Biology, # HMT-11-101). Purified oli-
gonucleosomes (ON) from HeLa cells (Reaction Biology, 
# HMT-35-130) were used as substrate and reactions were 
performed in assay buffer (AB: 50 mM Tris–HCl pH 8.0, 
150 mM NaCl, 3 mM MgCl2, 0.1% BSA). DOT1L enzyme, 
SAM at 4 µM (0.5 µM final), inhibitors and oligonucle-
osomes at 0.4 ng/µL (0.5 ng/well final) were diluted in the 
assay buffer just before use. The assay reactions were in a 

final volume of 10 µL including 5 µL of diluted compounds 
in AB, 2.5 µL of diluted DOT1L and 2.5 µL of SAM/ON 
mix. Control reactions were also performed with or with-
out enzyme and without compounds (replaced by 5 µL of 
DMSO-AB mix). Reactions were run at room temperature 
taking into consideration the incubation time for a complete 
methylation. Reactions were then stopped by adding 5 µL 
of high salt buffer (50 mM Tris–HCl pH 7.4, 1 M NaCl, 
0.1% Tween-20, 0.3% poly-l-lysine) and incubated at room 
temperature for 15 min. A mix of anti-Histone H3 (C-ter) 
AlphaLISA acceptor beads (PerkinElmer, #AL147) (0.1 mg/
mL final) and AlphaLISA biotinylated anti-dimethyl-Histone 
H3 Lysine 79 (H3K79) antibody (PerkinElmer, #AL148) 
(5 nM final) in detection buffer (DB) (AlphaLISA 5X Epi-
genetics Buffer 1 + AlphaLISA 30X Epigenetics Buffer 
Supplement, PerkinElmer, #AL008C1 & #AL008C2) were 
prepared and 5 µL of this mix were added for 1 h incubation 
at room temperature. For detection 5 µL Alpha Streptavidin 
Donor beads (PerkinElmer, #6760002) (0.1 mg/mL final) in 
DB was added and incubated for 30 min at room tempera-
ture. Finally, the plates were read using an EnVision 2103 
multilabel plate reader (PerkinElmer) in AlphaLISA mode. 
Each point/concentration of compounds was evaluated in 
triplicates per assay and the percentage of inhibition was 
calculated as the mean of at least three experiments. The 
percentage inhibition was calculated using the following 
equation:

where Xi, Xm, XM are the average signal at the considered 
concentration, minimal signal response (without enzyme and 
compound) and maximum signal response (without com-
pound), respectively. Data analysis was performed using 
the GraphPad Prism 5 software. IC50 values were deter-
mined using the nonlinear regression fittings with sigmoidal 
dose–response (variable slope) function and the displayed 
EC50 are the mean of three independent experiments with 
associated standard deviations.

DOT1L, G9a, SET7/9, and PRMT1 inhibition radioac‑
tive assays

The appropriate histone methyltransferase (HMT) substrate 
[0.05 mg/mL oligonucleosomes for DOT1L, 5 µM histone 
H3 (1–21) peptide for G9a, 0.05 mg/mL core histone for 
SET7/9, and 5 µM histone H4 for PRMT1] was added in 
freshly prepared reaction buffer (50 mM Tris-HCl (pH 
8.5), 5 mM MgCl2, 50 mM NaCl, 0.01% Brij35, 1 mM 
DTT, 1% DMSO). The HMT enzyme [human recombi-
nant DOT1L (residues 1-416; Genbank Accession No. 
NM_032482), MW = 80.0 kDa, expressed as an N-terminal 
GST fusion protein in E. coli, 50 nM in the reaction; human 

% of inhibition =

(

1 −

(

Xi − Xm

XM − Xm

))

× 100;
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G9a (GenBank Accession No. NM_006709) (amino-acids 
785–1210), with N-terminal GST tag, MW = 79.6 kDa, 
expressed in an E. coli expression system, 10 nM in the 
reaction; human SET7/9 (SETD7, GenBank Accession No. 
NM_030648) (amino-acids 2-366), with N-terminal GST 
tag and C-terminal His tag, MW = 68.5 kDa, expressed in 
an E. coli expression system, 8 nM in the reaction;r human 
PRMT1 (GenBank Accession No. NM_001536) (amino-
acids 2-371), with N-terminal GST tag, MW = 68.3 kDa, 
expressed in an E. coli expression system, 20 nM in the 
reaction] was delivered into the substrate solution and the 
mixture was mixed gently. Afterwards, the tested compounds 
dissolved in DMSO were delivered into the enzyme/sub-
strate reaction mixture by using Acoustic Technology (Echo 
550, LabCyte Inc. Sunnyvale, CA) in nanoliter range, and 
1 µM 3H-SAM was also added into the reaction mixture 
to initiate the reaction. The reaction mixture was incubated 
for 1 h at 30 °C and then it was delivered to filter-paper 
for detection. The data were analysed using Excel 2016 and 
GraphPad Prism ver. 6 softwares for IC50 curve fits.
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